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ABSTRACT: Alzheimer’s disease (AD) is one of the most
complicated progressive neurodegeneration diseases that
involve many genes, proteins, and their complex interactions.
No effective medicines or treatments are available yet to stop
or reverse the progression of the disease due to its polygenic
nature. To facilitate discovery of new AD drugs and better
understand the AD neurosignaling pathways involved, we have
constructed an Alzheimer’s disease domain-specific chemo-
genomics knowledgebase, AlzPlatform (www.cbligand.org/AD/)
with cloud computing and sourcing functions. AlzPlatform is
implemented with powerful computational algorithms, includ-
ing our established TargetHunter, HTDocking, and BBB Predictor for target identification and polypharmacology analysis for AD
research. The platform has assembled various AD-related chemogenomics data records, including 928 genes and 320 proteins
related to AD, 194 AD drugs approved or in clinical trials, and 405 188 chemicals associated with 1 023 137 records of reported
bioactivities from 38 284 corresponding bioassays and 10 050 references. Furthermore, we have demonstrated the application of
the AlzPlatform in three case studies for identification of multitargets and polypharmacology analysis of FDA-approved drugs
and also for screening and prediction of new AD active small chemical molecules and potential novel AD drug targets by our
established TargetHunter and/or HTDocking programs. The predictions were confirmed by reported bioactivity data and our in
vitro experimental validation. Overall, AlzPlatform will enrich our knowledge for AD target identification, drug discovery, and
polypharmacology analyses and, also, facilitate the chemogenomics data sharing and information exchange/communications in aid
of new anti-AD drug discovery and development.

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegeneration
and a complex multifactorial disorder among the elderly.1 The
disorder is reaching epidemic proportions with heavy social and
economic costs.2 The pathological features of AD are the loss
of neurons in conjunction with the presence of oxidative stress,
axonal dystrophy, senile plaques, and neurofibrillary tangles.3

Because of its polygenic nature, AD is thought to be caused not
by defects in a single gene, but instead by variations in many
genes, proteins, and their complex interactions.4 Thus, it is
challenging to develop novel effective medications targeting
multiple proteins in order to stop or reverse the progression of
the disease.
Great efforts have been devoted to carrying out bioscience

research with rapid accumulation of a large volume of scientific
data relevant to AD. In particular, studies involved in AD
neurosignaling pathways and AD-targeted new chemical ligands
have been steadily proliferating.5 The quantity and the quality

of the AD special class of molecules are expected to grow at a
much faster rate in the future, thanks to rapid technology
advancement in biochemistry, biophysics, medicinal chemistry,
and pharmacology. Unfortunately, the venues to publicize
AD-specific research have been limited to archival journals and
periodicals. Although SciFinder and other databases have
archived most of the documentation, the reported works are
scattered. Thus, it is difficult to find, associate, and validate
reported AD-related active chemical molecules and reuse the
reported research results for AD target research.
Several AD-related databases have been reported to explore

the molecular mechanisms, such as AlzGene and Alzpathway.
The AlzGene database has been developed for investigating
genetic association in the field of AD. It contains almost all
genes related to AD and focuses on systematic meta-analyses of

Received: January 3, 2014
Published: March 5, 2014

Article

pubs.acs.org/jcim

© 2014 American Chemical Society 1050 dx.doi.org/10.1021/ci500004h | J. Chem. Inf. Model. 2014, 54, 1050−1060

www.cbligand.org/AD/
pubs.acs.org/jcim


information on AD genetic association.6 AlzPathway, a com-
prehensive map of signaling pathways of AD, was constructed
for exploring the AD pathogenesis.7 However, these databases
were mainly designed to investigate the pathogenic mechanisms
of AD. To our knowledge, there is still no publicly available
AD specific chemical genomics (or chemogenomics) database
focusing on small molecules that target proteins related to AD
for drug research.
Herein, an integrated cloud computing server, AlzPlatform,

has been developed in response to the needs. The platform
assembles a large repertoire of AD related chemogenomics
data, including genes, protein targets, and small chemical
molecules with their bioactivity records, bioassays, and
references, as well as approved drugs or those in clinical trial
for AD treatments. AlzPlatform enables cloud computing and
sourcing services and provides powerful computational
algorithms and implemented online computing programs/
tools, including our established TargetHunter, HTDocking, and
BBB predictor for target identification, drug repurposing, and
polypharmacology analysis associated with AD (Figure 1).
Therefore, AlzPlatform is a valuable platform for investigating
and sharing AD targets and small chemical drug molecules at
chemogenomics scale for better understanding the mechanisms
of system polypharmacology in aid of new anti-AD drug
discovery.

2. MATERIALS AND METHODS
2.1. Database Infrastructure. AlzPlatform was con-

structed based on the established molecular database prototype
CBID (www.CBLIgand.org/CBID),8,9 with a MySQL (http://
www.mysql.com) database and an apache (http://www.apache.
org/) web server. Openbabel10 is the search engine for chem-
ical structures. The web interface is written in PHP language
(http://www.php.net/).
2.2. Data Collection and Content. The information of

protein targets and chemicals associated with AD was gathered
according to the approved drugs, clinical trial drugs, and
literatures from various databases, including the DrugBank,
ClinicalTrials.gov, BindingDB, AlzGene, PubChem, ChEMBL,
and SciFinder database. The corresponding information on
signaling pathway of these targets was compiled from the

KEGG database. All the chemical structures, affinity values, and
additional data including pathways, bioassays, and references
were archived in relational database structure formats at the
backend of the AlzPlatform database.

2.3. Web Interface. AlzPlatform provides a user-friendly
interface with a powerful search engine for the detailed
information on AD chemicals and targets.

(i) Keywords Search. This includes gene/protein symbol,
compound name/ID, and basic pharmacological properties.
Searches involving a combination of these keywords are
supported without being case sensitive.

(ii) Structure Query. This provides two types of search
functions: substructure and similarity. JME is used as the input
interface,11 and OpenBabel is the search engine at the
backend.12,13 In the structure search window, users can either
sketch the structure in the JME interface or upload a file
containing a small chemical molecule. After submission, the
search is performed by OpenBabel at the server side and the
results will be returned to the client side by loading a new page,
including ID, structure of compound, target name, and the
corresponding links to the literature.

2.4. Chemoinformatics Tools. Target identification and
drug design with desired properties are top priorities for
medicinal chemists. The data on chemogenomics and
cheminformatics collected in AlzPlatform provide a valuable
opportunity to explore the underlying targets; absorption,
distribution, metabolism, and excretion (ADME) and toxicity
prediction; and also calculation of molecular properties and
drug-likeness. As such, state-of-art machine learning algorithms
and chemoinformatics tools have been deployed on the
platforms for facilitating AD drug design and target
identification as briefed below.

TargetHunter. TargetHunter was implemented in AlzPlat-
form to provide online computing algorithm to predict the
possible targets or off-targets of compounds. A detailed
description of the algorithm has been published.9 The basic
principle of the TargetHunter program is based on a known
medicinal chemistry concept: structurally similar compounds
have similar physical properties that may result in similar bio-
logical profiles. This predicts the targets of a query compound
by use of the powerful data-mining algorithm (TAMOSIC),

Figure 1. Overview of AlzPlatform database featured with integrated computing and data-mining functions (www.CBLigand.org/AD).
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which assigns the targets associated with the most similar
compounds of a query chemical as the predicted targets.
TargetHunter is a powerful cloud computing tool with attrac-
tive features: (i) ease of use; (ii) query data retrieval function;
(iii) user choices of desired fingerprints and databases; (iv) high
accuracy; and (v) Bioassay finder implemented BioassayGeo-
Map function to find the authors who have published a bioassay
for validation. Such a tool will assist researchers to develop
bioactive compounds for research on AD target. TargetHunter
is available at http://cbligand.org/TargetHunter.
HTDocking. In addition to the ligand-based TargetHunter

tool online, we have also established a high-throughput docking
(HTDocking, http://www.cbligand.org/AD/docking_search.
php) program. It is a web-based computing tool that automates
docking procedure to search for protein targets and to explore
interactions between compound and protein. In the current
version of AlzPlatform database, crystal structures of proteins
related to AD have been collected from the Protein Data Bank
(PDB) to build an AD domain-specific subset. AutoDock Vina
is used as the docking engine at the backend.14 Water molecules
and ligands were removed, hydrogen atoms were added, and the
active sites of each protein were defined by the residues around
the cocrystallized ligands or generated using the AutoDock utility
scripts. AutoDock Vina can provide 3−5 predicted binding
affinity values (ΔG values) from different docking poses for each
compound in a binding pocket of a protein. In our HTDocking
program, we only consider the best binding affinity value which
is further transformed as docking score. The docking score is
calculated as pKi, where pKi = −log(predicted Ki) and the
predicted Ki = exp(ΔG×1000/(1.9871917×298.15). The docking score of a
queried compound from each protein structure is used to assess
and rank the potential protein partners or targets.
Blood−Brain Barrier (BBB) Predictor. The blood−brain

barrier (BBB) is the bottleneck in AD drug development and is
the single most important factor limiting the future growth of
neurotherapeutics.15 Considering this, a BBB predictor was
specially designed to classify whether a compound can cross the
blood−brain barrier (BBB+) or not (BBB−). This predictor
was built by applying the support vector machine (SVM)16 and
LiCABEDS17 algorithms on four types of fingerprints of 1593
reported compounds.18 The BBB predictor is available at
http://www.cbligand.org/BBB/.
In addition, AlzPlatform provides toxicity prediction with the

Toxtree package19 (http://cbligand.org/Tox), an online service
for removal of false positive results20 (http://cbligand.org/
PAINS), and property calculator for the calculation of
molecular properties, such as molecular weight, formula, num-
ber of rotatable bonds, hydrogen bond donors and acceptors,
polar surface area, xLogP, and Lipinski’s rule of five.21 The
properties calculator was implemented with the CDK package22

and is available at http://www.cbligand.org/cbid/Property_
Explorer.php. Furthermore, links are provided for quickly accessing
chemoinformatics resources, such as actelion’s property explore for
ADME prediction and calculation of molecular properties and drug-
likeness with Molinspiration. Thus, AlzPlatform acts as a chemo-
informatics hub to other tools and databases, which can facilitate
researchers in AD drug development and target identification.
2.5. Chemicals and Reagents. Huperzine A was

purchased from J&K Scientific Ltd. (Beijing, China). Methyl
sandaracopimarate (MS), a known diterpenoid compound, was
isolated and identified from the extract of seeds of Platycladus
orientalis.

2.6. Caenorhabditis elegans Strains and Maintenance.
The Caenorhabditis elegans (C. elegans) strains Cl4176, also the
Escherichia coli OP50 strain, were obtained from the
Caenorhabditis Genetics Center (CGC; University of Minneso-
ta, Minneapolis, MN). The transgenic nematode CL4176 strain,
as an AD model,23 is a temperature-sensitive mutant strain that
expresses human Aβ1−42 when it reaches nonpermissive temp-
eratures. The expression of Aβ1−42 in muscle cells causes
paralysis in these mutants. The nematodes were maintained and
assayed on nematode growth medium (NGM) agar plates
with Escherichia coli OP50 at 16 °C. All worms used were raised
from eggs obtained after sodium hypochlorite treatment of
hermaphrodites.24

2.7. Paralysis Assay. The paralysis assay was measured
according to the method described previously,25 with slight
modifications. The strain CL4176 maintained at 16 °C was egg-
synchronized onto the 35 mm culture plates with or without
methyl sandaracopimarate (300 μM). Transgene expression
was induced by increasing the temperature from 16 to 26 °C.
Induction occurred 36 h after egg laying and lasted until the last
worm became paralyzed. For the paralysis assay, the survival of
worms was determined by touch-provoked movement.26

Worms were scored as paralyzed when they failed to respond
to repeated touching with a platinum wire. Every experiment
was conducted three times in a double-blind manner.

2.8. Cell Culture and Transient Transfection. HepG2
cells were plated at a density of 2 × 106 cells on a 48 well plate
24 h before transfection. Plasmids were transfected using Trans-
IT LT (Mirus, Madison, WI) according to the manufacturer’s
protocol. To evaluate the binding of methyl sandaracopimarate
to PPARγ, triplicate transfections were performed using the
following plasmids: pCMX-tk-PPRE-LUC (400 ng), pCMX-
PPARγ (200 ng), pCMX (200 ng), and (Beta galactosidase)
β-gal (50 ng). At 24 h after transfection, the cells were treated
with Rosiglizone (10 μM), vehicle, or the methyl sandar-
acopimarate at increasing concentrations (0.1, 1, 10, 50, 100,
and 500 μM). At 24 h after the compound treatment, the cells
were lysed and the Luciferase signal was quantified using a
standard luminometer (Perkin-Elmer).The Luciferase signal
was normalized to β-gal signal.27 All transfections were
performed at least three times.

3. RESULTS
AlzPlatform (www.cbligand.org/AD/) archived 928 genes, 320
AD related proteins, 194 AD drugs approved and in clinical
trials, and 405 188 chemicals associated with 1 023 137 records
of reported AD bioactivities from 38 284 AD corresponding
bioassays and 10 050 references.
Figure 1 shows an overview of the web-interfaced molecular

information database for AD with implemented chemo-
informatics computing tools and programs (www.CBLigand.
org/AD). The current version of AlzPlatform consists of
varieties of AD related proteins (a total of 320): (i) 172
enzymes such as acetylcholinesterase (ACES), monoamine
oxidase B, angiotensin-converting enzyme, and cyclooxygenase-
2; (ii) 38 membrane receptors, such as serotonin receptors,
C−C chemokine receptors, and beta adrenergic receptors; (iii)
14 ion channels, such as glutamate N-methyl-D-aspartate
(NMDA) receptors and neuronal acetylcholine receptors; and
(iv) 96 other proteins (Figure 2A). For most of these targets,
their RNA can be detected in the brain. For example, at least
283 of them are expressed in the corpus striatum and 281 are
expressed in the cerebral cortex (Figure 2B). Besides the 194
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Figure 2. Chemogenomics data archived in AlzPlatform. (A) Summary of AD-related targets. (B) Tissue distribution of targets associated with AD.
The yellow lines denote that these tissues are located in the central nervous system. (C) Drugs and compounds associated with AD targets. (D) AD
drugs in different development phases and their corresponding targets. These approved and clinical trials AD drugs were classified by different phases
with distinct colors. The yellow and black lines indicate the approved and discontinued AD drugs, respectively. The blue, pink, and green lines
denote clinical trial drugs in phases I, II, and III, respectively. (E) AD targets and their drugs were plotted according to the pathways the targets
involved. The blue and yellow bars indicate drugs and targets, respectively.
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drugs for AD clinical treatments, AlzPlatform also contains
225 additional drugs that are reported to interact with AD-
related proteins but are used for treatment of other diseases.
Some of these drugs may have the potential to be repurposed
for AD research or treatment. Moreover, small molecules
and their bioactivities against these targets could be used for
systematic in silico screening of anti-AD lead compounds
(Figure 2C). The statistics on these AD drugs, in different
development phases, were plotted according to their
interacting targets. As shown in Figure 2D, AD drugs approved
by the FDA interact with hands of targets, including ACES and
NMDA receptors. Among these proteins, muscarinic acetyl-
choline receptor M1 (ACM1) probably is not an ideal drug
target for AD treatment because 7 of 8 drugs targeting ACM1

are discontinued or withdrawn due to undesirable adverse
effects,28 and only one is in phase II of clinical trial. In addition,
it is well-known that cleavage of amyloid precursor protein
(APP) by β-secretase (BACE1) is the rate-limiting step in
beta-amyloid production, which suggests a potential target for
drug development of AD. Currently, most of BACE1 inhibitors
are still in phase I and II clinical trials. MK-8931 developed by
Merck is the only BACE1 inhibitor that is currently in phase
III clinical trial. However, the research and development pace
on BACE1 as the major AD therapeutic target has been slow.
Several concerns have been raised about the potential side
effects of BACE1-targeted inhibitors,29 because BACE1 also
has important roles in myelination, retinal homeostasis, brain
circuitry, and synaptic function.30 Therefore, inhibition of the

Figure 3. Target identification and experimental validation for a bioactive natural product. (A) Time course of Aβ-induced paralysis in the transgenic
C. elegans.CL4176 treated with standard nematode growth medium (NGM) and methyl sandaracopimarate (MS). Huperzine A was used as a
positive control. (B) The chemical structure query window for AD targets prediction of MS by HTDocking server. (C) Molecular docking study of
MS in the active site of PPARγ (PDB: 2OM9). The residues interact with MS through hydrophobic and hydrogen bonds. Yellow dotted lines denote
hydrogen bonds and key residues are labeled in black. (D) The predicted target was further validated by in vitro PPARγ responsive luciferase assay.
MS activates PPARγ in a concentration dependent manner with EC50 value of 15 μM. The results represent mean ±SD of values. The significance of
differences from normal control group is at *p < 0.05.
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BACE1 enzyme could have toxic consequences. PEN2 could
be a good target because it has a gradient number of drugs
(9, 2, and 1, respectively) in phases I, II, and III.
The statistics of AD targets and their drugs were plotted

according to the pathways the targets involved (Figure 2E). It is
not a surprise that Alzheimer’s disease pathway (KEGGID:
hsa05010) is among the top of the pathway list. We also notice
that pathways related with drug addiction, such as amphet-
amine addiction (KEGGID: hsa05031), cocaine addiction
(KEGGID: hsa05030), and alcoholism (KEGGID: hsa05034),
are also enriched on the top list, which could imply that AD
shares some common pathways with drug addictions.31

Furthermore, our data show that cannabinoid receptors, the
key drug abuse related proteins, are among the top list, which is
congruent with the reports that cannabinoid receptors are
important in the pathology of AD, and cannabinoids succeed in
preventing the neurodegenerative process in AD.32

AlzPlatform also features an integrated cloud computing
service with intrinsic scalability and convenient features for

further expansion. It provides powerful computing and sourcing
services for both computational queried data storage and
reretrieval, which can facilitate AD drug research and develop-
ment. In the next section, three case studies demonstrate the
usage of these computational tools on data-mining of the
chemogenomics database for AD drug research.

Case Study 1: Prediction and Experimental Validation
of Peroxisome Proliferator-Activated Receptor Gamma
(PPARγ) as the Neuroprotective Target of a Natural
Product Methyl Sandaracopimarate (MS). Target identi-
fication of small chemicals is essential for unraveling the
underlying mechanisms of their bioactivities. Often, natural
products exhibit significant efficacy, yet their molecular
mechanisms remain elusive. We used a natural product to
illustrate how the AlzPlatform and high-throughput docking
(HTDocking, https://www.cbligand.org/AD/) can be used to
identify potential targets and explore the mechanism of action
for natural products in which there are often multiple chemical
components.

Figure 4. Overview of the application of the TargetHunter program for AD target prediction of small molecules. (A) Input interface; (B) backend
server; (C) output predicted results; and (D) the Bioassay GeoMap function can be used to find potential collaborators for targets validation
experimentally.
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In our previous study, the extract of seeds of Platycladus
orientalis can significantly extend lifespan of C. elegans and
protect against Aβ toxicity in transgenic C. elegans expressing
human Aβ.33 In addition, methyl sandaracopimarate (MS), a
known diterpenoid compound, was isolated and identified from
the active extract. In order to evaluate the protective effect of
the compound against Aβ-induced toxicity, the paralysis assay
was conducted in the transgenic C. elegans.CL4176 strain,
which expresses human Aβ1−42. As shown in Figure 3A, MS
significantly protected against Aβ-induced rapid paralysis at
300 μM in comparison with the untreated control (p < 0.05).
Moreover, the mean survival rate of the treated groups was
increased by 7.2%.
To explore further the underlying mechanisms of neuro-

protection for MS, the AlzPlatform and HTDocking program
were used to predict the possible targets. The result shows that
the compound is predicted to interact with the peroxisome
proliferator-activated receptor gamma (PPARγ), acetylcholin-
esterase and cGMP-specific 3′, 5′-cyclic phosphodiesterase
(PDE5A) (Figure 3B). Among them, PPARγ is listed as one of
the top targets with docking score 6.5, suggesting that PPARγ is
likely to be a key target for MS. Furthermore, the predicted
interactions between the compound and the ligand binding
domain of PPARγ were shown in Figure 3C. Residues Phe264,
Ser342, Ile341, Phe287, Cys285, Arg288, Gly284, and His266
form a hydrophobic interaction cleft around MS, and the
carbonyl group of the compound exhibits the hydrogen-
bonding interactions with the backbone of His266 and Lys265,
which are vital residues modulating the activation of the
receptor,34 suggesting that MS might be a potential PPARγ
agonist.
The prediction was further validated by in vitro PPARγ

responsive luciferase assay that allows the quantification of the
ligand activated PPARγ on the basis of its specific binding to

PPRE sequences.35 The result indicated that the MS activates
PPARγ in a concentration dependent manner with EC50 value
of 15 μM (Figure 4D). According to accumulating evidence,
PPARγ is involved in the regulation of β-secretase1 and
neuroinflammatory responses.13,36 PPARγ overexpression
decreases β-secretase1 gene transcription and reduces the
intracellular and plaque Aβ generation in vivo.37,38 Moreover,
neurotoxic activities under inflammatory conditions of micro-
glia and astrocytes are reduced by PPARγ agonists.39 On the
basis of our study, enhancing PPARγ expression may be one of
the mechanism by which MS protected against Aβ-induced
toxicity.

Case Study 2: Prediction of Endoplasmic Reticulum-
Associated Amyloid Beta-Peptide-Binding Protein
(ERAB) and Cyclooxygenase-2 (COX-2) as Novel Targets
for Acteoside and Search of Potential Collaborators for
Experimental Validation by TargetHunter. In addition to
the protein-based HTDocking program, we have established
the ligand-based TargetHunter tool (http://cbligand.org/
TargetHunter) which is an online program for targets
identification and drug repurposing. We also used natural
product to illustrate the application of TargetHunter for target
prediction. Acteoside, isolated from Orobanche minor, can
significantly inhibit the aggregation of amyloid-β with IC50
value of 8.9 μM40 and can attenuate the Aβ induced toxicity.41

However, the neuroprotective mechanisms are still not exactly
known. To identify further the underlying targets, the structure
of acteoside was submitted as a query to the TargetHunter
program. As shown in Figure 4A−C, two related compounds
(ChEMBL510539 and 455827, with scores of 0.82 and 0.75,
respectively) were retrieved. The first compound, ChEMBL510539,
targets the endoplasmic reticulum-associated amyloid beta-peptide-
binding protein (ERAB, tested in the PubChem bioassay
AID: 886 with potency value of 0.1 μM). The protein is an

Figure 5. Illustration of HTDocking server (https://www.cbligand.org/AD/) for polypharmacology analysis of 5 approved AD drugs. The large
circles (cyan) represent FDA-approved AD drugs (tacrine, donepezil, rivastigmine, galantamine, and memantine). Each drug is linked to its predicted
targets. Among them, the green nodes and edges denote the known targets of drugs. Others pink nodes represent new potential off-targets and their
interactions are linked by cyan dotted edges.
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intracellular Aβ-binding protein that contributes to the
pathogenesis of AD. The toxic effect of Aβ on neuroblastoma
cells is prevented by blocking ERAB and is enhanced by over-
expression of ERAB.42,43 Therefore, the inhibition of ERAB is
likely to the cause of the protection against Aβ induced toxicity
by acteoside. In addition, the Cyclooxygenase-2 (COX-2) targeted
by another compound (ChEMBL455827) is an important target
associated with inflammatory regulation in the pathogenesis of
AD.44 To facilitate the further target validation, BioassayGeoMap
(http://cbligand.org/TargetHunter/bioassaygeomap.php) is im-
plemented in the AlzPlatform to locate the nearby potential
collaborators who reported their established bioassay. As show
in Figure 4D, two research laboratories near the University of
Pittsburgh were found by the program, and they could be
potential collaborators for further experimental validation of the
predicted target COX-2.
Case Study 3: The Prediction of Polypharmacology of

Known AD Drugs for Multitarget Drug Discovery.
Prediction of polypharmacology of known drugs is highly
useful for finding new system polypharmacotherapy. There has
been increasing interest in identifying additional targets for
known drugs and predicting drug−target associations by in
silico and experimental methods.45 Accordingly, we used
established chemoinformatics tools to predict potential target
and polypharmacology for five FDA-approved AD drugs.
Among them, four AD drugs (tacrine, rivastigmine, galant-
amine, and donepezil) are acetylcholinesterase (AChE)
inhibitors and the other one (memantine) is an N-methyl-D-
aspartate (NMDA) receptor antagonist.46 The protein targets
identified by HTDocking program for each known AD drug
were tabulated in an output window and ranked by docking
scores. The five drugs and their top candidate targets (docking
score higher than 6.0, green and pink nodes) were compiled to
build a polypharmacological interacting network with Cyto-
scape 2.8 (Figure 5). Unsurprisingly, the result shows that the
known acetylcholinesterase and NMDA receptors (green
nodes) were targeted by four AChE inhibitors and memantine,
respectively. Moreover, the comparison of the predicted and
experimental pKi values for known AD drugs was visualized in
Table 1. The result illustrates that the predicted targets and
the binding affinities are correlated with reported experimental
data. Indeed, the additional predicted associations or drug/protein
networks (green nodes and edges), such as beta-secretase1
(BACE1), glycogen synthase kinase-3 beta (GSK3B), and mono-
amine oxidase type B (MAO-B), have already been reported
in the literature47−55 (Table 2), indicating the reliability of
the HTDocking program. Also, the remaining predicted targets
(pink nodes) could be the new targets for the known drugs that
merit further validation by experiments.

Another finding in the network is the polypharmacological
effects for two known drugs, galantamine and memantine
(Figure 5). The network shows that besides binding to AChE,
galantamine is predicted to interact with BACE1, mitogen-
activated protein kinase 14 (MAPK14), and adenosine A2a
receptor (AA2AR). Inhibitions of these proteins have effects
on decreasing the Aβ production and Aβ-induced toxicity47

and increasing the expression of nicotinic receptors.56 Similarly,
memantine is predicted to interact with GSK3B, BACE1,
MAO-B, and nitric oxide synthase 1 (NOS1) besides binding
to NMDA receptors. Inhibition of these proteins can prevent
the accumulation of the misfolded proteins (Tau and Aβ) and
enhance neuronal function.51,55,57 Such in silico analysis of
polypharmacological effects may explain why the combined use
of memantine and galantamine can produce greater memory
improvement than either treatment alone in clinical trials,58

which will guide to design and discover new drug-like leads
with the multitarget synergetic therapeutics for AD.

4. DISCUSSION
Alzheimer’s disease is a complex multifactorial disorder.1 With
the extensive accumulation of molecular biological elucida-
tions of AD signaling pathway at genes and proteins levels,
several AD-related databases have been developed, such as
AlzGene6and Alzpathway.7 These databases together with other
disease specific databases, such as HLungDB (human lung
cancer database)59 and CVDHD (Cardiovascular Disease
Herbal Database),60 provide alternative avenues to explore the
molecular mechanisms and signaling pathways of diseases.

Table 1. Comparison of the Experimental pKi and the Predicted pKd Values for the FDA-Approved AD Drugs

drug target experimental Ki (nM) experimental (−pKi) HTDocking score predicted (−pKd)

tacrine acetylcholinesterase 225a 6.65 6.11
galantamine acetylcholinesterase 62b 7.21 7.18
rivastigmine acetylcholinesterase 920c 6.04 6.08
donepezil acetylcholinesterase 23d 7.64 7.25

glutamate [NMDA] receptor subunit 3a 700e 6.15 7.17
glutamate [NMDA] receptor subunit 3b 540f 6.27 6.33

memantine glutamate [NMDA] receptor subunit zeta-1 1200g 5.92 6.82
glutamate [NMDA] receptor subunit epsilon 2 1020h 6.00 6.33

aExperimental data from ref 66. bExperimental data from ref 67. cExperimental data from ref 68. dExperimental data from ref 69. eExperimental data
from ref 70. fExperimental data from ref 71. gExperimental data from ref 72. hExperimental data from ref 73.

Table 2. Verification of Other Predicted Targets by
Experiments for FDA-Approved AD Drugs

drug target experimental potency ref

galantamine beta-secretase1 (BACE1) 44% decrease in BACE1
level/0.3 μM

74

donepezil beta-secretase1 (BACE1) IC50 = 3.2 μM 75
donepezil nitric oxide synthase, brain

(NOS1)
increase expression of
NOS1/5 mg/kg in vivo

76

donepezil glycogen synthase kinase-3
beta (GSK3B)

decrease 77% in vivo/
(1 mg/kg)

77

memantine monoamine oxidase type B
(MAO-B)

inhibition of 64%/1 mM 78

memantine Adenosine receptor A2a
(AA2AR)

increase 43% in vivo
(25 mg/kg)

79

memantine nitric oxide synthase, brain
(NOS1)

active in vivo (10 mg/kg) 80

memantine metabotropic glutamate
receptor 2 (GRM2)

active/100 μM 81

memantine glycogen synthase kinase-3
beta (GSK3B)

inhibit GSK-3/100 μM 82
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However, there is no comprehensive AD specific chemical
genomics knowledgebase available for polypharmacology
targets identification to facilitate novel AD drug discovery.
Comparing with other general in silico docking platforms, such
as DOCK Blaster,61 our AlzPlatform also offers an AD domain-
specific chemogenomics database with user-friendly query
functions and polytarget identification algorithms implemented
with ligand-based TargetHunter and protein structure-based
HTDocking. AlzPlatform provides a promising alternative to
bridge the knowledge gap between biology and chemistry
related to AD, enhancing AD target research, polypharmacol-
ogy analysis, and new drug discovery.
Our pilot studies demonstrated that the protein-based

HTDocking program has been successfully used to identify
the AD-related targets for small molecules, such as drugs, lead
compounds, and natural product. HTDocking program
provides a list of predicted targets and corresponding
computational docking-based binding affinity (scores). The
reliability of the HTDocking program has been confirmed by
comparison of the predicted with the experimental pKi values
reported for known AD drugs, also by our in vitro experimental
validation for an active natural product. Of course, HTDocking
has certain limitations on availability of high-quality protein
structures. As a complementary partner, the ligand-based
TargetHunter tool is designed to predict the potential targets
and off-targets of chemicals using our established chemo-
genomics database.9 Our established programs also can be useful
in the application of drug repurposing, and in the investigation
of potential side effects related to AD drugs.62 TargetHunter is a
powerful cloud-computing tool with attractive features: usability,
flexibility, and veracity. Furthermore, it embeds an important
query function, i.e., the geographical bioassay locator can assist
users to find nearby collaborators who have reported suitable
bioassays in order to validate the target prediction, which
will enhance the productivity of collaborative researchers and
facilitate the chemogenomics data sharing and information
communications.
In addition, our chemoinformatics tools can be used in

mapping the drug−target network for polypharmacology
investigation. Understanding drug−target associations can
benefit the discovery of novel therapeutic applications and
also reveal the possible side effects of drugs. It will transform the
one-target-one-drug development process to a new multitarget−
multidrug paradigm, thereby expanding the opportunity for
system multitarget drug discovery.63−65 By assembling many AD
related drugs and small molecules with target annotations,
AlzPlatform provides specific data and tools to help researchers
conduct in-depth analysis for AD related targets and drugs and
will also enable the chemists to design multitarget small
molecules and to perform bioactivity test with the collaborators,
which will boost the more effective system pharmacotherapy
and drug design discovery.

5. CONCLUSION
AlzPlatform, a one-stop integrated cloud computing server, has
been specifically developed as a public repository http://www.
cbligand.org/AD/ for AD drug and targets research. The cloud
computing server will augment our capacity to benefit the AD
research community and will help break to the knowledge
barrier, enhance the productivity of chemogenomics research-
ers, and accelerate advances in system biology computer-aided
drug design by consolidating existing data and computational
technology.
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