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Abstract 

Background: The broad adoption of electronic health records (EHRs) provides great opportunities to conduct health 
care research and solve various clinical problems in medicine. With recent advances and success, methods based on 
machine learning and deep learning have become increasingly popular in medical informatics. However, while many 
research studies utilize temporal structured data on predictive modeling, they typically neglect potentially valuable 
information in unstructured clinical notes. Integrating heterogeneous data types across EHRs through deep learning 
techniques may help improve the performance of prediction models.

Methods: In this research, we proposed 2 general-purpose multi-modal neural network architectures to enhance 
patient representation learning by combining sequential unstructured notes with structured data. The proposed 
fusion models leverage document embeddings for the representation of long clinical note documents and either 
convolutional neural network or long short-term memory networks to model the sequential clinical notes and tem-
poral signals, and one-hot encoding for static information representation. The concatenated representation is the final 
patient representation which is used to make predictions.

Results: We evaluate the performance of proposed models on 3 risk prediction tasks (i.e. in-hospital mortality, 30-day 
hospital readmission, and long length of stay prediction) using derived data from the publicly available Medical 
Information Mart for Intensive Care III dataset. Our results show that by combining unstructured clinical notes with 
structured data, the proposed models outperform other models that utilize either unstructured notes or structured 
data only.

Conclusions: The proposed fusion models learn better patient representation by combining structured and unstruc-
tured data. Integrating heterogeneous data types across EHRs helps improve the performance of prediction models 
and reduce errors.
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Background
Electronic Health Records (EHRs) are longitudinal elec-
tronic records of patients’ health information, includ-
ing structured data (patient demographics, vital signs, 

lab tests, etc.) and unstructured data (clinical notes and 
reports). In the United States, for example, over 30 mil-
lion patients visit hospitals each year, and the percent 
of non-Federal acute care hospitals with the adoption of 
at least a Basic EHR system increased from 9.4 to 83.8% 
over the 7 years between 2008 and 2015 [1]. The broad 
adoption of EHRs provides unprecedented opportunities 

Open Access

*Correspondence:  mail.pingzhang@gmail.com
3 Department of Computer Science and Engineering, The Ohio State 
University, 2015 Neil Ave, Columbus, OH 43210, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4601-0779
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-01297-6&domain=pdf


Page 2 of 11Zhang et al. BMC Med Inform Decis Mak          (2020) 20:280 

for data mining and machine learning researchers to con-
duct health care research.

With recent advances and success, machine learn-
ing and deep learning-based approaches have become 
increasingly popular in health care and shown great 
promise in extracting insights from EHRs. Accurately 
predicting clinical outcomes, such as mortality and read-
mission prediction, can help improve health care and 
reduce cost. Traditionally, some knowledge-driven scores 
are used to estimate the risk of clinical outcomes. For 
example, SAPS scores [2] and APACHE IV [3] are used 
to identify patients at high risk of mortality; LACE Index 
[4] and HOSPITAL Score [5] are used to evaluate hos-
pital readmission risk. Recently, lots of research studies 
have been conducted for these prediction tasks based on 
EHRs using machine learning and deep learning tech-
niques. Caruana [6] predicts hospital readmission using 
traditional logistic regression and random forest mod-
els. Tang [7] shows that recurrent neural networks using 
temporal physiologic features from EHRs provide addi-
tional benefits in mortality prediction. Rajkomar [8] com-
bines 3 deep learning models and develops an ensemble 
model to predict hospital readmission and long length 
of stay. Besides, Min [9] compared different types of 
machine learning models for predicting the readmission 
risk of Chronic Obstructive Pulmonary Disease patients. 
Two benchmarks studies [10, 11] show that deep learning 
models consistently outperform all the other approaches 
over several clinical prediction tasks. In addition to struc-
tured EHR data such as vital signs and lab tests, unstruc-
tured data also offers promise in predictive modeling [12, 
13]. Boag [14] explores several representations of clinical 
notes and their effectiveness on downstream tasks. Liu’s 
model [15] forecasts the onset of 3 kinds of diseases using 
medical notes. Sushil [16] utilizes a stacked denoised 
autoencoder and a paragraph vector model to learn gen-
eralized patient representation directly from clinical 
notes and the learned representation is used to predict 
mortality.

However, most of the previous works focused on pre-
diction modeling by utilizing either structured data or 
unstructured clinical notes and few of them pay enough 
attention to combining structured data and unstruc-
tured clinical notes. Integrating heterogeneous data 
types across EHRs (unstructured clinical notes, time-
series clinical signals, static information, etc.) presents 
new challenges in EHRs modeling but may offer new 
potentials.

Recently, some works [15, 17] extract structured data as 
text features such as medical named entities and numeri-
cal lab tests from clinical notes and then combine them 
with clinical notes to improve downstream tasks. How-
ever, their approaches are domain-specific and cannot 

easily be transferred to other domains. Besides, their 
structured data are extracted from clinical notes and may 
introduce errors compared to original signals.

In this paper, we aim at combining structured data and 
unstructured text directly through deep learning tech-
niques for clinical risk predictions. Deep learning meth-
ods have made great progress in many areas [18] such as 
computer vision [19], speech recognition [20] and natu-
ral language processing [21] since 2012. The flexibility of 
deep neural networks makes it well-suited for the data 
fusion problem of combining unstructured clinical notes 
and structured data. Here, we propose 2 multi-modal 
neural network architectures learn patient representa-
tion, and the patient representation is then used to pre-
dict patient outcomes. The proposed multi-modal neural 
network architectures are purpose-general and can be 
applied to other domains without effort.

To summarize, the contributions of our work are:

• We propose 2 general-purpose fusion models to 
combine temporal signals and clinical text which lead 
to better performance on 3 prediction tasks.

• We examine the capability of unstructured clinical 
text in predictive modeling.

• We present benchmark results of in-hospital mortal-
ity, 30-day readmission, and long length of stay pre-
diction tasks. We show that deep learning models 
consistently outperform baseline machine learning 
models.

• We compare and analyze the running time of pro-
posed fusion models and baseline models.

Methods
In this section, we describe the dataset, patient features, 
predictive tasks, and proposed general-purpose neural 
network architectures for combining unstructured data 
and structured data using deep learning techniques.

Dataset description
Medical Information Mart for Intensive Care III 
(MIMIC-III) [22] is a publicly available critical care 
database maintained by the Massachusetts Institute of 
Technology (MIT)’s Laboratory for Computational Physi-
ology. MIMIC-III comprises deidentified health-related 
data associated with over forty thousand patients who 
stayed in critical care units of the Beth Israel Deaconess 
Medical Center (BIDMC) between 2001 and 2012. This 
database includes patient health information such as 
demographics, vital signs, lab test results, medications, 
diagnosis codes, as well as clinical notes.
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Patient features
Patient features consist of features from both struc-
tured data (static information and temporal signals) 
and unstructured data (clinical text). In this part, we 
describe the patient features that are utilized by our 
model and some data preprocessing details.

Static information
Static information refers to demographic information 
and admission-related information in this study. For 
demographic information, patient’s age, gender, marital 
status, ethnicity, and insurance information are con-
sidered. Only adult patients are enrolled in this study. 
Hence, age was split into 5 groups (18, 25), (25, 45), (45, 
65), (65, 89), (89,). For admission-related information, 
admission type is included as features.

Temporal signals
For temporal signals, we consider 7 frequently sampled 
vital signs: heart rate, systolic blood pressure (SysBP), 
diastolic blood pressure (DiasBP), mean arterial blood 
pressure (MeanBP), respiratory rate, temperature, 
SpO2; and 19 common lab tests: anion gap, albumin, 
bands, bicarbonate, bilirubin, creatinine, chloride, 
glucose, hematocrit, hemoglobin, lactate, platelet, 
potassium, partial thromboplastin time (PTT), interna-
tional normalized ratio (INR), prothrombin time (PT), 
sodium, blood urea nitrogen (BUN), white blood cell 
count (WBC). Statistics of temporal signals are shown 
in Table 1. Additional statistics of temporal signals are 
provided in Additional file  1: Table  S1. After feature 
selection, we extract values of these time-series features 
up to the first 24 hours of each hospital admission. For 
each temporal signal, the average is used to represent 
the signal at each timestep (hour). Then, each temporal 
variable was normalized using min-max normalization. 
To handle missing values, we simply use “0” to impute 
[23].

Sequential clinical notes
In addition to the aforementioned types of structured 
data, we also incorporate sequential unstructured notes, 
which contain a vast wealth of knowledge and insight 
that can be utilized for predictive models using Natural 
Language Processing (NLP). In this study, we considered 
Nursing, Nursing/Other, Physician, and Radiology notes, 
because these kinds of notes are in the majority of clini-
cal notes and are frequently recorded in MIMIC-III data-
base. We only extract the first 24 hours’ notes for each 
admission to enable early prediction of outcomes.

Predictive tasks
Here, 3 benchmark prediction tasks are adopted which 
are crucial in clinical data problems and have been well 
studied in the medical community [7, 8, 24–28].

In‑hospital mortality prediction
Mortality prediction is recognized as one of the pri-
mary outcomes of interest. The overall aim of this task 
is to predict whether a patient passes away during the 
hospital stay. This task is formulated as a binary clas-
sification problem, where the label indicates the occur-
rence of a death event. To evaluate the performance, 
we report the F1-score (F1), the area under the receiver 
operating characteristic curve (AUROC), and area 
under the precision-recall curve (AUPRC). AUROC is 
the main metric.

Long length of stay prediction
Length of stay is defined as the time interval between 
hospital admission and discharge. In the second task, 
we predict a long length of stay whether a length of stay 
is more than 7 days [8, 28]. Long length of stay predic-
tion is important for hospital management. This task is 
formulated as a binary classification problem with the 
same metrics of the mortality prediction task.

Hospital readmission prediction
Hospital readmission refers to unplanned hospital 
admissions within 30 days following the initial dis-
charge. Hospital readmission has received much atten-
tion because of its negative impacts on healthcare 
systems’ budgets. In the United States, for example, 
roughly 2 million hospital readmissions each year costs 
Medicare 27 billion dollars, of which 17 billion dollars 
are potentially avoidable [29]. Reducing preventable 
hospital readmissions represents an opportunity to 
improve health care, lower costs, and increase patient 
satisfaction. Predicting unplanned hospital readmission 
is a binary classification problem with the same metrics 
as the in-hospital mortality prediction task.

Neural network architecture
In this part, we present 2 neural network architectures 
for combining clinical structured data with sequential 
clinical notes. The overview of the proposed mod-
els, namely Fusion-CNN and Fusion-LSTM, are illus-
trated in Figs. 1 and 2. Each model mainly consists of 
5 parts, static information encoder, temporal signals 
embedding, sequential notes representation, patient 
representation, and output layer. Fusion-CNN is based 
on convolutional neural networks (CNN) and Fusion-
LSTM is based on long short-term memory (LSTM) 
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networks. The 2 models have common in model inputs 
and outputs but differ in the way how they model the 
temporal information.

Static information encoder
The static categorical features including patient 
demographics and admission-related information 
are encoded as one-hot vectors through the static 
information encoder. The output of the encoder is 
zstatic = [zdemo; zadm] with size dstatic = ddemo + dadm 
and zstatic is part of patient representation.

Temporal signals representation
In this part, Fusion-CNN and Fusion-LSTM leverage 
different techniques to model temporal signals. The 
learned vector for temporal signals representation is 
ztemporal with size of dtemporal.
Fusion-CNN Convolutional neural networks (CNNs) 

can automatically learn the features through convolu-
tion and pooling operations and can be used for time-
series modeling. Fusion-CNN uses 2-layer convolution 
and max-pooling to extract deep features of temporal 
signals as shown in Fig. 1.

Table 1 Label statistics and characteristics of 3 prediction tasks. SD represents standard deviation

In-hospital mortality 30-day readmission Long length of stay

Yes No Yes No Yes No

# of admissions (%) 3771 (9.6) 35658 (90.4) 2237 (5.7) 37192 (94.3) 19689 (49.9) 19740 (50.1)

Length of hospital stay (SD) 12.1 (14.4) 10.1 (10.3) 12.8 (13.2) 10.1 (10.6) 16.3 (12.5) 4.2 (1.6)

Demographics Age (SD) 68.1 (14.8) 61.7 (16.6) 63.1 (16.4) 62.2 (16.6) 63.5 (15.9) 61.1 (17.1)

Gender (male) 2102 20699 1315 21486 11370 11431

Admission type EMERGENCY 3512 29164 1987 30689 16493 16183

ELECTIVE 142 5661 213 5590 2648 3155

URGENT 117 833 37 913 548 402

Vital signs (SD) Heart rate 89.9 (20.2) 84.3 (17.6) 85.5 (17.6) 84.8 (17.9) 87.0 (18.5) 83.2 (17.2)

SysBP 116.3 (23.0) 120.0 (21.1) 119.2 (22.8) 119.7 (21.3) 119.6 (21.9) 119.7 (20.9)

DiasBP 58.9 (14.4) 61.9 (14.2) 61.6 (15.7) 61.6 (14.2) 61.1 (14.1) 62.0 (14.4)

MeanBP 76.5 (15.9) 79.0 (15.0) 78.2 (16.4) 78.8 (15.1) 78.7 (15.4) 78.7 (14.9)

Respiratory rate 20.6 (6.0) 18.5 (5.2) 19.0 (5.5) 18.7 (5.3) 19.1 (5.5) 18.5 (5.1)

Temperature 36.8 (1.1) 36.9 (0.8) 36.8 (0.8) 36.9 (0.8) 36.9 (0.9) 36.8 (0.8)

SpO2 97.0 (4.1) 97.3 (2.7) 97.3 (2.9) 97.3 (2.9) 97.4 (2.9) 97.2 (2.9)

Lab tests (SD) Anion gap 16.2 (5.0) 14.0 (3.6) 14.4 (3.9) 14.2 (3.9) 14.4 (3.8) 14.0 (3.9)

Albumin 2.8 (0.6) 3.2 (0.6) 3.0 (0.6) 3.1 (0.6) 3.0 (0.6) 3.2 (0.6)

Bands 10.6 (12.0) 10.0 (9.9) 9.7 (9.5) 10.2 (10.4) 10.2 (10.4) 10.0 (10.4)

Bicarbonate 21.8 (5.7) 23.7 (4.7) 24.1 (5.4) 23.5 (4.8) 23.4 (4.9) 23.6 (4.8)

Bilirubin 4.1 (7.3) 1.7 (3.7) 2.3 (5.1) 2.1 (4.5) 2.3 (4.8) 1.8 (4.0)

Creatinine 1.8 (1.6) 1.4 (1.7) 1.9 (2.1) 1.5 (1.7) 1.6 (1.8) 1.4 (1.6)

Chloride 104.9 (7.6) 105.4 (6.4) 104.2 (6.9) 105.4 (6.5) 105.2 (6.7) 105.6 (6.3)

Glucose 150.8 (79.3) 141.7 (70.6) 142.5 (74.3) 142.7 (71.6) 143.8 (69.1) 141.5 (74.5)

Hematocrit 31.2 (5.8) 31.5 (5.4) 30.4 (5.4) 31.6 (5.5) 31.3 (5.5) 31.7 (5.4)

Hemoglobin 10.5 (2.0) 10.9 (1.9) 10.3 (1.8) 10.8 (1.9) 10.7 (1.9) 10.9 (1.9)

Lactate 4.0 (3.5) 2.4 (1.8) 2.5 (1.8) 2.7 (2.2) 2.7 (2.1) 2.6 (2.4)

Platelet 193.3 (126.6) 212.2 (110.7) 209.7 (122.9) 210.2 (111.9) 209.1 (120.1) 211.4 (103.6)

Potassium 4.2 (0.8) 4.1 (0.7) 4.2 (0.7) 4.1 (0.7) 4.1 (0.7) 4.1 (0.7)

PTT 45.2 (28.1) 40.8 (25.2) 42.9 (26.5) 41.2 (25.5) 42.4 (25.9) 39.9 (25.1)

INR 1.8 (1.4) 1.5 (0.9) 1.6 (1.1) 1.5 (1.0) 1.6 (1.1) 1.5 (0.9)

PT 18.3 (8.8) 15.9 (6.7) 17.4 (9.0) 16.1 (6.9) 16.5 (7.4) 15.8 (6.5)

Sodium 138.7 (6.5) 138.8 (5.0) 138.5 (5.3) 138.8 (5.2) 138.7 (5.4) 138.8 (5.0)

BUN 37.1 (27.2) 25.3 (21.7) 31.9 (24.9) 26.2 (22.5) 28.7 (23.9) 24.3 (21.0)

WBC 14.4 (21.4) 11.6 (10.7) 12.2 (20.1) 11.9 (11.6) 12.3 (13.4) 11.5 (10.9)
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Fusion-LSTM Recurrent neural networks (RNNs) 
are considered since RNN models have achieved great 
success in sequences and time series data modeling. 
However, RNNs with simple activations suffer from 
vanishing gradients. Long short-term memory (LSTM) 

neural networks are a type of RNNs that can learn and 
remember long sequences of input data. 2-layer LSTM is 
utilized in Fusion-LSTM model to learn the representa-
tions of temporal signals as shown in Fig. 2. To prevent 
the model from overfitting, dropout on non-recurrent 

Fig. 1 Architecture of CNN-based fusion-CNN. Fusion-CNN uses document embeddings, 2-layer CNN and max-pooling to model sequential clinical 
notes. Similarly, 2-layer CNN and max-pooling are used to model temporal signals. The final patient representation is the concatenation of the latent 
representation of sequential clinical notes, temporal signals, and the static information vector. Then the final patient representation is passed to 
output layers to make predictions

Fig. 2 Architecture of LSTM-based Fusion-LSTM. Fusion-LSTM uses document embeddings, a BiLSTM layer, and a max-pooling layer to model 
sequential clinical notes. 2-layer LSTMs are used to model temporal signals. The concatenated patient representation is passed to output layers to 
make predictions
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connections is applied between RNN layers and before 
outputs.

Sequential notes representation
Word embedding is a popular technique in natural lan-
guage processing that is used to map words or phrases 
from vocabulary to a corresponding vector of continu-
ous values. However, directly modeling sequential notes 
using word embeddings and deep learning can be time-
consuming and may not be practical since clinical notes 
are usually very long and involve multiple timestamps. To 
solve this problem, we present the sequential notes rep-
resentation component based on document embeddings. 
Here, we utilize paragraph vector (aka. Doc2Vec) [30] to 
learn the embedding of each clinical note. Time-series 
document embeddings are inputs to Fusion-CNN and 
Fusion-LSTM as shown in Fig. 1 and Fig. 2. The sequen-
tial notes representation component produces znote with 
a size of dnote as the latent representation of sequential 
notes.
Fusion-CNN As shown in Fig.  1, the sequential notes 

representation part of Fusion-CNN model is made up 
of document embeddings, a series of convolutional lay-
ers and max-pooling layers, and a flatten layer. Document 
embedding inputs are passed to these convolutional lay-
ers and max-pooling layers. The flatten layer takes the 
output of the max-pooling layer as input and outputs the 
final text representation.
Fusion-LSTM Fusion-LSTM model is demonstrated in 

Fig.  2, the sequential notes representation part is made 
up of document embeddings, a BiLSTM (bidirectional 
LSTM) layer, and a max-pooling layer. The document 
embedding inputs are passed to the BiLSTM layer. The 
BiLSTM layer concatenates the outputs ( 

−→
hi ,

←−
hi  ) from 2 

hidden layers of opposite direction to the same output 
( hi = [

−→
hi ;

←−
hi ] ) and can capture long term dependencies 

in sequential text data. The max-pooling layer takes the 
hidden states of the BiLSTM layer as input and outputs 
the final text representation.

Patient representation
The final patient representation z is obtained by concat-
enating the representations of clinical text, temporal sig-
nals, along with static information. The representation 
of each patient is zp = [zstatic; ztemporal; ztext ] , the size of 
this vector is dstatic + dtemporal + dtext . The patient rep-
resentation is then fed to a final output layer to make 
predictions.

Output layer
The output layer takes patient representation as input 
and makes predictions. For each patient representation 
zp , we have a task-specific target y. y ∈ {0, 1} is a single 

binary label indicating whether the in-hospital mortality, 
30-day readmission, or long length of stay event occurs.

For each prediction task, the output layer receives an 
instance of patient representation zp as input and tries to 
predict the ground truth y. For binary classification tasks, 
the output layer is:

The W matrices and b vectors are the trainable parame-
ters, σ represents a sigmoid activation function. For each 
of these 3 tasks, the loss functions is defined as the binary 
cross entropy loss:

Results and discussion
Experiment setup
Cohort preparation
Based on the MIMIC-III dataset, we evaluated our pro-
posed models on 3 predictive tasks (i.e. in-hospital mor-
tality prediction, 30-day readmission prediction, and 
long length of stay prediction). To build corresponding 
cohorts, we first removed all patients whose age < 18 
years old and all hospital admissions whose length of stay 
is less than 1 day. Besides, patients without any records 
of required temporal signals and clinical notes were 
removed. In total, 39,429 unique admissions are eligible 
for prediction tasks. Label statistics and characteristics of 
3 prediction tasks are provided in Table 1. Length of stay 
distribution of the processed cohort is provided in Addi-
tional file 1: Figure S1.

Implementation details
In this part, we describe the implementation details. We 
train the unsupervised Doc2Vec model on the training 
set to obtain the document-level embeddings for each 
note using the popular Gensim toolkit [31]. We use PV-
DBOW (Paragraph vector-Distributed Bag of Words) 
as the training algorithm, number of training epochs as 
30, initial learning rate as 0.025, learning rate decay as 
0.0002, and dimension of vectors as 200 to train.

We implement baseline models (i.e. logistic regression 
and random forest) with scikit-learn [32]. Deep learning 
models are implemented using PyTorch [33]. All deep 
learning models are trained with Adam optimizer with a 
learning rate of 0.0001 and ReLU as the activation func-
tion. The batch size is chosen as 64 and the max epoch 
number is set to 50.

For evaluation, 70% of the data are used for training, 
and 10% for validation, 20% for testing. For binary clas-
sification tasks, AUROC is used as the main metric. 

(1)o = σ(Wzp + b)

(2)L = −(y · log(o)+ (1− y) · log(1− o))
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Besides, we report F1 score, and AUPRC to aid the 
interpretation of AUROC for imbalanced datasets.

Baselines
We compared our model with the following baseline 
methods: logistic regression (LR), random forest (RF). 
Because these standard machine learning methods 
cannot work directly with temporal sequences, the 
element-wise mean vector across sequential notes and 
aggregations (i.e. mean value, minimum value, maxi-
mum value, standard deviation, and count of observa-
tions) of temporal signals are used as model inputs.

Ablation study
To evaluate the contribution of different components and 
gain a better understanding of the proposed fusion mod-
el’s behavior, an ablation study is adopted and we have 
conducted extensive experiments on different models. 
Let U, T, S denote the unstructured clinical notes, tem-
poral signals, and static information.

Results
In this section, we report the performance of proposed 
models on 3 prediction tasks. The results are shown 
in Tables  2, 4, and 6. Each reported performance met-
ric is the average score of 5 runs with different data 
splits. To measure the uncertainty of a trained model’s 

Table 2 In-hospital mortality prediction on MIMIC-III. U, T, S represents unstructured data, temporal signals, and static 
information respectively

The bold in the table is maximum values of that evaluation metrics

Model Model inputs F1 AUROC AUPRC P value

Baseline models LR T + S 0.341 (0.325, 0.357) 0.805 (0.799, 0.811) 0.188 (0.173, 0.203) 1

LR U 0.373 (0.358, 0.388) 0.825 (0.817, 0.833) 0.210 (0.200, 0.220) < 0.001

LR U + T + S 0.395 (0.380, 0.410) 0.862 (0.859, 0.865) 0.230 (0.217, 0.243) < 0.001

RF T + S 0.349 (0.325, 0.373) 0.735 (0.720, 0.750) 0.181 (0.157, 0.205) < 0.001

RF U 0.255 (0.236, 0.274) 0.665 (0.657, 0.673) 0.134 (0.126, 0.142) < 0.001

RF U + T + S 0.349 (0.331, 0.367) 0.735 (0.724, 0.746) 0.181 (0.163, 0.199) < 0.001

Deep models Fusion-CNN T + S 0.346 (0.330, 0.362) 0.827 (0.823, 0.831) 0.194 (0.184, 0.204) < 0.001

Fusion-CNN U 0.358 (0.341, 0.375) 0.826 (0.825, 0.827) 0.201 (0.198, 0.204) < 0.001

Fusion-CNN U + T + S 0.398 (0.378, 0.418) 0.870 (0.866, 0.874) 0.233 (0.220, 0.246) < 0.001

Fusion-LSTM T + S 0.374 (0.365, 0.383) 0.837 (0.834, 0.840) 0.211 (0.207, 0.215) < 0.001

Fusion-LSTM U 0.372 (0.352, 0.392) 0.828 (0.824, 0.832) 0.209 (0.207, 0.211) < 0.001

Fusion-LSTM U + T + S 0.424 (0.419, 0.429) 0.871 (0.868, 0.874) 0.250 (0.241, 0.259) < 0.001

Table 3 P value matrix of  various model performances (AUROC) for  in-hospital mortality prediction. U, T, S represents 
unstructured data, temporal signals, and static information respectively

LR RF Fusion-CNN Fusion-LSTM

T + S U U + T + S T + S U U + T + S T + S U U + T + S T + S U U + T + S

LR T + S 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

U < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 0.5644 0.7432 < 0.001 0.0047 0.3918 < 0.001

U + T + S < 0.001 < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.0018 < 0.001 < 0.001 < 0.001

RF T + S < 0.001 < 0.001 < 0.001 1 < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

U < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

U + T + S < 0.001 < 0.001 < 0.001 1 < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Fusion-CNN T + S < 0.001 0.5644 < 0.001 < 0.001 < 0.001 < 0.001 1 0.5428 < 0.001 < 0.001 0.6591 < 0.001

U < 0.001 0.7432 < 0.001 < 0.001 < 0.001 < 0.001 0.5428 1 < 0.001 < 0.001 0.232 < 0.001

U + T + S < 0.001 < 0.001 0.0018 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001 0.6062

Fusion-LSTM T + S < 0.001 0.0047 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1 0.0011 < 0.001

U < 0.001 0.3918 < 0.001 < 0.001 < 0.001 < 0.001 0.6591 0.232 < 0.001 0.0011 1 < 0.001

U + T + S < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.6062 < 0.001 < 0.001 1
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performance, we calculated 95% confidence interval 
using t-distribution and the results are reported. Besides, 
to better compare model performances on each task, 
we performed statistical testing and calculated P value 
of AUROC score across various models using statistical 
t-testing. P value matrix of AUROC scores on in-hos-
pital mortality prediction, long length of stay predic-
tion, 30-day readmission prediction tasks are shown in 
Tables 3, 5, and 7. In summary, the results show signifi-
cant improvements and it matches our expectations: (1) 
Deep learning models outperformed traditional machine 
learning models by comparing the performances of dif-
ferent models on the same model inputs. (2) Models 

could make more accurate predictions by combining 
unstructured text and structured data.

In‑hospital mortality prediction
Table  2 shows the performance of various models on 
the in-hospital mortality prediction task. From Tables 2 
and 3, deep models outperformed baseline models. We 
speculate the main reasons why deep models work bet-
ter are two-fold: (1) Deep models can automatically 
learn better patient representations as the network 
grows deeper and yield more accurate predictions. (2) 
Deep models can capture temporal information and 
local patterns, while logistic regression and random 

Table 4 Long length of  stay prediction on  MIMIC-III. U, T, S represents unstructured data, temporal signals, and  static 
information respectively

The bold in the table is maximum values of that evaluation metrics

Model Model inputs F1 AUROC AUPRC P value

Baseline models LR T + S 0.668 (0.658, 0.678) 0.735 (0.732, 0.738) 0.615 (0.611, 0.619) 1

LR U 0.686 (0.683, 0.689) 0.736 (0.732, 0.740) 0.614 (0.610, 0.618) 0.5643

LR U + T + S 0.703 (0.699, 0.707) 0.773 (0.770, 0.776) 0.642 (0.637, 0.647) < 0.001

RF T + S 0.523 (0.462, 0.584) 0.695 (0.689, 0.701) 0.586 (0.577, 0.595) < 0.001

RF U 0.568 (0.479, 0.657) 0.651 (0.642, 0.660) 0.559 (0.553, 0.565) < 0.001

RF U + T + S 0.537 (0.533, 0.541) 0.718 (0.714, 0.722) 0.597 (0.591, 0.603) < 0.001

Deep models Fusion-CNN T + S 0.674 (0.667, 0.681) 0.748 (0.745, 0.751) 0.640 (0.635, 0.645) < 0.001

Fusion-CNN U 0.695 (0.683, 0.707) 0.742 (0.741, 0.743) 0.635 (0.632, 0.638) < 0.001

Fusion-CNN U + T + S 0.725 (0.718, 0.732) 0.784 (0.781, 0.787) 0.662 (0.658, 0.666) < 0.001

Fusion-LSTM T + S 0.690 (0.684, 0.696) 0.757 (0.756, 0.758) 0.644 (0.643, 0.645) < 0.001

Fusion-LSTM U 0.702 (0.697, 0.707) 0.746 (0.745, 0.747) 0.637 (0.634, 0.640) < 0.001

Fusion-LSTM U + T + S 0.716 (0.711, 0.721) 0.778 (0.776, 0.780) 0.660 (0.657, 0.663) < 0.001

Table 5 P value matrix of  various model performances (AUROC) for  long length of  stay prediction. U, T, S represents 
unstructured data, temporal signals, and static information respectively

LR RF Fusion-CNN Fusion-LSTM

T + S U U + T + S T + S U U + T + S T + S U U + T + S T + S U U + T + S

LR T + S 1 0.5643 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

U 0.5643 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.0024 < 0.001 < 0.001 < 0.001 < 0.001

U + T + S < 0.001 < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.0073

RF T + S < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

U < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

U + T + S < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Fusion-CNN T + S < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001 < 0.001 0.1134 < 0.001

U < 0.001 0.0024 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001

U + T + S < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001 0.002

Fusion-LSTM T + S < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001

U < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.1134 < 0.001 < 0.001 < 0.001 1 < 0.001

U + T + S < 0.001 < 0.001 0.0073 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.001 < 0.001 1
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forest simply aggregate time-series features and hence 
suffer from information loss.

For each kind of classifier, the performance of clas-
sifier trained on all data ( U + T + S ) is significantly 
higher than that trained on either structured data 
( T + S ) or unstructured data (U) only. Especially by 
considering unstructured text, the AUROC score of 
Fusion-CNN and Fusion-LSTM increased by 0.043 and 
0.034 respectively. Structured data contains a patient’s 
vital signs and lab test results, while sequential notes 
provide the patient’s clinical history including diagno-
ses, medications, and so on. This observation implicitly 
explains why unstructured text and structured data can 

complement each other to some extent in predictive 
modeling which leads to performance improvement.

Long length of stay prediction
Table 4 shows the performance measured by F1, AUROC, 
and AUPRC of different models on the long length of stay 
prediction. We observe that (1) Logistic regression serves 
as a very strong baseline while Fusion-CNN achieves a 
slightly higher F1 score and AUROC score than Fusion-
LSTM. (2) By integrating multi-modal information, all 
models yield more accurate predictions and the improve-
ment is significant as shown in Table 5.

Table 6 30-day readmission prediction on  MIMIC-III. U, T, S represents unstructured data, temporal signals, and  static 
information respectively

The bold in the table is maximum values of that evaluation metrics

Model Model inputs F1 AUROC AUPRC P value

Baseline models LR T + S 0.144 (0.136, 0.152) 0.649 (0.646, 0.652) 0.071 (0.062, 0.080) 1

LR U 0.142 (0.133, 0.151) 0.638 (0.634, 0.642) 0.070 (0.056, 0.084) < 0.001

LR U + T + S 0.144 (0.137, 0.151) 0.660 (0.657, 0.663) 0.072 (0.059, 0.085) < 0.001

RF T + S 0.123 (0.113, 0.133) 0.575 (0.559, 0.591) 0.060 (0.054, 0.066) < 0.001

RF U 0.117 (0.105, 0.129) 0.557 (0.539, 0.575) 0.059 (0.056, 0.062) < 0.001

RF U + T + S 0.118 (0.111, 0.125) 0.560 (0.543, 0.577) 0.059 (0.056, 0.062) < 0.001

Deep models Fusion-CNN T + S 0.155 (0.146, 0.164) 0.657 (0.650, 0.664) 0.077 (0.073, 0.081) 0.0208

Fusion-CNN U 0.163 (0.160, 0.166) 0.663 (0.660, 0.666) 0.078 (0.077, 0.079) < 0.001

Fusion-CNN U + T + S 0.164 (0.161, 0.167) 0.671 (0.668, 0.674) 0.080 (0.076, 0.084) < 0.001

Fusion-LSTM T + S 0.149 (0.146, 0.152) 0.653 (0.651, 0.655) 0.074 (0.071, 0.077) 0.0158

Fusion-LSTM U 0.158 (0.154, 0.162) 0.641 (0.635, 0.647) 0.075 (0.072, 0.078) 0.0076

Fusion-LSTM U + T + S 0.160 (0.151, 0.169) 0.674 (0.672, 0.676) 0.079 (0.076, 0.082) < 0.001

Table 7 P value matrix of  various model performances (AUROC) for  30-day readmission prediction. U, T, S represents 
unstructured data, temporal signals, and static information respectively

LR RF Fusion-CNN Fusion-LSTM

T + S U U + T + S T + S U U + T + S T + S U U + T + S T + S U U + T + S

LR T + S 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.0208 < 0.001 < 0.001 0.0158 0.0076 < 0.001

U < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.2449 < 0.001

U + T + S < 0.001 < 0.001 1 < 0.001 < 0.001 < 0.001 0.3156 0.0954 < 0.001 < 0.001 < 0.001 < 0.001

RF T + S < 0.001 < 0.001 < 0.001 1 0.073 0.116 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

U < 0.001 < 0.001 < 0.001 0.073 1 0.7452 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

U + T + S < 0.001 < 0.001 < 0.001 0.116 0.7452 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Fusion-CNN T + S 0.0208 < 0.001 0.3156 < 0.001 < 0.001 < 0.001 1 0.0661 0.0011 0.1757 0.0012 < 0.001

U < 0.001 < 0.001 0.0954 < 0.001 < 0.001 < 0.001 0.0661 1 0.0011 < 0.001 < 0.001 < 0.001

U + T + S < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.0011 0.0011 1 < 0.001 < 0.001 0.07

Fusion-LSTM T + S 0.0158 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.1757 < 0.001 < 0.001 1 < 0.001 < 0.001

U 0.0076 0.2449 < 0.001 < 0.001 < 0.001 < 0.001 0.0012 < 0.001 < 0.001 < 0.001 1 < 0.001

U + T + S < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.07 < 0.001 < 0.001 1



Page 10 of 11Zhang et al. BMC Med Inform Decis Mak          (2020) 20:280 

Hospital readmission prediction
Table  6 and 7 summarize the results of various 
approaches of the hospital readmission task. For this 
task, logistic regression performed well but random for-
est performed badly. Fusion-CNN and Fusion-LSTM 
yielded comparably better predictions of AUROC score 
around 0.67. Incorporating clinical notes led to perfor-
mance improvement for logistic regression, Fusion-CNN, 
and Fusion-LSTM. However, combining unstructured 
notes with structured data hurt the performance of ran-
dom forest.

We noted the AUROC score for hospital readmission 
prediction is significantly lower than in-hospital mortal-
ity one which means readmission risk modeling is more 
complex and difficult compared to in-hospital mortality 
prediction. This is probably because the given features are 
inadequate for building a good hospital readmission risk 
prediction model. Besides, we only used the first day’s 
data which is far away from patient discharge that may 
not be very helpful in readmission prediction modeling.

Discussion
In this study, we examined proposed fusion models on 
3 outcome prediction tasks, namely mortality predic-
tion, long length of stay prediction, and readmission 
prediction. The results showed that deep fusion models 
(Fusion-CNN, Fusion-LSTM) outperformed baselines 
and yielded more accurate predictions by incorporating 
unstructured text.

In 3 tasks, logistic regression was a quite strong base-
line and was consistently more useful than random for-
est. Deep models achieved the best performance for each 
task while the training time of deep models is also accept-
able as demonstrated in Fig. 3. All experiments were per-
formed on a 32-core Intel(R) Core(TM) i9-9960X CPU @ 
3.10GHz machine with NVIDIA TITAN RTX GPU pro-
cessor. For a fair comparison, we report the training time 
per epoch for Fusion-CNN and Fusion-LSTM.

Conclusion
In this paper, we proposed 2 multi-modal deep neural 
networks that learn patient representation by combin-
ing unstructured clinical text and structured data. The 
2 models make use of either LSTMs or CNNs to model 
temporal information. The proposed models are quite 
general data fusion methods and can be applied to other 
domains without effort and domain knowledge. Exten-
sive experiments and ablation studies of the 3 predictive 
tasks of in-hospital mortality prediction, long length of 
stay, and 30-day hospital readmission prediction on the 
MIMIC-III dataset empirically show that the proposed 
models are effective and can produce more accurate 
predictions. The final patient representation is the con-
catenation of latent representations of unstructured data 
and structured data which can better represent a patient’s 
health state which mainly due to the learned patient rep-
resentation consists of medication, diagnosis information 
from sequential unstructured notes, and vital signs, lab 
test results from structured data. In future work, we plan 
to apply the proposed fusion methods to more real-world 
applications.
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