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Abstract: Broccoli is becoming increasingly popular among consumers owing to its nutritional
value and rich bioactive compounds, such glucosinolates (GSLs) and hydrolysis products, which
are secondary metabolites for plant defense, cancer prevention, and higher antioxidant activity for
humans. In this study, 40 µmol/L methyl jasmonate (MeJA) was sprayed onto broccoli from budding
until harvest. The harvested broccoli florets, stem, and leaves were used to measure the contents
of GSLs, sulforaphane, total phenolics, and flavonoids, as well as myrosinase activity, antioxidant
activity, and gene expression involved in GSL biosynthesis. The overall results revealed that GSL
biosynthesis and sulforaphane accumulation were most likely induced by exogenous MeJA treatment
by upregulating the expression of CYP83A1, SUR1, UGT74B1, and SOT18 genes. Exogenous MeJA
treatment more remarkably contributed to the increased GSL biosynthesis in broccoli cultivars
with low-level GSL content (Yanxiu) than that with high-level GSLs (Xianglv No.3). Moreover,
MeJA treatment had a more remarkable increasing effect in broccoli florets than stem and leaves.
Interestingly, total flavonoid content substantially increased in broccoli florets after MeJA treatment,
but total phenolics did not. Similarly, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging
capacity, trolox-equivalent antioxidant capacity (ABTS), and ferric-reducing antioxidant power
(FRAP) were higher in broccoli floret after MeJA treatment. In conclusion, MeJA mediated bioactive
compound metabolism, had positive effects on GSL biosynthesis, sulforaphane, and flavonoids
accumulation, and showed positive correlation on inducing higher antioxidant activities in broccoli
floret. Hence, preharvest supplementation with 40 µM MeJA could be a good way to improve the
nutritional value of broccoli florets.

Keywords: broccoli; MeJA; glucosinolate; sulforaphane; antioxidant activity

1. Introduction

Plant-based foods provide people with basic nutrition and have many health care
values owing to their rich bioactive compounds [1]. With the promotion of “Healthy China
Action,” people’s consumption habits have gradually changed from nutrition-oriented to
health-oriented, and horticultural products rich in bioactive substances have attracted in-
creasing attention from consumers. Cruciferous vegetables are often of interest as nutritious
foods since they are a source of bioactive compounds, including glucosinolates, phenolics,
flavonoids, and vitamin C [2,3]. Recent reports showed that the high radical scavenging
activity of cruciferous vegetables benefits from these bioactive compounds [4,5].
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Broccoli (Brassica oleracea var. italica) is a commonly consumed vegetable belonging to
cruciferous vegetables, which are rich in dietary fiber, vitamins, minerals, and bioactive
compounds [6]. Similar to other cruciferous vegetables, the unique flavor of broccoli is due
to the presence of glucosinolates (GSLs) and degradation products. GSLs are sulfur-rich
secondary metabolites derived from glucose and amino acids. The hydrolysis products of
GSLs play important roles in plant defense and exhibit biological activities that can benefit
human health [7,8]. Brassicaceae vegetables, especially broccoli, are rich sources of GSLs [9].
Recent studies have shown that the consumption of broccoli and its phytochemicals are
associated with reduced risks of metabolic syndrome and some types of cancer [10], espe-
cially the glucoraphanin hydrolysis product–sulforaphane which would induce antioxidant
levels in the human body [11]. Based on the structure of the precursor amino acid, GSLs
are usually divided into three groups: aliphatic, indolic, and aromatic GSL, which are
derived from methionine, tryptophan, and phenylalanine or tyrosine, respectively [12].
GSL biosynthesis in plants occurs through three independent stages: (i) chain elongation of
precursor amino acids, (ii) core structure synthesis, and (iii) secondary modifications and
functionalizations of the side chain [13]. Several gene families (e.g., BCATs, MAMs, CYPs,
and SOTs) participate in GSL biosynthesis [12]. The branched-chain amino acid amino-
transferase (BCATs) and methylthioalkylmalate synthase (MAMs) are the core enzyme for
stage (i), which raises a 2-oxo acid to precursor amino acid and makes 2-oxo acid conden-
sation with acetyl-CoA, respectively, with a series of subsequent reactions, the product
is a 2-oxo acid which elongated by a single methylene group (–CH2–) [12]. Further, the
cytochromes P450(P450s) and sulfotransferases (SOTs) are the crucial enzymes for stage
(ii), the CYP79 family converted precursor amino acids to aldoximes, next, CYP83 family
oxidized aldoximes to activated compounds (either nitrile oxides or aci-nitro compounds).
After, thiohydroximates are in turn S-glucosylated to form desulfoglucosinolates, which are
sulfated by the sulfotransferases SOT17 and 18 to form glucosinolates. Finally, the stage (iii)
of secondary modifications lead to a large extent biological activity of glucosinolates. More-
over, R2R3-MYB transcription factors (e.g., MYB28 and MYB34) play important regulatory
roles in the biosynthesis pathway [14].

Polyphenols and flavonoids as important natural antioxidants act as free radical scav-
engers against harmful oxidants, such as reactive oxygen (ROS) and reactive nitrogen
species (RNS) [15]. The balance of ROS and RNS is maintained by oxidants, and their imbal-
ance would cause some chronic diseases, such as diabetes, cancers, and cardiovascular ail-
ments [16]. Antioxidants also induced antioxidant enzymes and activate signaling pathway
of Nrf2/ARE (nuclear transcription factor-erythroid 2 related factor/antioxidant response
element) for reducing cellular oxidative damage [17]. Broccoli growth and development are
affected by many factors, such as genotype, edible parts, exogenous hormone, environment
factors, and insect feeding, which affect bioactive compound metabolism. Simple and
effective agricultural practices have been used to promote GSL, polyphenol, or flavonoid
biosynthesis for high-nutrition broccoli with abundant bioactive compounds [18–20].

Methyl jasmonate (MeJA), like jasmonic acid (JA), is a signal molecule released when
plants are attacked by insects or from physical wounds [21]. When plants are attacked
by herbivores, the JA pathway triggers the herbivorous defense system and activates a
series of physiological events, one of which is GSL biosynthesis. Previous studies found
that exogenous MeJA treatment leads to higher GSL biosynthesis in Brassicaceae vegeta-
bles [22], and enhance the indole GSLs (IGS) contents of broccoli florets [20,23]. However,
little information or contrary results have been reported in terms of the effect of MeJA
aliphatic GSLs (AGS) or sulforaphane. For example, the AGS content of broccoli floret
remarkably increases after MeJA treatment in one study [19], but remarkably decreases
in another study [24]. Preharvest MeJA treatment also induces polyphenol and flavonoid
accumulation [1,25], which are beneficial to improve their antioxidant properties and nutri-
tional value. Hence, MeJA is often applied before harvest as a certified safe compound for
all foods.
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The effects of exogenous MeJA on bioactive compound biosynthesis (including GSL,
polyphenols and flavonoids) in various kinds of Brassicaceae vegetables are widely re-
ported [26–28], but information on AGS involvement and even sulforaphane biosynthesis
is limited. In the present study, the broccoli cultivars ‘Yanxiu’ and ‘Xianglv No. 3’ were
treated with 40 µmol/L MeJA to study the variation characteristics of GSL and sulforaphane
contents and the antioxidant activities in florets, stem, and leaves. The research results
were used to explore the way for the high-quality cultivation of broccoli.

2. Materials and Methods
2.1. Plant Material

Experiments were conducted in a greenhouse at Hunan Agriculture University (latitude,
27.55◦ N; longitude, 113.92◦ E), Changsha, China, from 25 August 2019 to 16 January 2020.
Brassica oleracea ‘Yanxiu’ and ‘Xianglv No. 3’ seeds were sown in plastic trays (50 cells,
one seedling per cell) containing substrates (peat, perlite, vermiculite, 2:1:1) and grown in
a natural-climate greenhouse. After the fourth leaf was fully developed, the plants were
randomly transferred into a plastic pot containing 10 L of substrates (peat, perlite, vermi-
culite, 2:1:1) on 2 October 2019. A total of 300 plants were used in this experiment. After
1 week of preculturing, the seedlings were fertilized with one-strong of Hoagland’s nutrient
solution with 7-day intervals until harvesting. After the budding stage, two experimental
treatments were conducted as follows: (1) control, in which plants were sprayed with
distilled water; and (2) MeJA (Sigma Aldrich, MO, USA), in which plants were sprayed
with 40 µmol/L MeJA according to previous research results [29], which was sprayed onto
each plant at 9:00 am for 4-day intervals, and applied for 10 times from budding stage
to floret harvest stage, the last treatment at floret harvest stage and the floret diameter is
10–15 cm. The plants were organized in a complete randomized-block design with three
replicates per treatment. The sample time were separate as 0, 1 h, 3 h, 6 h, 12 h, and 24 h, as
we found that the samples of after treatment 12 h possessed highest GRA concentration
level, so the samples which treated after 12 h were analyzed the whole parameter. Broccoli
floret, stem, and leaves were sampled at 12 h after the last treatment. The samples were
immediately frozen in liquid nitrogen and stored at −80 ◦C to analyze gene expression,
myrosinase activity, and total antioxidant capacity. The others were dried in a freeze dryer
to analyze GSL, sulforaphane, total phenolics, flavonoid content, and antioxidant activities.

2.2. Glucosinolate Extraction and Quantification

Total GSL extraction and quantification were performed by a previously described
method with minor modifications [30]. Boiling 70% methanol was initially used to soak
the freeze-dried sample powder for 20 min in a 75 ◦C water bath, and then 100 µL of
sinigrin (5 mmol/L, internal standard) was added. After cooling, the sample was added
with barium acetate and centrifuged at 12,000 rpm at 4 ◦C for 10 min. The supernatant was
collected and re-extracted residues with 70% methanol twice. Desulfo-GSLs were adsorbed
by anion-exchange chromatography through a DEAE-Sephadex A-25 column (diameter,
10 mm; maximum velocity, 475 cm/h; particle size, 40–200 µm; filtration molecular weight,
20,000). High-performance liquid chromatography (HPLC; Agilent, CA, USA) was used
to analyze desulfo-GSLs. The following linear gradient program of chromatography at
30 ◦C was performed: 0% to 20% methanol for 20 min, 20% to 30% over 5 min, isocratic
elution for 40% for 10 min, and 90% for 3 min. Moreover, the flow rate was 1 mL/min. The
diode-array detector at 229 nm was used to detect desulfated GSLs. Then, GSL content was
determined using desulfated GSLs and measured (expressed in µmol/g).

2.3. Measurement of Glucoraphanin Content, Sulforaphane Content, and Myrosinase Activity

Sulforaphane content was determined as previously described with minor modifi-
cations [31]. In a typical procedure, the powder of fresh broccoli samples was ground in
liquid nitrogen and hydrolyzed with 4 mL of deionized water at room temperature for
4 h. Dichloromethane was used to extract sulforaphane at room temperature, after which
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the mixture was filtered with anhydrous sodium sulfate. Then, the filtered solution was
dried in a vacuum using a rotary evaporator at 38 ◦C. Acetonitrile dissolved the products,
and a 0.45 µm membrane filter was used to filter the solution into an autosampler vial.
Agilent 1260 Series HPLC was used to determine sulforaphane content with C18 reversed-
phase column. The chromatography program was as follows: isocratic elution program,
80% water and 20% acetonitrile; column temperature, 30 ◦C; wavelength, 209 nm; flow rate,
1 mL/min; time, 35 min; and injection volume, 10 µL. Sulforaphane content was calculated
with a standard curve.

Myrosinase activity-detection protocol as previously described by Guo et al. [32].
About 100 mg of fresh broccoli sample was homogenized in 1 mL of 10 mM potassium
phosphate buffer (pH, 7.2; 1 mM EDTA; containing 3 mM DTT, and 5% glycerol). Next,
the mixture was centrifuged at 4 ◦C for 12,600 rpm for 20 min, and the supernatant was
collected. The content of glucose released from sinigrin, which was hydrolyzed by enzyme,
represented myrosinase activity. A glucose assay kit (Shanghai Zhuocai Biotech Inc., Shang-
hai, China) was used to determine glucose content using an ultraviolet spectrophotometer.
About 100 µL of enzyme solution was mixed in 200 µL of 2 mM sinigrin (Sigma Aldrich,
MO, USA), and a mixture with no sinigrin served as the control. After 30 min at 37 ◦C
and 10 min at 95 ◦C, the reaction was stopped. According to the protocol of the glucose
assay kit, 10 µL of mixture was collected for further testing. The absorbance of the reaction
solution at 540 nm was measured, and myrosinase activity was calculated (expressed in
U/min·mg).

2.4. Measurement of Total Phenolic and Total Flavonoid Contents

Total phenolic content was measured by Folin–Ciocalteu assay [33]. A 1.5 mL of 60%
ethanol was used to mix the dry sample powder (0.1 g) and was extracted under 60 ◦C for
30 min. The mixture was centrifugated under 12,000 rpm at 25 ◦C for 10 min. Then, 10 µL
of supernatant was added into 50 µL of 10% Folin–Ciocalteu’s phenol reagent, 90 µL of
distilled water, and 50 µL of 2% sodium carbonate solution. The mixture was stirred and
allowed to react under room temperature for 10 min. Furthermore, the absorbance was
measured at 760 nm using a microplate reader. The measurements were compared with a
calibration curve (mg/g).

A method described by Rao et al. was used to measure the total flavonoid con-
tent [34]. Dry sample powder (0.1 g) was mixed with 1.0 mL of 60% ethanol and extracted
under 60 ◦C for 30 min. The mixture was centrifugated under 12,000 rpm at 25 ◦C for
10 min. Then, 60 µL of supernatant was added into 120 µL of 1 M potassium acetate
solution, 30 µL of 10% aluminum nitrite solution, and 90 µL of 60% ethanol. The mixture
was allowed to react under 37 ◦C for 45 min. Then, the absorbance was measured at 470 nm
using a microplate reader. The measurements were compared to a rutin calibration curve,
and the results were expressed as per gram of dry wight (mg/g DW).

2.5. Antioxidant Activities
2.5.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity

Dry sample powder (50 mg) was mixed with 1.0 mL of ethanol and extracted under
40 ◦C for 30 min. The mixture was centrifuged under 10,000 rpm, 25 ◦C for 10 min. Then,
10 µL supernatant was added into the 190 µL of DPPH solution (0.4 mM). The mixture
was allowed to react for 10 min in the dark at room temperature. Then, the absorbance
was measured at 515 nm. For the blank, ethanol was used instead of the sample. Radical
scavenging activity was calculated as follows:

DPPH radical scavenging activity = (1 − (absorbance of the sample/absorbance of the
blank)) × 100%

2.5.2. Trolox-Equivalent Antioxidant Capacity (ABTS) Radical Scavenging Activity

A solution of ABTS was dissolved in distilled water in ratios of 1 and 12 mL. The cation
(ABTS+) was produced by reacting the diluted ABTS solution with 2.45 mM potassium
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persulfate and ethanol, and the ratio was 4:76:5 (v/v/v), which was left in the dark for
30 min at room temperature. Dry sample powder (50 mg) was mixed with 1.0 mL of ethanol
and was extracted under 40 ◦C for 30 min. The mixture was centrifuged under 10,000 rpm
for 25 ◦C for 10 min. Then, 10 µL of supernatant was added into 170 µL of ABTS+ solution.
The mixture was allowed to react in the dark for 6 min at room temperature. Then,
absorbance was measured at 405 nm. For the blank, ethanol was used instead of the sample.
Then, radical scavenging activity was calculated as follows:

ABTS radical scavenging activity = (1 − (absorbance of the sample/absorbance of the
blank)) × 100%

2.5.3. Ferric-Reducing Antioxidant Power (FRAP)

Ferric-reducing antioxidant power was reflected by the ability to reduce Fe3+-2,4,6-
tri(2-pyridyl)-1,3,5-triazine (TPTZ) to produce blue Fe2+-TPTZ under acidic conduction.
The assay was performed according to Benzie and Strain [35]. The Fe3+-TPTZ reagent
was prepared fresh daily by a 10 mM TPTZ solution in 40 mM HCl, 300 mM acetate
buffer (pH 3.6), and 20 mM FeCl3·6H2O solution with a proportion of 10:1:1 (v/v/v). After
preparation, the reagent was warmed at 37 ◦C for 10 min before use. Fresh sample (0.1 g)
was extracted with 1.0 mL of distilled water, and the mixture was centrifugated under
10,000 rpm at 4 ◦C for 10 min. Then, 6 µL of supernatant was added into the 18 µL of
distilled water and 180 µL of Fe3+-TPTZ reagent. The mixture was stirred and allowed to
react at room temperature for 10 min. The absorbance was measured at 593 nm. For the
blank, distilled water was used to replace the sample.

2.6. RNA Extraction and Expression Analysis

Total RNA from fresh broccoli florets (0.1 g) was extracted in accordance with a Plant
Total RNA Isolation Kit Plus (TIANGEN, Beijing, China). Then, 1 µg total RNA was
used to synthesize cDNA following the manufacturer’s instruction of a HiScript III 1st
Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). The cDNA samples at 100 ng/µL
were used to prepare qPCR reaction solution by using AceQ qPCR SYBR Green Master
Mix kit (Vazyme, Nanjing, China), and the qPCR conditions assigned as three stages:
stage (i) for predegeneration: 95 ◦C for 5 min, stage (ii) for 40 circular reactions: 95 ◦C of
degeneration for 10 s and 60 ◦C of annealing for 30 s, stage (iii) for dissociation curve: the
condition is depend on instrument. For the fluorescent qPCR analysis of gene expression,
the primers of gene sequences for amplification were designed by National Center for
Biotechnology Information (NCBI, Table S1). Actin-2(LOC106315376) was selected for
housekeeping gene, the expression of Actin-2 in this representative samples, which were
standardized the concentration were used to calibrate, for the differential of Ct value was
less than 0.5. Expression data were analyzed by 2−∆∆Ct, followed by BioRad Real-time PCR
Application Guide.

2.7. Statistical Analysis

One-way ANOVA was performed on all data using SPSS 20.0 statistical software (SPSS Inc.,
Chicago, IL, USA). Duncan tests were performed to observe differences between treatments.

3. Results and Discussion
3.1. Effects of MeJA on Glucosinolate Biosynthesis in Broccoli Floret, Stem, and Leaves

GSLs were characterized with a GSL map and quantified with an internal control
(sinigrin). Results are shown in Table S2. Eight kinds of GSLs were isolated by HPLC.
Among them, four were AGSs (IBE, SIN, GRA, and ERU), and four were IGSs (4OH,
GBC, 4ME, NGBC). The average AGS and IGS content of broccoli florets (2.42 µmol/g
DW, 13.37 µmol/g DW) accounted for about 15.3% and 84.7% of the total GSL content
(15.80 µmol/g DW) in the control group, respectively (Figure 1 and Table S3). For two
cultivars, the content of total GSLs of florets in ‘Xianglv No. 3’ (19.84 µmol/g DW) was
higher at about 1.69 folds than that of ‘Yanxiu’ (11.76 µmol/g DW) in the control groups



Antioxidants 2022, 11, 1298 6 of 16

(Figure 1A,B). After MeJA treatment, the total GSL content in broccoli florets, stem, and
leaves (except the leaves of ‘Xianglv No. 3’) had considerably increased in two verities
compared with the control groups (Figure 1A,B). These results agreed with previous ones,
indicating that MeJA treatment remarkably increases GSL content in other Brassicaceae
vegetables, such as pak choi [1], cauliflower [18], cabbage [36], and leaf mustard [37]. More-
over, the total GSLs content in ‘Yanxiu’ florets (17.43 µmol/g DW) increased remarkably by
48.2% after MeJA treatment than the control groups (11.76 µmol/g DW), whereas the value
increased substantially by 39.4% in ‘Xianglv No. 3’ (27.66 µmol/g DW vs. 19.84 µmol/g
DW). A higher promoted effect was observed in the low-GSL cultivar (Yanxiu) than in the
high-GSL ones (Xianglv No. 3), which indicates that total GSL content depends remarkably
on the cultivar [38].
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Figure 1. Effects of MeJA on total GSLs (A,B), AGS (C,D), and IGS (E,F) content in broccoli florets, 
stem, and leaves. GSLs: glucosinolates; AGS: total aliphatic GSLs; IGS: total indole GSLs; DW: dry 
weight; control: the plants were sprayed with distilled water; MeJA: the plants were sprayed with 

Figure 1. Effects of MeJA on total GSLs (A,B), AGS (C,D), and IGS (E,F) content in broccoli florets,
stem, and leaves. GSLs: glucosinolates; AGS: total aliphatic GSLs; IGS: total indole GSLs; DW: dry
weight; control: the plants were sprayed with distilled water; MeJA: the plants were sprayed with
40 µmol/L MeJA. The data are displayed with the mean ± SD of three replications. Values with ns, *
and ** are significantly different at p > 0.05, p < 0.05, and p < 0.01.

A similar phenomenon was observed in the two cultivars. The GSL contents (including
AGS and IGS, 15.80 µmol/g DW) of florets were higher than those of stems (2.94 µmol/g
DW) at about 5.37 folds and leaves (6.20 µmol/g DW) at 2.55 folds, which indicates that
a floret was the primary organ involved in GSL biosynthesis or storage (Figure 1A,B).
MeJA treatment remarkably increased the AGS and IGS contents of florets (Figure 1C–F).
A previous study [39] agreed with our result, which showed that MeJA treatment induced
a remarkable increase in the IGS content of four pak choi cultivars, but AGS increased
in only one cultivar, indicating that MeJA treatment had less effect on AGS content than
IGS. Brown et al. [40] also reported that AGS biosynthesis depends on genetics rather than
environmental factors, in which AGS biosynthesis is perhaps due to limited response to
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biotic stress. However, AGS content in broccoli floret can also remarkably change with
MeJA treatment in the present study [1,41]. The result showed that the AGS and IGS
contents (3.41 µmol/g DW, 19.13 µmol/g DW) of broccoli florets increased by 40.7% and
43.1%, respectively, after MeJA treatments compared with the control groups (2.42 µmol/g
DW, 13.37 µmol/g DW) (Figure 1C–F).

3.2. Effects of MeJA on Glucoraphanin, Sulforaphane Content, and Myrosinase Activity in Broccoli
Florets, Stem, and Leaves

The GRA contents, sulforaphane contents, and myrosinase activity of broccoli florets,
leaves, and stem are shown in Figure 2. GRA is commonly converted into sulforaphane
owing to the action of myrosinase upon tissue disruption [42]. The accumulation of GRA, as
a sulforaphane precursor, can be promoted through agricultural practices can effectively in-
crease the sulforaphane content in broccoli. The GRA contents of florets in the two cultivars
remarkably increased after MeJA treatment. These results agreed with previous studies on
other Brassicaceae vegetables [1,43]. However, no remarkable difference was observed in
some reports [20,44,45]. The possible reason was that the GRA-regulating role of exogenous
MeJA depends on genotype, edible parts, and treatment concentration. A similar remark-
able increase was observed for GRA content in broccoli stem in the two cultivars after MeJA
treatment. However, the GRA content in broccoli leaves in ‘Yanxiu’ markedly decreased
after MeJA treatment, whereas no substantial change in ‘Xianglv No. 3’ (Figure 2A,B). After
MeJA treatment, myrosinase activity had a similar increasing trend as the sulforaphane con-
tent of florets in two cultivars (Figure 2C–F). Correlation analysis showed that sulforaphane
had significantly positive correlations with GRA contents and myrosinase activity (r = 0.896,
p < 0.01; r = 0.754, p < 0.01) (Table S5). As a result, sulforaphane content increased due to
the GRA biosynthesis promoting and myrosinase activity inducing by exogenous MeJA
treatment. Similar results were reported by Ku et al. [19]. Myrosinase enzymes play a key
roles in the hydrolysis of GRA into bioactive and anticarcinogen products, such as sul-
foraphane [46]. Although exogenous MeJA treatment remarkably affects the GRA content
of broccoli stem and leaves in two cultivars, it had no substantial effect on sulforaphane
content (Figure 2A–D). No considerable effect was observed in the myrosinase activities
of broccoli stem and leaves in the two cultivars (Figure 2E,F). Therefore, the reason for
the unremarkable effect of exogenous MeJA treatment on the sulforaphane contents of
broccoli stem and leaves was the lower responding level of myrosinase activity under MeJA
treatment. Thus, sulforaphane accumulation depends on high GRA biosynthesis efficiency
and myrosinase activity [47].

3.3. Effects of MeJA on Gene Expression in Relation to the Glucosinolate Metabolism of
Broccoli Florets

The relative expression levels of 17 genes involved in GSL metabolism were deter-
mined by RT-qPCR to understand the gene expression pattern of the two broccoli cultivars
floret in response to exogenous MeJA treatment after 12 h. The results of gene-expression
analysis are shown in Figure 3. Notably, 10 genes were significantly upregulated by MeJA
treatment based on log2Fold Change > 1 and p < 0.05 and the differential expression pattern
was observed between these two cultivars.



Antioxidants 2022, 11, 1298 8 of 16
Antioxidants 2022, 11, x FOR PEER REVIEW 8 of 17 
 

✱✱
✱✱

✱✱

✱

✱✱

✱✱ ✱✱

✱✱
✱✱

 
Figure 2. Effects of MeJA on GRA content(A,B), sulforaphane content (C,D), and myrosinase activ-
ity (E,F) in broccoli florets, stem, and leaves. GRA: Glucoraphanin, DW: dry weight, FW, fresh 
weight. Control: the plants were sprayed with distilled water, MeJA: the plants were sprayed with 
40μmol/L MeJA. The data are displayed with the mean ± SD of three replications. Values with ns, * 
and ** are significantly different at p > 0.05, p < 0.05 and p < 0.01. 

3.3. Effects of MeJA on Gene Expression in Relation to the Glucosinolate Metabolism of Broccoli 
Florets 

The relative expression levels of 17 genes involved in GSL metabolism were deter-
mined by RT-qPCR to understand the gene expression pattern of the two broccoli culti-
vars floret in response to exogenous MeJA treatment after 12 h. The results of gene-ex-
pression analysis are shown in Figure 3. Notably, 10 genes were significantly upregulated 
by MeJA treatment based on log2Fold Change > 1 and p < 0.05 and the differential expres-
sion pattern was observed between these two cultivars. 

Figure 2. Effects of MeJA on GRA content(A,B), sulforaphane content (C,D), and myrosinase activity
(E,F) in broccoli florets, stem, and leaves. GRA: Glucoraphanin, DW: dry weight, FW, fresh weight.
Control: the plants were sprayed with distilled water, MeJA: the plants were sprayed with 40µmol/L
MeJA. The data are displayed with the mean ± SD of three replications. Values with ns, * and ** are
significantly different at p > 0.05, p < 0.05 and p < 0.01.

For AGS biosynthesis, the genes expression of CYP83A1, SUR1, UGT74B1 and SOT18
were remarkably induced in both two cultivars after 12 h MeJA treatment when compared
with the control groups, particularly, the expression of BCAT4, MAM1, and UGT74C1 in
‘Yanxiu’ cultivar and CYP79F1 in ‘Xianglv No.3’ cultivar were upregulated significantly.
The expression of CYP83A1 was upregulated for 2.53 folds (Yanxiu) and 7.47 folds (Xianglv
No. 3), meanwhile, SUR1 for 2.50 folds (Yanxiu) and 10.1 folds (Xianglv No. 3) and
SOT18 for 15.4 folds (Yanxiu) and 3.83 folds (Xianglv No. 3). For IGS biosynthesis, the
expression of CYP83B1 (1.91 folds of ‘Yanxiu’, 3.65 folds of ‘Xianglv No. 3’) and UGT74B1
(2.17 folds of ‘Yanxiu’, 2.16 folds of ‘Xianglv No. 3’) were higher after MeJA treatment.
Transcription factors are the crucial point for exogenous MeJA treatment response to
transcribe the downstream target gene expression. R2R3-MYB transcription factors MYB28
and MYB34 play important role in aliphatic and indolic-GSL biosynthesis, respectively.
Furthermore, the bHLH transcription factor MYC2 is a major positive regulator of JA
pathway, which can response to MeJA treatment regulates glucosinolate synthesis [48].
Interestingly, the expression levels of MYB28 (1.07 folds) and MYB34 (1.27 folds) just
remarkable induced in ‘Xianglv No. 3’, and MYC2 (1.78 folds) was induced in ‘Yanxiu’
(log2Fold Change < 1) after MeJA treatment when compared with control groups. For
the degradation pathway of GSL, the MY gene, obtained differential expression pattern
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between both cultivars, which was significant induced in ‘Yanxiu’ and suppressed in
‘Xianglv No. 3’.
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Figure 3. Relative expression of genes involved in GSLs metabolism under MeJA treatments. The 
data were analyzed using the 2−ΔΔCt method with control groups as 1; Control: the plants were 
sprayed with distilled water; MeJA: the plants were sprayed with 40 μmol/L MeJA. The data are 
displayed with the mean ± SD of three replications. Values with ns, * and ** are significantly different 
at p > 0.05, p < 0.05, and p < 0.01. For the full names of genes see Table S1. 

For AGS biosynthesis, the genes expression of CYP83A1, SUR1, UGT74B1 and SOT18 
were remarkably induced in both two cultivars after 12 h MeJA treatment when compared 
with the control groups, particularly, the expression of BCAT4, MAM1, and UGT74C1 in 
‘Yanxiu’ cultivar and CYP79F1 in ‘Xianglv No.3’ cultivar were upregulated significantly. 

Figure 3. Relative expression of genes involved in GSLs metabolism under MeJA treatments. The data
were analyzed using the 2−∆∆Ct method with control groups as 1; Control: the plants were sprayed
with distilled water; MeJA: the plants were sprayed with 40 µmol/L MeJA. The data are displayed
with the mean ± SD of three replications. Values with ns, * and ** are significantly different at p > 0.05,
p < 0.05, and p < 0.01. For the full names of genes see Table S1.

These results indicated that just 40 µM concentration of MeJA treatment can effectively
induce AGS and IGS biosyntheses. Similarly, a 250 µM MeJA treatment can remarkably
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increase MYB28, MYB34, MAM3, SUR1, SOT17, SOT18, TGG1, and TGG2 expression in
kale [45], whereas a 400 µM MeJA treatment to broccoli florets can substantially increase
the expression of SOT17, SOT18, TGG1, and TGG2 [49]. The results showed the effect
of exogenous MeJA treatment on GSL biosynthesis by inducing gene expression, but it
varies depending on plant genotype and treatment concentration. MYC2 is a major positive
regulator of JA pathway and can promote JA-induced IGS biosynthesis by positively
regulating the JA-dependent regulator, MYB34 [48]. In the present study, IGS content was
remarkably increased in broccoli florets, and MYC2 was upregulated under MeJA treatment.

3.4. Effects of MeJA Treatment on Total Phenolics and Total Flavonoids Content of Broccoli Florets,
Stem, and Leaves

The total phenolic contents of broccoli florets in the two cultivars were higher than
those in stem and leaves. However, the total phenolic content of exogenous MeJA-treated
broccoli had no remarkable effect than the control in florets, stem, and leaves (Figure 4A,B).
Guan et al. [50] reported that total phenolic content had no substantial change within 12 h
after 1 µ or 10 µM MeJA treatment on broccoli, but had a considerable increase after 100 µM
MeJA treatment. A similar result was found by Villarreal-García et al. [51]. They indicated
that the effect of MeJA on total phenolics depends on concentration; the mechanism of
resistance to exogenous stress could not been induced by a low MeJA concentration [49].
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Figure 4. Effects of MeJA on total phenolics (A,B) and flavonoids content (C,D) in broccoli florets,
stem, and leaves. DW: dry weight; Control: the plants were sprayed with distilled water; MeJA: the
plants were sprayed with 40 µmol/L MeJA. The data are displayed with the mean ± SD of three
replications. Values with ns, * and ** are significantly different at p > 0.05, p < 0.05 and p < 0.01.

In our study, 40 µM MeJA treatment remarkably increased the flavonoid contents of
broccoli florets in two cultivars; however, no substantial effect was observed in broccoli
stems and leaves (Figure 4C,D). Similar to our results, 0.5 mM MeJA treatment increased
the flavonoid content of hydroponically grown pak choi [1], and a low MeJA dose (10 µM)
increased the flavonoid content of broccoli sprouts by about 31% for 7 days [52].

3.5. Effects of MeJA Treatment on Antioxidant Activities of Broccoli Florets, Stem, and Leaves

The results showed that exogenous MeJA treatment remarkably increased the antioxi-
dant activities of broccoli florets in the two cultivars. The antioxidant activities showed an
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increasing trend in three methods (DPPH radical scavenging capacity, ABTS, and FRAP)
and had the same trends with flavonoids (Figure 5). The highest scavenging capacity
was found in broccoli florets treated with MeJA. However, MeJA treatment caused no
remarkable changes in broccoli stems and leaves.
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Figure 5. Effects of MeJA on DPPH(A,B), ABTS (C,D), and FRAP (E,F) in broccoli florets, stem, and
leaves. DPPH: 2,2-di-phenyl-1-picrylhydrazyl radical scavenging capacity; ABTS: trolox-equivalent
antioxidant capacity; FRAP: ferric-reducing antioxidant power; FW: fresh weight; Control: the plants
were sprayed with distilled water; MeJA: the plants were sprayed with 40 µmol/L MeJA. The data
are displayed with the mean ± SD of three replications. Values with ns, * and ** are significantly
different at p > 0.05, p < 0.05, and p < 0.01.

Polyphenols are major plant compounds with antioxidant activity [53]. Sokół-Łetowska et al. [54]
also noted that polyphenols have an ideal chemical structure for scavenging free radicals.
However, exogenous MeJA treatment had no remarkable effect on the total phenolics of
the two broccoli cultivars (Figure 4A,B). In addition to polyphenols, the higher antioxidant
capacity of broccoli treated with MeJA may be due to the considerably higher contents of
GSL, sulforaphane, and flavonoids (Figures 2 and 4). The bioactivity of GSLs and their
hydrolysis products in cruciferous vegetables have been reported [55]. Therefore, com-
pared with the control group, exogenous MeJA treatment may be beneficial in improving
antioxidant activity.
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3.6. The Overall Improvement of MeJA Treatment on Broccoli Florets Based on Principal
Component Analysis and Pearson Correlation Analysis

Broccoli florets are the main edible part, and higher levels of bioactive substances were
detected in the broccoli florets of two cultivars than in other parts. Therefore, studying
the effects of the observed parameters on the comprehensive quality of broccoli and their
correlation by principal component analysis is necessary. Thirty indexes of bioactive
substances, antioxidant activities, and gene expression involved in GSL biosynthesis were
analyzed in the florets of two broccoli cultivars, and the results were shown in Figure 6.
According to the above parameters, principal component 1 (PC1), and principal component
2 (PC2) accounted for about 95.0% of the total variance. PC1 showed about 80.9% of the
total variance and was positively correlated to GSLs, sulforaphane, myrosinase activity,
flavonoids, antioxidant activities (DPPH, ABTS, and FRAP), and some gene expression
(MYC2, MYB28, BCAT4, MAM1, CYP79F1, CYP83A1, CYP83B1, CYP83B3, SUR1, UGT74B1,
UGT74C1, and SOT18). PC2 accounted for about 14.1% of the total variance; represented
variances; and was positively correlated with myrosinase activity, total phenolics, total
flavonoids, antioxidant activities, and gene expression (MYC2, MYB34, BCAT4, MAM1,
MAM3, CYP79F1, CYP83A1, CYP83B3, SUR1, UGT74B1, UGT74C1, SOT18, and MY).
These parameters were higher in broccoli floret with MeJA treatment than those in groups.
Overall, preharvest MeJA treatment showed a positive effect on the measured indexes for
two broccoli cultivars. Hence, preharvest supplementation with 40 µM MeJA could be
a good way to improve the antioxidant properties of broccoli florets. Moreover, Pearson
correlation analysis showed that the significant positive correlation between bioactive
substances and antioxidant activity, especially sulforaphane and flavonoids (Figure 7).
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Figure 6. Biplot of the principal component analysis of the observed parameters of broccoli florets of
two cultivars with or without the treatment of MeJA. “•”: broccoli florets of ‘Yanxiu’ without MeJA
treatment; “•”: broccoli florets of ‘Yanxiu’ with MeJA treatment; “�”: broccoli florets of ‘Xianglv
No.3’ without MeJA treatment; “�”: broccoli florets of ‘Xianglv No.3’ with MeJA treatment. GSLs:
glucosinolates, AGS: total aliphatic GSLs; IGS: total indole GSLs, GRA: Glucoraphanin, DPPH: 2,2-di-
phenyl-1-picrylhydrazyl radical scavenging capacity; ABTS: trolox-equivalent antioxidant capacity;
FRAP: ferric-reducing antioxidant power.
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Figure 7. Pearson correlation analysis of bioactive substances and antioxidant activity broccoli
florets of two cultivars. GSLs: glucosinolates; AGS: total aliphatic GSLs; IGS: total indole GSLs;
GRA: glucoraphanin; DPPH: 2,2-di-phenyl-1-picrylhydrazyl radical scavenging capacity; ABTS:
trolox-equivalent antioxidant capacity; FRAP: ferric-reducing antioxidant power. * and ** represent
significant correlation at the 0.05 and 0.01 level (2-tailed), respectively.

4. Conclusions

In this study, we investigated the effects of preharvest treatment with exogenous
MeJA (40 µM) on GSL biosynthesis, sulforaphane accumulation, and antioxidant activity
in broccoli florets, stem, and leaves. The overall results revealed that GSL biosynthesis and
sulforaphane accumulation were most likely induced by exogenous MeJA treatment by
upregulating the expression of CYP83A1, SUR1, UGT74B1, and SOT18 genes. Exogenous
MeJA treatment more remarkably contributed to the increase in GSL biosynthesis in broc-
coli cultivars with low-level GSL content (Yanxiu) than that with high-level GSLs (Xianglv
No.3). Moreover, MeJA treatment had a more substantial increasing effect in broccoli florets
than in stem and leaves. Interestingly, total flavonoid content substantially increased in
broccoli florets after MeJA treatment, but total phenolics did not. These results strongly
support the finding that preharvest MeJA treatment remarkably enhanced the antioxidant
activities (DPPH, ABTS, FRAP) of broccoli florets. In conclusion, MeJA mediated bioac-
tive compound metabolism, had positive effects on GSL biosynthesis, sulforaphane, and
flavonoids accumulation. There was a significant positive correlation between bioactive
substances and antioxidant activity, especially sulforaphane and flavonoids. Hence, prehar-
vest supplementation with 40 µM MeJA could be a good option to improve the antioxidant
properties of broccoli floret.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11071298/s1, Table S1: List of primers used for RT-qPCR
in broccoli; Table S2: PrimDesulphated GSLs identified in broccoli seedlings leaves using UPLC–MS.
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