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Abstract 

Purpose: The integration of Artificial Intelligence into medical practices has recently been advocated for the promise 
to bring increased efficiency and effectiveness to these practices. Nonetheless, little research has so far been aimed at 
understanding the best human-AI interaction protocols in collaborative tasks, even in currently more viable settings, 
like independent double-reading screening tasks.

Methods: To this aim, we report about a retrospective case–control study, involving 12 board-certified radiologists, 
in the detection of knee lesions by means of Magnetic Resonance Imaging, in which we simulated the serial com-
bination of two Deep Learning models with humans in eight double-reading protocols. Inspired by the so-called 
Kasparov’s Laws, we investigate whether the combination of humans and AI models could achieve better perfor-
mance than AI models alone, and whether weak reader, when supported by fit-for-use interaction protocols, could 
out-perform stronger readers.

Results: We discuss two main findings: groups of humans who perform significantly worse than a state-of-the-art 
AI can significantly outperform it if their judgements are aggregated by majority voting (in concordance with the 
first part of the Kasparov’s law); small ensembles of significantly weaker readers can significantly outperform teams of 
stronger readers, supported by the same computational tool, when the judgments of the former ones are combined 
within “fit-for-use” protocols (in concordance with the second part of the Kasparov’s law).

Conclusion: Our study shows that good interaction protocols can guarantee improved decision performance that 
easily surpasses the performance of individual agents, even of realistic super-human AI systems. This finding high-
lights the importance of focusing on how to guarantee better co-operation within human-AI teams, so to enable 
safer and more human sustainable care practices.
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Introduction
The integration of computational systems endowed with 
some form of Artificial Intelligence (AI) into medical 
practices is advocated for several reasons, the main ones 
being the promises to bring more efficiency (e.g.,  [21]) 
and effectiveness to those practices. Although efficiency 

and effectiveness are very broad concepts, we intend effi-
ciency gains in terms of any process improvement for 
which the throughput of medical services is improved 
and wait times reduced, or for which their provision is 
guaranteed at minor costs and less resource consump-
tion; and effectiveness gains as any improvement in 
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diagnostic accuracy (fewer errors), safety (e.g., fewer 
adverse events, infections, re-admissions), and better 
outcomes and satisfaction.

Moreover, these two broad dimensions are often con-
nected in multiple ways. For instance in case of double-
reading processes for mammography screening, the 
accuracy of an AI used to provide a rapid second opinion 
was non-inferior to serial reading by two radiologists (c.f., 
effectiveness), and the simulated workload of the second 
reader was reduced by 88% (cf. efficiency)  [28]. In case 
of Magnetic Resonance Imaging (MRI), AI-based image 
reconstruction and postprocessing methods can reduce 
scan times, to 10-minutes sessions or even less, while 
maintaining equivalent image quality  [50]. This would 
not only lead to higher patient satisfaction, especially in 
case of claustrophobic people, but also allow hospitals to 
double or triple the number of MRI tests that can be per-
formed each day, also by making MRI a “walk-in service” 
for emergency triage (like X-rays or CT).1 The same tech-
niques of deep learning can yield higher-quality images 
on scanners with lower field strengths (thus indirectly 
improving diagnostic accuracy in many healthcare facili-
ties), as well as it can enable the use of lower (or even no) 
doses of gadolinium-based contrast agents, so that safety 
could be improved by reducing the exam toxicity and the 
odds of adverse reactions [17]. On the other hand, such 
a disruptive increase in exam throughput would also 
require radiologists and specialists read and report more 
scans, or hospitals to hire more of these specialists, thus 
eroding potential efficiency gains [47].

This can promote a further business case of medi-
cal AI in diagnostic imaging, that is the use of AI assis-
tants as decision support: this case is usually seen from 
two opposing stances: the perspective of the cognitive 
augmentation of the reading radiologist; or the opposite 
stance that contrasts human radiologists and these sys-
tems in virtue of their equal, if not superior, accuracy [30]. 
However, also a third perspective can be adopted: the one 
that recognizes the necessity of this alliance in diagnostic 
tasks for the sustainability of the healthcare systems that 
leverage AI for more robust business cases aimed at gain-
ing efficiency and safety improvements first.

In this paper, we will focus on this third perspective: 
namely, how to integrate human readers and AI systems 
together. One of the most interesting contributions to 
the comprehension of the dynamics that can character-
ize human–machine teams, although still neglected by 

academic research, was proposed by Garry Kasparov 
in [26]. His position was first presented in an influential 
2014 book by Brynjolfsson and McAfee [5] and it is often 
summarized in terms of the so-called Kasparov’s law, 
and rendered in the following schematic and composite 
way  [26][p. 236]: 

1. Weak Human + Machine + Better Process > Strong 
Machine;

2. Weak Human + Machine + Better Process > Strong 
Human + Machine + Inferior Process

where the inequality sign can have different but related 
meanings, like “is superior to” to some respect, or 
“beats” (in some game, like in free-style chess, where any 
arrangement of humans and computers are allowed), or 
just “is better than” according to some quality criterion.

Proving the above law is an exercise of low utility (if 
reasonable at all), also because this expression regards 
two apparent conjectures about the nature of human-AI 
collaboration, not a general principle: the application of 
this “law” depends on aspects like the nature of the tasks 
at hand, differences between the humans involved (weak 
vs strong), and what being a superior and inferior process 
actually means. These elements would make any demon-
stration nothing more than a local curiosity lacking any 
ambition of being replicable and transferable to other set-
tings, let alone application domains.

However, in this formulation we find interesting the 
concept of process, which we interpret in terms of proto-
col stipulating how human decision makers should inter-
act with the machines that support them. Our aim is to to 
see if, among some human-AI interaction protocols that 
can be conceived for radiological double reading, there is 
some configuration for which the Kasparov’s law applies, 
and therefore it is suggestive of some practically signifi-
cant difference between processes with respect to some 
dimension of interest.

Various interaction protocols can be designed depend-
ing on the complexity of the decision task, its typical 
load and its requirements: processes can range from 
those that do not provide for direct collaboration (like 
voting) to protocols that, conversely, enable and sup-
port a rich exchange where humans might even engage 
with machines as if they were teammates  [42], so that 
the so-called hybrid intelligence  [2] can emerge, i.e., a 
specialization of the more common concept of collective 
intelligence, where AI machines are members of the col-
lective. For this reason, this study is also a contribution 
to the ongoing multidisciplinary research investigating 
cases of collective intelligence in medicine, that is on how 
to design viable and reliable methods by which groups 
of agents can achieve a better performance, in tasks that 

1 That notwithstanding, the effect of this innovation on waiting lists would 
be more uncertain as it depends also on how such an efficiency increase will 
reinforce the so-called phenomenon of biomarkup [32], that is the tendency in 
relying on an increasing number of biomarkers for diagnostic and prognostic 
purposes leading to an excess of imaging and laboratory tests.
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would usually require some intelligence, knowledge and 
competence, than single agents (including medical deci-
sion making, e.g. [27, 38, 49]) by combining their multi-
ple contributions together, regardless of their human or 
“machinic” nature (e.g. [22, 48]).

However, still little research has so far aimed at under-
standing what the best human-AI interaction protocols in 
collaborative medical tasks are, even in settings that are 
more viable for the current state of the art in medical AI, 
like independent double-reading screening tasks [28].

To fill the above mentioned literature gap, and inspired 
by the mentioned Kasparov’s Law, in this paper we will 
report about a retrospective case–control study in the 
detection of knee lesions by means of Magnetic Reso-
nance Imaging (MRI) in which we simulated the serial 
combination of an AI in a number of double-reading pro-
tocols. Our research questions are: do specific human-AI 
interaction protocols exist by which, on one hand, com-
bining humans and AI together can achieve significantly 
better performance than AI alone and, on the other hand, 
weaker readers can out-perform stronger readers even 
if they use the same computational support? If we show 
that such protocols exist, the intuition behind the Kasp-
arov’s law would be proved sound and the its implica-
tions would deserve a dedicated line of research.

As mentioned above, in what follows we will focus on 
the case of double reading, in which two or more radi-
ologists, often called observers or readers, consider the 
same clinical case by reading the same images [16]. This 
general scheme applies to different practices (see  [16] 
for a review of these variations); more in particular, we 
will focus on double reading with pseudo arbitration: 
this is the (diagnostic) deliberation method by which two 
observers considers a case, serially and independently of 
each other to avoid undue and mutual influence (mainly 
in terms of priming, framing, and social desirability bias), 
and a third observer does the same if the two former 
interpretations (in terms of normal-health  /  abnormal-
pathological exam) differ (i.e., when a conflict occurs). 
In pseudo-arbitration also the third observer (sometimes 
called arbiter) considers the case unaware of the previous 
disagreements, to avoid undue influence (like priming 
and groupthink effects) and the final decision (diagnosis) 
is taken by majority voting.

Methods
In this Section we describe the experimental methodol-
ogy adopted to study the previously mentioned research 
question: A graphical representation of the experimental 
workflow is reported in Fig. 1.

To implement the double-reading (with pseudo-arbitra-
tion) setting for our study, we involved 12 board-certified 
specialized radiologists, from several orthopedic centers 

in Italy, but mainly from the IRCCS Istituto Ortopedico 
Galeazzi of Milan, in a retrospective case–control study in 
the detection of knee lesions (i.e., meniscus and ligament 
tears) by means of Magnetic Resonance Imaging (MRI). 
The data collection was performed through an online 
questionnaire platform (Limesurvey, version 3.188) and 
the radiologists were invited to participate in the study 
by personal email. Each of the 12 radiologists was asked 
to annotate a collection of 427 MRI images (randomly 
sampled from the Stanford MRNet image repository, 
which contains a total of 1129 cases) so to have a balanced 
dataset with respect to abnormal and normal cases. The 
radiologists were also asked to report, for each case, the 
subjectively perceived complexity of the given case, and 
their subjective confidence in the provided diagnosis. 
Specifically, both case complexity and confidence were 
represented as values on a discrete ordinal scale with, 
respectively, 4 and 5 values. The ordinal levels were subse-
quently normalized to be represented on a [0, 1] numeri-
cal scale.

Fig. 1 Flowchart representation of the adopted experimental meth-
odology
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(a) The average confidence of the readers for each
case expressed as function of their reported com-
plexity for that case. A negative correlation can
be visually detected, as expected: the more com-
plex a case, the less confident the reader on their
interpretation.

(b) The success rate of the readers for each case
expressed as function of their reported complexity
for that case. A negative correlation can be visually
detected, as expected: complex cases are harder to
classify correctly.

(c) The success rate of the readers for each case
expressed as function of their reported confidence in
their judgment for that case. A positive correlation
can be visually detected, as expected: the more
confident the reader, the more likely the case is
correctly classified.

(d) The average accuracy of each rater as a func-
tion of their confidence. Self-confidence seems only
slightly positively correlated with actual skill.

Fig. 2 Scatterplot of the associations between accuracy and the other dataset metadata. Red circles indicate the “strong” readers, the blue circle the 
“weak” ones.
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See Fig.  2a–d, to see how average (reader-wise) 
reported confidence and average reported complexity 
correlate with case-wise success rate by the 10 readers.

Each radiologist was evaluated in terms of accuracy 
with respect to the MRNet gold standard: the average 
accuracy was 80.96%± 1.4% (95% confidence interval). 
The most accurate (86.18%) and least accurate (77.52%) 
observers were discarded as outliers, thus in the subse-
quent analysis we considered the group of 10 remaining 
radiologists (M = 80.77% , min = 78.69% , max = 84.07% , 
see Table 1).

After the selection of the 427 cases given to the 
human readers and the collection of the readers’ 
annotations, the remaining 702 cases (for a total of 
24553 training images) were subsequently used to 
train two Convolutional Neural Network models: 
a MobileNet  [24] model (88 layers) and an Incep-
tionV3  [46] model (159 layers). The models were then 
evaluated on the 427 MRI images used in our study 
reporting 81.72% and 84.54% accuracy, respectively.

For the evaluation of the Kasparov’s Laws we consid-
ered human-AI groups, employing 8 different double-
reading protocols, which are all variations of the general 
interaction protocol depicted in Fig. 3. 

1. Simple-Majority Protocol: The first and second 
observer provide their judgments, the third observer 
is involved if and only if the first two observers disa-
gree. The final decision is the majority choice of the 
three observers in the team;

2. Accuracy-Weighted Majority Protocol: As in the sim-
ple-majority protocol, but the judgment produced by 
each observer is weighted by their accuracy;

3. Confidence-Weighted Majority Protocol: As in the 
simple-majority protocol, but the judgement pro-
vided by each observer is weighted by the confidence 
of the respective observer on the given case;

4. Specificity-oriented Protocol: The first observer pro-
vides their judgment, the second observer is involved 
if and only if the first observer deemed the case 
abnormal. If the first two observers disagree, then 
the third observer is also involved. The result is the 
majority vote of the involved observers;

5. Sensitivity-oriented Protocol: The first observer 
provides their judgement, the second observer is 
involved if and only if the first observer deemed the 
case normal. If the first two observers disagree, then 
the third observer is also involved. The final decision 
is the majority choice of the involved observers;

Table 1 Accuracy of the 10 radiologists involved in the experiments.

Reader 1 2 3 4 5 6 7 8 9 10

Acc. 81.26 79.39 81.5 78.69 79.16 84.07 79.86 81.97 78.92 82.9

Fig. 3 A choreography diagram describing the general articulation of the image reading and reporting tasks. We recall this kind of diagram only 
represents interactions, no data processing. The articulation depicted above reflects the assumption that radiological reports will be written and 
signed by human radiologists for a long time yet, mainly due to legal liability concerns [37] (even if systems that are capable of generating mean-
ingful reports linked to a diagnostic classification have already been described, e.g. [15]).
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6. Cautious Protocol: The first two observers pro-
vide their judgments, their subjective confi-
dences conf1, conf2 and perceived case complexity 
scores compl1, compl2 . If |conf1 − conf2| ≥ τ and 
compl1+compl2

2 ≤ δ , where τ , δ are two thresholds in 
[0, 1]; then the team’s decision is the same as the one 
provided by the observer with greater confidence. 
Otherwise, the third observer is involved and the 
result is the majority choice of the involved observ-
ers;

7. Presumptuous Protocol: The first two observers pro-
vide their judgements and their subjective confidence 
scores conf1, conf2 . The team’s decision is the same as 
the one provided by the observer with greater con-
fidence. If conf1 = conf2 , then the third observer is 
involved and the result is the majority choice of the 
involved observers;

8. OR Rule: The first observer provides their judgment, 
the second observer is involved if and only if the 
interpretation of the first observer is normal and, in 
that case, the decision of the team is the same as the 
second observer’s.

Since the Kasparov’s Law (KL), as mentioned in the 
Introduction, can be framed as two different statements, 
we designed two different experiments: 

1. In order to evaluate the first KL statement, we used 
the InceptionV3 model as the “Strong” machine 
(which was actually more accurate than the best 
human reader involved in this study), and we then 
used the MobileNet model as the Machine (sec-
ond reader) to be used in the “better” process of 
human-AI collaboration. Specifically, the Machine 
was always recruited as the second observer, like 
done in [39], where it was found that combining the 
first reader with the best algorithm identified more 
pathological cases than having a human as the sec-
ond reader. In doing so, we considered a total of 90 
3-reader 2-permutations.2 For each group we evalu-
ated the performance of each of the 8 double reading 
protocols;

2. In order to evaluate the second KL statement, we 
split the observers in two groups: the group of weak 
observers, that is the 5 least accurate observers (accu-
racy from 78.69% to 79.86%, M = 79.20, SD = 0.46), 
and the group of strong observers, that is the 5 most 
accurate observers (accuracy from 81.26% to 84.07%, 
M = 82.34, SD = 1.15). The weak observers were, on 
average, significantly less accurate than the strong 

one (t = 5.66, df = 8, p = 0.002). The performance of 
the observers and the ROC curves of the AI models 
are reported in Fig. 4. As for the first experiment, we 
used the MobileNet model as the Machine (second 
reader): thus, we considered 20 2-permutations of 
weak readers, and 20 2-permutations of strong read-
ers. For both groups of observers we evaluated the 
performance of all 8 considered protocols.

For both experiments, for the Cautious and Presump-
tuous protocols, the values of τ and δ were set as:

that is, as, respectively, the mean of differences in the 
reported confidences, and the mean reported case com-
plexity. Thus, the values of τ and δ were set, respectively 
as τ = 0.17 and δ = 0.70.

After collecting the annotations produced by each 
of the considered groups (for each protocol), we then 
evaluated each of the groups (and protocol), for both 
experiments, in terms of six different evaluation metrics, 
defined as follows:

(1)

τ =
1

427

∑

c case

(

10
2

)−1
∑

o1,o2 observers

|conf1 − conf2|

(2)δ =
1

427

∑

c case

1

10

∑

oi observer

compli

Fig. 4 Performance of the 10 observers and the two AI models, rep-
resented in ROC space. Empty circles correspond to the weak image 
readers, full circles to the strong ones involved in the study.

2 We recall that the total number of 2-permutations of n objects is n(n− 1).
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– accuracy = number of correct cases
total number of cases ;

– sensitivity =
number of true positives

total number of positive cases;
– specificity =

number of true negatives
total number of negative cases;

– efficiency = number of correct cases
total number of single judgments;

– the 1-order harmonic mean of sensitivity and specific-
ity, that is 2

sensitivity−1+specificity−1;
– the 2-order harmonic mean of accuracy and efficiency 

(henceforth, F2(acc, eff ) ), that is 
(1+ 22) ∗

accuracy∗efficiency

accuracy+22∗efficiency
; 3

As regard the first experiment, we evaluated each group 
and then compared the strong machine against the aver-
age group performance, in terms of accuracy, sensitivity, 
specificity and the harmonic mean of the latter two met-
rics. We also report the efficiency of each protocol. As 
regard the second experiment, we evaluated each weak 
and strong group and then compared the average group 
performance for each of the two samples, in terms of all 
the above described metrics.

In order to assess the presence, if any, of statistically 
significant differences we applied statistical hypothesis 
testing methods: specifically, as regards the first experi-
ment we applied the one sample T test comparing, for 
each considered metrics and protocol, the results of the 
90 groups against the results of the Strong Machine (that 
is, we tested the hypothesis that the results of the groups 
were drawn from a distribution with average equal to the 
results of the Strong Machine); while as regards the sec-
ond experiment, for each metric and protocol, we applied 
the non-parametric Kolmogorov-Smirnov test to com-
pare the distributions of the weak and strong groups. In 

both cases, in order to control for multiple comparisons, 
we applied the Bonferroni correction to the obtained 
p-values: significance was assessed, as standard, compar-
ing the corrected p-values against a 95% confidence level 
(that is, α = 0.05).

Results
In what follows, we report the findings observed in both 
the experiments designed as in “Methods” section, cover-
ing a statement in the Kasparov’s Law each.

First statement of the Kasparov’s Law
The results of the first experiment are depicted in Table 2, 
Figs.  5, 6, 7 and 8. The efficiency of the protocols is 
reported in Fig. 9.

In terms of accuracy, it can be seen from Fig.  5 and 
Table 2, that all three Majority-based protocols, the Cau-
tious protocol and the Specific protocol reported a sig-
nificantly higher accuracy than the Strong Machine. In 
terms of sensitivity, see Fig. 6 and Table 2, only the OR 
Rule reported a statistically significant superior perfor-
mance compared with the Strong Machine. In terms of 
specificity, see Fig. 7 and Table 2, all protocols but the OR 
Rule reported a significantly higher performance. On the 
other hand, in terms of the harmonic mean of sensitivity 
and specificity, see Fig. 8 and Table 2, only the Majority-
based protocols were significantly better than the Strong 
Machine, while the Cautious protocol was better only on 
average. Finally, we note that, despite the higher accuracy 
and predictive performance, all Majority-based protocols 
and the Cautious protocol were significantly less efficient 
than the other protocols (this is to be expected, as the 
former protocols always require at least two predictions 
to be elicited), while the Cautious protocol was still, on 
average, slightly more efficient than the Majority-based 
protocols.

Table 2 Results of the experiment regarding the first statement of the Kasparov’s Law: Average values of accuracy, sensi-
tivity, specificity and F1 score for both the Strong Machine and all the considered protocols. For each protocol and metric, 
we report both the average value of the metrics (across all 90 groups) and the (corrected) p-value arising from the com-
parison against the performance of the Strong Machine.

Protocol Accuracy Sensitivity Specificity F1 score

Strong machine 84.54 94.76 76.27 84.52

Specific 85.05 ( p = 0.006) 76.08 ( p < 0.001) 92.32 ( p < 0.001) 83.36 ( p < 0.001)

Sensitive 83.38 ( p < 0.001) 84.47 ( p < 0.001) 82.50 ( p < 0.001) 83.41 ( p < 0.001)

Cautious 85.99 ( p < 0.001) 79.88 ( p < 0.001) 90.93 ( p < 0.001) 85.01 ( p = 0.223)

Presumptuous 82.37 ( p < 0.001) 75.97 ( p < 0.001) 87.54 ( p < 0.001) 81.31 ( p < 0.001)

Majority 87.66 ( p < 0.001) 82.96 ( p < 0.001) 91.47 ( p < 0.001) 86.98 ( p < 0.001)

Acc-Weighted 87.66 ( p < 0.001) 82.96 ( p < 0.001) 91.47 ( p < 0.001) 86.98 ( p < 0.001)

Conf-Weighted 87.75 ( p < 0.001) 82.97 ( p < 0.001) 91.62 ( p < 0.001) 87.05 ( p < 0.001)

OR Rule 81.29 ( p < 0.001) 95.18 ( p = 0.033) 70.04 ( p < 0.001) 80.65 ( p < 0.001)

3 This is an average measure where the effectiveness of a medical decision is 
considered 2 times as much important as efficiency, for the importance to 
positively contribute to someone’s health and well-being.
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Second statement of the Kasparov’s Law
The results of the second experiment are depicted in 
Tables 3, 4, 5, 6, 7, 8, 9 and Figs. 10, 11, 12, 13, 14 and 15.

In terms of accuracy, see Fig. 10 and Table 4, the teams 
of weak observers exhibited higher performance than 

the teams of strong observers when any of the Majority-
based protocols was applied, except for the Cautious and 
Majority-based protocols: notably, the difference was sta-
tistically significant with respect to the Sensitive, Specific, 
Presumptuous and OR Rule protocols. Moreover, for all 

Fig. 5 Average group accuracy and 95% confidence intervals for each of the 8 different protocols. The red line represents the accuracy of the 
strong machine.

Fig. 6 Average group sensitivity and 95% confidence intervals for each of the 8 different protocols. The red line represents the sensitivity of the 
strong machine.
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the Majority-based and Specific protocols the difference 
between the teams of weak and strong observers was 
not statistically significant. In regard to sensitivity, see 
Fig. 11 and Table 5, the OR Rule protocol (for both the 
weak and strong teams) reported a significantly higher 

performance than all other protocols, as expected; more-
over, in all cases, the difference in performance between 
the teams of weak and strong observers was not statis-
tically significant. Notably, the sensitive protocol and all 
Majority-based protocols applied to weak observers were 

Fig. 7 Average group specificity and 95% confidence intervals for each of the 8 different protocols. The red line represents the specificity of the 
strong machine.

Fig. 8 Average group value of the harmonic mean of sensitivity and specificity, along with 95% confidence intervals for each of the 8 different 
protocols. The red line represents the harmonic mean (of sensitivity and specificity) of the strong machine.
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Fig. 9 Average team efficiency and 95% confidence intervals for each of the 8 different protocols.

Table 3 Results from  the  second experiment: for  each metric and  protocols, we report the  performance of  both  the 
Strong and Weak teams.

Metrics Teams Specific Sensitive Cautious Presumpt. Majority Acc Conf OR Rule

Accuracy Strong 85.27 85.22 87.29 83.79 88.15 88.15 88.17 82.67

Weak 84.61 81.62 84.61 80.94 87.03 87.03 87.12 79.91

Sensitivity Strong 75.86 84.97 80.92 76.75 83.25 83.25 83.19 95.18

Weak 76.23 84.14 78.98 75.18 82.77 82.77 82.72 95.18

Specificity Strong 92.88 85.42 92.46 89.49 92.12 92.12 92.20 72.54

Weak 91.40 79.58 89.17 85.59 90.47 90.47 90.68 67.54

F1 Strong 83.47 85.16 86.27 82.62 87.44 87.44 87.45 82.32

Weak 83.08 81.74 83.73 80.00 86.43 86.43 86.49 78.98

F2(acc, eff ) Strong 76.57 74.36 70.37 69.83 69.98 69.98 70.00 74.12

Weak 75.19 71.65 68.35 67.45 68.83 68.83 68.96 72.05

Efficiency Strong 54.40 49.26 39.63 41.90 38.35 38.35 38.37 52.44

Weak 52.04 48.15 38.65 40.47 37.48 37.48 37.61 51.72

Table 4 Corrected p-values for the pairwise comparisons w.r.t. accuracy in the Second Experiment

Strong teams are reported on the rows, while Weak teams are reported on the columns

Strong/Weak Specific Sensitive Cautious Presumptuous Majority Acc Conf OR Rule

Specific 1.000 < 0.001 1.000 < 0.001 0.017 0.017 0.017 < 0.001

Sensitive 1.000 < 0.001 1.000 < 0.001 0.017 0.017 0.004 < 0.001

Cautious 0.004 < 0.001 0.017 < 0.001 1.000 1.000 1.000 < 0.001

Presumptuous 1.000 0.001 1.000 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Majority < 0.001 < 0.001 < 0.001 < 0.001 1.000 1.000 1.000 < 0.001

Acc < 0.001 < 0.001 < 0.001 < 0.001 1.000 1.000 1.000 < 0.001

Conf < 0.001 < 0.001 < 0.001 < 0.001 1.000 1.000 1.000 < 0.001

OR Rule 0.001 0.787 0.071 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
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significantly better than the specific and presumptuous 
protocols applied to strong observers, and slightly so for 
the cautious protocol.

In regard to specificity, see Fig. 12 and Table 6, the Spe-
cific protocol for the teams of weak observers reported a 
performance which was comparable with, or statistically 
significantly better than (for the Sensitive and OR Rule 
protocols) all the strong teams protocols.

Finally, in regard to efficiency, see Fig. 13 and Table 7, 
the Specific, Sensitive and OR Rule protocols (for both 
weak and strong teams) reported a significantly better 
performance than all other protocols. Notably, for the 
OR Rule, Sensitive and Confidence-Weighted protocols 
the difference between strong and weak teams was not 
statistically significant. Moreover, the Specific, Sensi-
tive and OR-rule protocols applied to weak observers 

Table 5 Corrected p-values for the pairwise comparisons w.r.t. sensitivity in the Second Experiment

Strong teams are reported on the rows, while Weak teams are reported on the columns

Strong/Weak Specific Sensitive Cautious Presumptuous Majority Acc Conf OR Rule

Specific 1.000 < 0.001 1.000 1.0 < 0.001 < 0.001 < 0.001 < 0.001

Sensitive < 0.001 1.000 0.001 < 0.001 1.0 1.0 1.0 < 0.001

Cautious 0.017 0.787 0.254 < 0.001 1.0 1.0 1.0 < 0.001

Presumptuous 1.000 < 0.001 1.000 1.0 < 0.001 < 0.001 < 0.001 < 0.001

Majority < 0.001 1.000 0.001 < 0.001 1.0 1.0 1.0 < 0.001

Acc < 0.001 1.000 0.001 < 0.001 1.0 1.0 1.0 < 0.001

Conf < 0.001 1.000 0.001 < 0.001 1.0 1.0 1.0 < 0.001

OR Rule < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1.0

Table 6 Corrected p-values for the pairwise comparisons w.r.t. specificity in the Second Experiment

Strong teams are reported on the rows, while Weak teams are reported on the columns

Strong/Weak Specific Sensitive Cautious Presumptuous Majority Acc Conf OR Rule

Specific 0.071 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001

Sensitive < 0.001 < 0.001 0.004 1.0 < 0.001 < 0.001 < 0.001 < 0.001

Cautious 1.000 < 0.001 0.017 < 0.001 0.254 0.254 0.254 < 0.001

Presumptuous 0.254 < 0.001 1.000 < 0.001 1.000 1.000 1.000 < 0.001

Majority 1.000 < 0.001 0.001 < 0.001 0.004 0.004 0.004 < 0.001

Acc 1.000 < 0.001 0.001 < 0.001 0.004 0.004 0.004 < 0.001

Conf 1.000 < 0.001 0.001 < 0.001 0.004 0.004 0.004 < 0.001

OR Rule < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 7 Corrected p-values for the pairwise comparisons w.r.t. efficiency in the Second Experiment

Strong teams are reported on the rows, while Weak teams are reported on the columns

Strong/Weak Specific Sensitive Cautious Presumptuous Majority Acc Conf OR Rule

Specific < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Sensitive < 0.001 0.787 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Cautious < 0.001 < 0.001 0.017 0.017 < 0.001 < 0.001 < 0.001 < 0.001

Presumptuous < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Majority < 0.001 < 0.001 1.000 < 0.001 0.004 0.004 0.787 < 0.001

Acc < 0.001 < 0.001 1.000 < 0.001 0.004 0.004 0.787 < 0.001

Conf < 0.001 < 0.001 1.000 < 0.001 0.004 0.004 0.787 < 0.001

OR Rule 1.0 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.071
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Table 8 Corrected p-values for the pairwise comparisons w.r.t. F1 score in the Second Experiment

Strong teams are reported on the rows, while Weak teams are reported on the columns

Strong/Weak Specific Sensitive Cautious Presumptuous Majority Acc Conf OR Rule

Specific 1.000 0.017 1.000 < 0.001 0.004 0.004 0.004 < 0.001

Sensitive 0.004 < 0.001 0.254 < 0.001 0.254 0.254 0.254 < 0.001

Cautious 0.004 < 0.001 0.017 < 0.001 1.000 1.000 1.000 < 0.001

Presumptuous 1.000 1.000 1.000 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Majority < 0.001 < 0.001 < 0.001 < 0.001 1.000 1.000 1.000 < 0.001

Acc < 0.001 < 0.001 < 0.001 < 0.001 1.000 1.000 1.000 < 0.001

Conf < 0.001 < 0.001 < 0.001 < 0.001 1.000 1.000 1.000 < 0.001

OR Rule 1.000 1.000 1.000 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 9 Corrected p-values for the pairwise comparisons w.r.t. F2(acc, eff ) score in the Second Experiment

Strong teams are reported on the rows, while Weak teams are reported on the columns

Strong/Weak Specific Sensitive Cautious Presumptuous Majority Acc Conf OR Rule

Specific 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Sensitive 1.000 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Cautious < 0.001 0.017 0.017 < 0.001 0.254 0.254 0.254 0.004

Presumptuous < 0.001 < 0.001 0.071 < 0.001 0.787 0.787 1.000 < 0.001

Majority < 0.001 < 0.001 0.004 < 0.001 1.000 1.000 1.000 < 0.001

Acc < 0.001 < 0.001 0.004 < 0.001 1.000 1.000 1.000 < 0.001

Conf < 0.001 < 0.001 0.004 < 0.001 0.787 0.787 1.000 < 0.001

OR Rule 0.071 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Fig. 10 Average team accuracy and 95% confidence intervals for each of the 8 different protocols, for both Weak and Strong teams.
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were significantly more efficient than the other protocols 
applied to strong observers.

Discussion
The essence of cooperative work is “the interdepend-
ence of multiple actors [possibly engaged in separated 
activities or tasks] who interact through changing the 

state of a common field of work”  [41] to produce some 
common good or service. In our case, the “field of work” 
can be imagined as a “box” where each image reader 
puts their decision token (and hence the respective data 
structure). This interdependence is usually managed by 
a coordinative protocol that is “an integrated set of pro-
cedures and conventions stipulating the articulation of 

Fig. 11 Average team sensitivity and 95% confidence intervals for each of the 8 different protocols, for both Weak and Strong teams.

Fig. 12 Average team specificity and 95% confidence intervals for each of the 8 different protocols, for both Weak and Strong teams.
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interdependent distributed activities”, like e.g., making 
a decision on a MRI scan. Coordinative protocols are a 
kind of interaction protocol stipulating how multiple 
actors (pulled together to form a collective) influence 
each other so to have some work (and product) done. In 
this study, we have investigated a number of interaction 

(coordinative) protocols by which the service of “report-
ing radiological findings” (which can inform subsequent 
action and services, like a specific health intervention 
or treatment) can be produced, and that do not require 
direct communication among the actors involved. These 
protocols are all variations of the main setting of double 

Fig. 13 Average team efficiency and 95% confidence intervals for each of the 8 different protocols, for both Weak and Strong teams.

Fig. 14 Average team value of the harmonic mean of sensitivity and specificity, along with 95% confidence intervals for each of the 8 different 
protocols, for both Weak and Strong teams.
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reading radiological imaging, which is different from dual 
reading in that this latter setting involves two or more 
readers who communicate and discuss to collaboratively 
produce the report, often as members of the same team. 
In both cases, we can frame these protocols as structured 
ways to leverage the collective intelligence of an ensem-
ble of image readers, that is to gain a higher decision 
accuracy than involving each reader individually (at the 
expense of some efficiency, but not necessarily so), avoid-
ing some pitfalls of direct interaction where “the more” is 
not always “the better”, mainly due to bandwagon effect, 
priming and truth bias [25, 34, 43].

In fact, in all the protocols described in Sect. 2, the first 
two readings and interpretations are produced indepen-
dently of each other, and the second is always given by 
a medical AI: this is justified to minimize automation 
bias [31, 44] in light of several researches finding that the 
machine advice either does not improve the interpreta-
tion of expert readers  [29] or can even mislead them in 
their judgments, for instance in screening tasks (e.g. [3]) 
and those based on the visual inspection of diagnostic 
images  [14]; this latter phenomenon can occur not nec-
essarily only because doctors over-rely on the machine 
and over-trust its advice, but also for the opposite reason, 
because they have a negative prejudice against it [6] and 
are negatively “primed” by its advice.

As anticipated in the Introduction, our investigation 
allows to contrast the performance levels evaluated for 
different interaction protocols and the intuitive notions 

evocatively expressed in terms of the so called Kasparov’s 
law, which is based on informal observations in the realm 
of recreational team work, namely freestyle chess. As said 
above, we are not interested in an empirical proof of this 
intuition as such, but in discussing what in that formu-
lation (see Sect.  1) is denoted as superior (and inferior) 
process. In fact, what makes a process good, or better 
than others, depends on contextual factors, and on the 
relevant dimensions of interest. Moreover, not all these 
dimensions are equally measurable, regardless their rel-
evance in human collaborative settings. Thus, we decided 
to focus on accuracy, broadly meant in terms of comple-
ment of error rate4; and on efficiency, for the immediate 
value of these concepts in any practice, especially those 
where errors can result in harm to people and where 
long-term sustainability is priority. In what follows, we 
will comment the results reported in Sect. 3 along these 
two dimensions.

Let us consider the first “part” of the Kasparov’s Law 
first: this could be rephrased in terms of more weaker 
agents + superior process > one stronger agent + inferior 
or no process, where a superior process distinguishes itself 
from an inferior one in its ways to positively combine 
the contributions of multiple agents. Although there are 
many ways to combine different judgements together (we 

Fig. 15 Average team value of the 2-order harmonic mean of accuracy and efficiency (denoted as F2-score in the y axis), along with 95% confi-
dence intervals for each of the 8 different protocols, for both Weak and Strong teams.

4 In doing so we also considered the kind of error, false positive or false nega-
tive, hence focusing on specificity and sensitivity, respectively
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explored some methods applied to ensemble machine 
learning in  [10]), majority voting has been found quite 
effective in many fields and domain since time immemo-
rial [11]. We could call this observation the Aesop’s Law, 
as one of the famous fables of this writer from the 6th 
century BCE (namely the no. 53, The Bundle of Sticks) 
inspired countless variations of the old saying running 
“union is strength” (or “in unity is strength”). Indeed in 
our study, the protocols involving 3 readers and majority 
voting, and hence a decision best of three, are easily those 
associated with the more accurate group performance, in 
accordance with other recent studies [48]. In Fig. 16, we 
depict the performance of groups of varying number of 
readers (from our sample) to which the simple majority 
protocol is applied: we can see how involving more than 
one rater in each diagnostic decision yields more accu-
rate decisions than leveraging the judgment of individu-
als. It is also worthy of note that involving more than 5 
readers is not associated with a relevant increase in accu-
racy; in fact, the greater increase in accuracy occurs when 
moving from single decisions to “best-of-three” decisions 
and, therefore, to involve more readers would likely result 
in a waste of resources.5

We can see from Figs.  5 through 12 that, in all cases, 
given a specific metric, the best performing protocol was 
always a protocol that could be considered as “fit for use” 
for that metric, indeed:

– If our goal is to maximize classification performance 
in the average case then we focus on accuracy: in this 
case, the best performing protocols were the Cautious 

protocol and the Majority-based ones. Indeed the 
Majority protocol is designed to maximize accuracy, as 
any disagreement among the first two observers would 
lead to the involvement of a third observer: thus, the 
probability of error for this protocol (assuming inde-
pendence of the observers) scales approximately as 
err3 << err (where err is the error rate of the worst 
observer in the team). On the other hand, the Cau-
tious protocol is aimed at offering an acceptable trade-
off between accuracy and efficiency, on the basis of 
the parameters τ and δ , so to interpolate between the 
Majority and Presumptuous protocols;

– If our goal is to correctly identify as many abnormal 
cases as possible, then we focus on sensitivity: in this 
case, the best performing protocol was the OR Rule, 
followed by the Sensitive protocol. Indeed, in the OR 
Rule it suffices for one observer to identify the case as 
abnormal; by contrast, the Sensitive protocol attaches 
more importance to the classification of the first 
observer and, thus, is more conservative than the OR 
Rule (consequently, this is reflected by a significantly 
higher specificity);

– Finally, if our goal is to correctly identify as many nor-
mal cases as possible, then we focus on specificity: in 
this case the best performing protocol was the Specific 
one, as expected. We note, also, that the Cautious and 
Majority-based protocols reported a specificity compa-
rable to that of the Specific protocol, but with a much 
worse efficiency.

In our study, the Kasparov’s Law is recognized to hold in 
several cases, highlighted in Sect. 3. Here we emphasize 
the case of the cautious protocol, which makes wise use 
of the additional information collected from the readers, 
the perceived complexity of the case and their confidence 
in their classification: this protocol, which is also signifi-
cantly more efficient than the majority voting schemas 
(see Fig.  9; Tables  2 and  3), significantly outperformed 
the strong machine, which – we recall – was more accu-
rate than any of the readers involved. If, nevertheless, 
sensitivity is the target quality to optimize, we see that 
a group of just 2 raters can perform equally (or slightly 
better) than a super-human AI (see the OR-rule protocol 
in Fig.  6). Likewise, the humans are significantly more 
accurate than the stronger machine for all the collabo-
rative protocols, but one (see Fig. 7). This suggests that, 
depending on the readers involved and on the quality 
dimension along which we want to optimize the overall 
performance, investing on protocols of human-human 
collaboration can be more cost-effective than procur-
ing a state-of-the-art AI system. This complements the 
findings reported in  [1], where also investing on human 
resources and a specific perceptual training was found to 

Fig. 16 Average, minimum and maximum team accuracy, with 
respect to groups of varying number of observers (from 1 observer, 
to 9 observers).

5 This is true when all the observers are similar in their skills, as it was our 
case.
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be associated with better performances than those of the 
best AI system. Moreover, in regard to the accuracy-effi-
ciency balance the cautious protocol achieved an average 
higher score than all the majority voting protocols (which 
was not expected), although not significantly so. To this 
respect, the specific and sensitive protocols (including 
the OR-rule one) significantly outperformed the other 
protocols, even when only weak observers were involved.

Limitations and future work
As first objection to what discussed above, it could be 
observed that the detection of knee lesions is not a typi-
cal task for which double reading is usually applied. In 
specialist diagnosis, dual reading has been so far pre-
ferred, that is the simultaneous reading by two observers 
to reach a consensus. On the other hand, double reading 
usually finds justification for the screening of large num-
bers of healthy individuals for diseases with an important 
social cost and individual burden (such as breast can-
cer) and not for conditions for which a missed or wrong 
diagnosis has a relatively low impact (as in the case of 
many post-traumatic or degenerative orthopedic condi-
tions). However, the application of this protocol also to 
triage and any specialist diagnostic task is more a matter 
of finding a balance between the need to curb resource 
consumption (above all the involvement of multiple read-
ers) and the meritorious goal to reduce the rate of diag-
nostic error and increase patient safety, regardless of the 
health problem. Although this resource-intensive proto-
col has been so far considered only for selected, high-risk 
examinations, our point is that the availability of accurate 
and reliable medical AI could change this state of affairs, 
especially if the increasingly wider diffusion of online AI-
based services, provided in SaaS (Software as a Service) 
will reduce the cost of the AI recommendation, at the 
level of single transaction. This would make the use of AI 
in double-, dual- and over-reading tasks competitive with 
respect to the involvement of human second readers and 
arbiters.6

Speaking of costs suggests that we also address another 
possible limitation of this study. We are aware that a 
comparison between medical protocols can, and should, 
also be conducted in terms of cost-effectiveness, for 
example by calculating the incremental cost-effectiveness 
ratio (ICER), i.e. the expected cost per one additionally 
detected pathological condition  [35] or, even better, in 

terms of quality adjusted life years (QALYs). Neverthe-
less, these studies are strongly dependent on the type of 
examination, modality, setting, impact of the disease and 
its prevalence; doing so for knee MRI would have made 
our study lose generality, which instead focuses on the 
comparison of different ways of integrating a technologi-
cal support in double-reading protocols in general.

Third: two protocols out of eight require additional 
information to be collected from the observers in their 
image reading task: namely, the complexity of the case 
(as this is perceived by the observers), and the confidence 
on their judgment for that case. We acknowledge that 
doing so entails an additional effort for the observers and 
the need to set further data structures in the reporting 
platform. Furthermore, we reported how the protocols 
using this additional data were not particularly better 
than the others in this study. However, we observe that 
collecting these data is a low-impact requirement, all the 
lower the more knowledge can be extracted to under-
stand “who is right” among the observers (including the 
AI) and hence make a better decision at the best of two 
judgments. Then, we acknowledge that we did not fine-
tune the above protocols to fully exploit the additional 
information coming from knowing the case complexity, 
the observer confidence and their accuracy; however, 
the cautious protocol is almost as accurate as the major-
ity ones (see Figs. 5, 10 and 14; Tables 2 and 3) but much 
more efficient (see Figs.  9, and  13) and slightly prefera-
ble taking into account both dimensions (see Fig. 15 and 
Tables 3, and 9). That said, we doubt that a general way 
to combine the above data together to maximize effec-
tiveness or efficiency in all of the decision settings exists: 
their combination depends on the distributions of those 
attributes and the correlations among each other (e.g., 
see Fig.  2c). That notwithstanding, we deem two direc-
tions worthy of further investigation: case complexity 
could be evaluated on a probabilistic scale (i.e., “how 
likely it is that an expert radiologist could get this case 
right?”), so that promising meta-cognition techniques, 
like the “surprisingly popular” method [36], for aggregat-
ing decisions across a group of people could be applied. 
Also, the reader accuracy, instead of being evaluated on 
all the available decisions made by that reader (as we do 
in the accuracy-weighted majority protocol), could be 
evaluated on the most similar cases to the one at hand, 
once the representativeness of this point with respect 
to the available data has been verified (e.g., through the 
techniques presented in [8]).

Lastly, this study is limited to investigating cooperative 
protocols where the direct interaction and communica-
tion between humans and the AI is purposely excluded: 
future work should also be aimed at shedding light on 
the potential differences in medical performance arising 

6 For instance, Zebra Medical Vision, one of the few vendors of medical AI 
offering diagnostic services for musculoskeletal conditions, allows healthcare 
providers to access their algorithms for 1 USD per scan (see https ://www.
zebra -med.com/solut ions). In contrast, in Italy the costs related to radiological 
reporting amount to approximately one fifth of the reimbursed amount, that 
is approximately 30 euros for knee MRI (2020 fees).

https://www.zebra-med.com/solutions
https://www.zebra-med.com/solutions
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from protocols where humans consult the AI advice, pro-
vide a feedback about it (cf. active learning) and explore 
the reasons behind it  [23], both in individual settings 
(1-to-1) or in collaborative ones (many-to-1), like in [40]. 
In these studies, other dimensions than accuracy and effi-
ciency should be considered to evaluate the protocols, 
like: user satisfaction, AI acceptability, user trust and 
human sustainability: in particular, considering the latter 
aspect entails to consider the extent the prolonged use of 
the AI support would induce some form of deskilling [9], 
opportunistic practices  [45] and automation biases  [31] 
in their users.

Conclusions
Human-AI collaboration is an important area to invest 
further research on, especially in medicine, and radiol-
ogy more in particular, since finding efficient ways to 
combine the advice by humans and intelligent machines 
in double-reading tasks can improve report accuracy, 
help to address the radiology workforce crisis  [18], and, 
recently, provide a solution for dealing with the long-
term backlog due to COVID-19 [12].

Among those who are interested in human-AI collabo-
ration, the famous remark by Garry Kasparov known as 
the Kasparov’s law is a sort of adage and yet a still-to-
prove conjecture: in this paper, we have focused on this 
conjecture, not only to provide a first informal (and yet 
statistically significant) confirmation of it but, above all, 
to emphasize the importance of properly designing the 
interaction protocols by which humans and machines 
can cooperate. Indeed, we have observed that good inter-
action protocols guarantee better decision performance 
that easily surpass the performance of individual agents, 
even of realistic super-human AI systems. In this respect, 
the main challenges lie in designing protocols that are 
balanced in terms of accuracy and efficiency, i.e., viabil-
ity. Moreover, focusing on how humans and AI can col-
laborate, rather than on evaluating their performance as 
single and isolated agents, would also allow to go beyond 
the studies that report improbable comparisons (e.g. [20, 
33]) or those that promote small improvements of algo-
rithms over state-of-the-art solutions or even traditional 
methods (like linear regression  [19]), but often neglect 
the much deeper issue of the poor reproducibility of 
results [13]

To contribute to this new body of works, we have dis-
cussed the case in which humans who perform worse 
than a powerful AI (even by several percent points) 
can outperform it if their judgments are aggregated 
by majority voting in double-reading settings: this 
“proves” the first part of the Kasparov’s law but it is also 
an informal confirmation of the much older Aesop’s 
law, i.e., union is strength. This connects with recent 

studies about how the collective intelligence of several 
relatively weak decision makers can equate, or even 
surpass, the performance of a (much more expensive) 
super-expert doctor (e.g., [4]).

We also showed how small ensembles of signifi-
cantly weaker (i.e., less accurate) MRI readers (includ-
ing an average AI) can significantly outperform equally 
numerous teams of stronger (i.e., more accurate) read-
ers, supported by the same computational tool, when 
the former ones are engaged in some “better” fit-for-use 
interaction protocols (where better can be interpreted 
in different ways, according to some requirement of 
accuracy / efficiency trade-off ). This is also compatible 
with the second part of the Kasparov’s law: neverthe-
less we would propose a wider interpretation of these 
findings in terms of two succinct conjectures of gen-
eral scope: first, safer and more human sustainable care 
practices can be achieved by focusing more on how to 
guarantee a better cooperation within hybrid humans-
AI teams (and hence on the design of apt interaction 
protocols that are optimized for some dimension of 
interest), than investing only on the technological com-
ponent of the above teams. Nevertheless, if a hospi-
tal management still makes the decision to introduce 
a medical AI into a team of doctors, this should be at 
least as accurate as the average doctor (duly evaluated, 
as we advocated in [7]), or better than that but not 
worse, unless a proper interaction protocol is designed 
and adopted to leverage the best capabilities from both 
doctors and machines.
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