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The synergism of spatial metabolomics and morphometry
improves machine learning-based renal tumour subtype

classification

Dear Editor,
Although mass spectrometry imaging generates both mor-
phometric and metabolomics data, they have never been
combined to improve machine learning-based tumour
typing. We demonstrate that the synergy of spatial
metabolomics and morphometric data improves the classi-
fication of tumours of the kidney and thus has the potential
to improve artificial intelligence (AI)-based diagnostics.

Tumours of the kidney are a heterogeneous group
of various types of cancer with characteristic histologic
or genetic features that require tumour type-specific
therapies.! Chromophobe renal cell carcinomas (chRCC)
and renal oncocytomas - two tumour types that can some-
times be difficult to distinguish based on morphology
alone - are associated with different prognosis, and the for-
mer has the potential to progress and metastasize.”> Both
immunoncological and targeted therapies are investigated;
however, immunotyping and genotyping are laborious, fall
short of standardization, and immunohistochemical mark-
ers have been shown to be unreliable.*>

We used matrix-assisted laser desorption/ionization
(MALDI) mass spectrometry imaging (MSI) because one
of its greatest strengths is the ability to combine in situ
mass spectrometric data with conventional histology or
immunohistochemistry, making it a powerful and very
useful tool for multiparametric high-dimensional multi-
omics analyses.®'" This potential has also been suc-
cessfully applied for biomarker discovery and machine
learning-based renal tumour subtyping using unique
molecular data.!' >

Our study was performed on a large patient cohort
(n = 853, Table 1) and on clinically relevant FFPE tis-
sue samples to distinguish clear cell renal cell carcinomas
(ccRCC, n = 552), papillary renal cell carcinomas (pRCC,
n = 122), chRCC (n = 108) and renal oncocytomas (RO,
n =71). For details about the MALDI imaging and the mor-
phometrics analysis of H&E stained tissue sections, see the
supporting information.

TABLE 1 Patient characteristics
Patient characteristics n =853
Age range (median) (years) 27-88 (65)
Gender
Male 299 (40.4%)
Female 441 (59.6%)
ISUP Grade
Grade 1 25 (4.1%)
Grade 2 241 (39.4%)
Grade 3 191 (31.3%)
Grade 4 154 (25.2%)
Pathological stage
pT1 418 (55.8%)
pT2 90 (12.0%)
pT3 231 (30.9%)
pT4 10 (1.3%)
pN+ 26 (15.0%)
pM+ 4 (36.4%)
Subtype
RO 71 (8.3%)
chRCC 108 (12.7%)
ccRCC 552 (64.7%)
pRCC 122 (14.3%)
Survival (dead/alive) 214 (31.5%)/465 (68.5%)
Overall survival median (months) 36

Abbreviations: ccRCC, clear cell renal cell carcinomas; chRCC, chromophobe
renal cell carcinomas; pRCC, papillary renal cell carcinoma; RO, renal onco-
cytomas.

Morphometric features (n = 110) describing tissue or
cell compartment colour, shape or size (Table S1) and
untargeted metabolomic features (n = 2,111) were used for
classifier training (Figure 1). Patients were randomly split
into training (2/3) and independent validation set (1/3).
The data were normalized for training and validation
set, separately. Feature selection was done by calculating
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FIGURE 1

Workflow to analyze the synergistic effect of morphometric and molecular data on classifier performance. Eight hundred

fifty-three patient tissues were analyzed with MALDI mass spectrometry imaging (MSI), followed by hematoxylin & eosin staining and
morphometric image analysis. Morphometric and molecular data of tumour regions were used both separately and in synergy to train three

random forest classifiers. Patients were split into training and independent validation sets, followed by data normalization, feature selection

and classifier training and validation

a Kruskal-Wallis test (p < 0.01) on the training sets.
Details about the classifier training are in the supporting
information.

Using morphometric data alone, the classifier reached a
mean accuracy of 77.81% (Figure 2A). It performed best for
ccRCC (F1-score: 86.22%) and worst for chRCC (F1-score:
52.17%).

Trained on metabolomics data, the classifier reached a
higher mean accuracy (85.13%) and performed even bet-
ter on ccRCC (F1-score: 91.06%), chRCC (F1-score: 76.46%)
and RO (F1-score: 83.04%) (Figure 2A). Only on pRCC, this
classifier did not perform as well as the classifier trained on
morphometric data (F1-score: 63.66%).

The third classifier was trained on the synergy of both
data sets — morphometric data and molecular data -
and outperformed the two previous classifiers for each

tumour subtype (Figure 2A). It reached a mean accuracy
of 88.04% and F1-scores of 92.54% (ccRCC), 76.73% (pRCC),
77.15% (chRCC) and 84.65% (RO). When comparing each
statistical measure, the synergistic classifier trained on
both data sets almost consistently outperforms the other
two (Figure 2B).

The synergy of morphometric and metabolite data not
only improves general performance, but also seems to
compensate for weaknesses of the two individual classi-
fiers trained on either morphometric or metabolite data.
For instance, the metabolomic classifier performed bet-
ter compared to the morphometric classifier for ccRCC
(F1-scores: 91.06% vs. 86.22%), chRCC (F1-scores: 76.46%
vs. 52.17%) and RO (F1-scores: 83.04% vs. 64.75%), while
the morphometric classifier performed better for pRCC
(F1-scores: 63.66% vs. 67.56%). The classifier trained on
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mean accuracy = 85.13 mean accuracy = 88.04
F1 Precision Recall F1 Precision Recall F1 Precision Recall
ccRCC 86.22 85.26 87.78 91.06 87.44 95.11 92.54 89.54 95.85
pRCC 67.56 77.06 62.89 63.66 68.89 60.50 76.73 80.93 74.25
chRCC 52.17 56.94 52.75 76.46 85.60 69.63 77.15 85.33 70.96
RO 64.75 68.36 66.07 83.04 93.74 75.08 84.65 93.23 78.08
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FIGURE 2 Synergistic effect of morphometric and molecular data on classifier performance on renal cell carcinoma subtypes. (A and B)

Classifier performance of the random forests revealing a synergistic effect of morphological and molecular data. In (B), the best performing

classifier is visualized with a larger marker. The synergistic effect is best seen for papillary renal cell carcinoma (pRCC), where the

performance is improved by up to 10 per cent. (C-E) Feature importance of the top 50 features for the random forest trained on morphometric
data (C), metabolite data (D) and the synergy of both (E). In the latter, the top 50 comprise a mixture of both types of features
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FIGURE 3 Synergistic effect of morphometric and molecular data on classifier performance of chromophobe renal cell carcinoma
(ccRCC) and renal oncocytoma (RO). (A) Hematoxylin & eosin staining of chRCC and RO, illustrating their similar histology. (B and C)
Classifier performance of the random forests revealing a synergistic effect of morphological and molecular data. In (C), the best performing
classifier is visualized with a larger marker. (D-F) Feature importance of the top 50 features for the random forest trained on morphometric
data (D), metabolite data (E) and the synergy of both (F). In the latter, the top 50 comprise a mixture of both types of features. Scale bar:
200 um
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the synergy of the two data sets outperforms either of
the two (Flerec: 92.54%, Flygec: 76.73%, Flenrec: 77.15%,
Flgo: 84.65%).

The Gini importance of each feature was calculated for
the three classifiers, and the top 50 features were com-
pared (Figure 2C-E). The top 50 features from the classifier
trained on both data sets represent an even mixture of mor-
phometric and metabolomic features (Figure 2E). Exam-
ple metabolite ion images of the top features in the classi-
fier are illustrated in Figure SI. Interestingly, the four most
important features are metabolites, and while half of the
top features are morphometric, the importance of the best
metabolite is twice as high as that of the top morphometric
feature. This further illustrates the synergistic impact both
data sets have on the classifier’s performance.

Up to this point, the classifiers were trained to distin-
guish four different tumour subtypes, which is a much
more difficult task than separating only two tumour sub-
types. However, since ccRCC and pRCC are relatively easy
to recognize by a pathologist using histology alone, we
also tested our approach exclusively on the two remaining
tumour subtypes - chRCC and RO (Figure 3A).

The same synergistic effect can be observed for the three
classifiers (Figure 3B). On morphometric data, a mean
accuracy of 81.27% is achieved, while on metabolomics
data, the mean accuracy is higher with 89.49%. The synergy
of the data further increases the accuracy to 91.0% with an
F1-score of 92.70% for chRCC and 88.07% for RO. As these
two subtypes can be histologically similar, the morphome-
try plays a minor role, while metabolite data are of higher
importance for classification. Hence, fewer morphometric
features are ranked among the top 50 (40%), but they are
still beneficial for tumour subtype classification. The syn-
ergistic effect is reflected by the high ranking of morpho-
metric features within the classifier (Figure 3F).

Even though morphometric data are readily available in
any MSI experiment, it has not been exploited to improve
the predictive quality of molecular classifiers so far. This
study provides evidence that the synergy of morphomet-
ric and molecular data improves renal carcinoma subtyp-
ing. Our study was performed on a large patient cohort
(n = 853) and on clinically relevant FFPE tissue samples
using metabolite data. The classifier trained on the com-
bined data set or morphometric and metabolite data out-
performed the classifiers trained on the individual data
sets for each tumour subtype and reached an accuracy of
88.04%. Finally, the classifier was trained on chRCC and
RO - two tumour subtypes that are sometimes difficult
to distinguish based on histology alone - and was able
to distinguish the subtypes with high accuracy (91%). In
conclusion, we propose to utilize the so far unrecognized
potential and synergy of computer-aided image analysis
and spatial metabolomics - both types of data available in

all MSI experiments - to improve Al-based diagnostics and
tumour subtyping in general.
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