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1  | INTRODUC TION

Many species of passerine birds are exhibiting very different popula‐
tion trajectories across both local and national scales. Similarly, much 
research has shown that the ecological processes impacting birds in a 

garden environment are similar to those in a wider context (Toms, 2019) 
and analysis of such data provides scientists with the opportunity to gain 
a greater understanding of the potential drivers of these different trends.

Winter census counts, such as those collected through the 
British Trust for Ornithology (BTO) Garden Bird Feeding Survey 
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Abstract
The factors governing the recent declines observed in many songbirds have received 
much research interest, in particular whether increases of avian predators have had 
a negative effect on any of their prey species. In addition, further discussion has cen‐
tered on whether or not the choice of model formulation has an effect on model in‐
ference. The study goal was to evaluate changes in the number of 10 songbird species 
in relation to a suite of environmental covariates, testing for any evidence in support 
of a predator effect using multiple model formulations to check for consistency in the 
results. We compare two different approaches to the analysis of long‐term garden 
bird monitoring data. The first approach models change in the prey species between 
1970 and 2005 as a function of environmental covariates, including the abundance of 
an avian predator, while the second uses a change–change approach. Significant neg‐
ative relationships were found between Eurasian Sparrowhawk Accipiter nisus and 
three of the 10 species analyzed, namely house Sparrow Passer domesticus, starling 
Sturnus vulgaris, and blue tit Cyanistes caeruleus. The results were consistent under 
both modeling approaches. It is not clear if this is a direct negative impact on the 
overall populations of these species or a behavioral response of the prey species to 
avoid feeding stations frequented by Sparrowhawks (which may in turn have popula‐
tion consequences, by reducing available resources). The species showing evidence 
of negative effects of Sparrowhawks were three of the four species most at risk to 
Sparrowhawk predation according to their prevalence in the predator's diet. The as‐
sociations could be causal in nature, although in practical terms the reduction in the 
rate of change in numbers visiting gardens accredited to Sparrowhawks is relatively 
small, and so unlikely to be the main driver of observed population declines.
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(GBFS), suggest that different patterns, particularly those evi‐
dent between urban and rural populations, are driven by different 
causal factors. The changes associated with agricultural intensifi‐
cation (Chamberlain, Fuller, Bunce, Duckworth, & Shrubb, 2000) 
are thought to be have been the main driver for the observed de‐
cline in some rural populations, with a reduction in the availability 
of favored seed during the winter months leading to decreased 
survival rates (Hole, 2001; Siriwardena, Baillie, & Wilson, 1999), 
most notably of first‐year birds (Crick, Robinson, Appleton, Clark, 
& Rickard, 2002). Additional evidence in support of this comes 
from landscape‐scale experimental work, delivering supplemen‐
tary seed to winter farmland, which produced a positive effect on 
House Sparrow population trends on the study sites (Siriwardena 
et al., 2007).

The factors behind the declines seen in urban House Sparrow 
populations, for example, have proved far more difficult to 
identify and resolve, prompting significant debate. Lack of suit‐
able nest sites (Chamberlain, Toms, Cleary‐McHarg, & Banks, 
2007; Shaw, Chamberlain, & Evans, 2008), loss of invertebrate 
food supplies (Peach, Vincent, Fowler, & Grice, 2008), pollution 
(Summers‐Smith, 2007), disease, and increased predation by cats 
and Eurasian Sparrowhawk (hereafter Sparrowhawk) Accipiter 
nisus (Bell, Baker, Parkes, Brooke, & Chamberlain, 2010; Churcher 
& Lawton, 1987) have all been put forward as potential causal fac‐
tors. Work by Vincent (2005), Peach et al. (2008), Peach, Mallord, 
Orsman, Ockendon, and Haines (2013), Peach, Sheehan, and Kirby 
(2014) and Peach, Mallord, Ockendon, Orsman, and Haines (2015) 
suggests that food availability may play a role, reducing breeding 
productivity and lowering postfledging survival rates. Shaw et al. 
(2008), working in the southwest of England, found that House 
Sparrows were more likely to be lost from the more affluent parts 
of cities, suggesting that increased demands for off‐road parking 
and the more managed approach to gardening reduced the habi‐
tat available to House Sparrows and, by doing so, altered foraging 
opportunities and predation risk. The loss of large urban gardens 
through development and “infilling” was found to have a negative 
impact on urban House Sparrow abundance (Chamberlain et al., 
2007).

One area where there has been particularly vigorous debate 
has been around the possible role of predation in urban House 
Sparrow declines. For example, data collected through the BTO 
Common Birds Census (CBC) and the BTO/JNCC/RSPB Breeding 
Bird Survey (BBS) have charted a 70% decline in the House Sparrow 
breeding population within England since 1977 and the species 
has been placed on the Red List of Birds of Conservation Concern 
(Eaton et al., 2015; Robinson et al., 2015). Much of this debate has 
centered on the recovering breeding population of Sparrowhawk, 
a specialist predator of small birds whose English breeding popu‐
lation has increased by 115% since 1975 (Robinson et al., 2015). 
This increase in abundance, brought about through improved 
breeding success following a decline in the use of organochlo‐
rine pesticides (Newton & Wyllie, 1992), was accompanied by a 

recolonization of its former breeding range (Balmer et al., 2013) 
and an increased use of urban sites (Chamberlain et al., 2005). 
This increase spans a similar time frame to that of the declines in 
House Sparrows, prompting some authors to suggest a causal link 
(Bell et al., 2010).

Previous studies examining the potential impacts of a recover‐
ing Sparrowhawk population failed to find any large‐scale effect 
on breeding abundance (Newson, Rexstad, Baillie, Buckland, & 
Aebischer, 2010; Thomson, Green, Gregory, & Baillie, 1998). The ef‐
fect of predators on their passerine prey has generally been assumed 
to compensate for birds that would otherwise succumb to mortal‐
ity through other means, the predation being compensatory rather 
than additive (Newton, 1998). The lack of evidence for an effect on 
breeding numbers is, therefore, perhaps not surprising. Evidence for 
a compensatory effect may be found through the analysis of post‐
breeding numbers and analysis of data collected over the winter may 
give alternative insight into the scale of predation effects. Perrins 
and Geer (1980) and Newton, Dale, and Rothery (1997) studied the 
effect of an increase in a Sparrowhawk population on nonbreeding 
tits (Paridae) and other woodland species and found the seasonal 
pattern of mortality was altered, as was the peak in numbers. While 
these studies highlight local impact, they fail to provide evidence of 
wider scale patterns, something that can only come from a much 
larger study.

Isolating the impact of predation on prey populations can be 
challenging, and it is important to note that the method used to 
model the effect of environmental covariates on changes in popu‐
lations of birds can also have an effect on the results. Chamberlain, 
Glue, and Toms (2009), Jones‐Todd, Swallow, Illian, and Toms 
(2017), and Bell et al. (2010) all analyzed GBFS data to test for 
Sparrowhawk effects on garden birds and found contrasting re‐
sults. Chamberlain et al. (2009) found no significant effect while 
accounting for temperature and number of feeding units in the 
model. Bell et al. (2010), however, found significant negative ef‐
fects of Sparrowhawk on House Sparrows but failed to account for 
any additional environmental covariates. Jones‐Todd et al. (2017) 
fitted multispecies spatio‐temporal models to GBFS data to jointly 
model changes in the predator and prey species, but once again 
additional environmental covariates were not modeled explic‐
itly. In addition, the way in which we use the covariates to model 
change may influence our conclusions. Newson et al. (2010), for 
example, proposed the use of a change–change model, as opposed 
to a standard log‐linear model frequently used (e.g., Thomson 
et al., 1998), in the analysis of predation effects on songbirds. 
Newson et al. (2010) also failed to find any evidence that House 
Sparrow breeding population declines were linked to an increasing 
Sparrowhawk population.

The methods used in this paper aim to avoid these two problems 
in re‐assessing the question of Sparrowhawk effects on songbirds by 
using an array of possible covariates to explain the observed changes 
in songbird abundance, while using two alternative model formula‐
tions to test for consistency in the results.
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2  | MATERIAL S AND METHODS

2.1 | Survey methods

The study in this paper uses an extensive volunteer survey con‐
ducted annually by the BTO. The BTO GBFS has been monitoring the 
numbers of birds visiting private garden feeding stations each winter 
in the UK since 1970 (http://www.bto.org/volun teer‐surve ys/gbfs). 
For consistency of comparison with other studies, we utilize data 
from the onset of the study in 1970 up until 2005. GBFS sites are 
selected to give a representative range of garden types and spatial 
distribution across the United Kingdom, although they are selected 
from existing BTO survey volunteers (see e.g., Chamberlain et al., 
2009; Chamberlain et al., 2005 for further discussion). It is there‐
fore important to consider any subsequent analysis with the caveat 
that these gardens belong to observers with an existent interest in 
birds, and therefore may not be fully representative of the wider 
population. Participants note down the weekly maximum number 
of each species seen feeding on the provisioned food across a 26‐
week period spanning the months October to March each year. Any 
avian predators preying on the birds visiting the feeding station are 
also noted. There is an average annual turnover rate of 8% for the 
sites and years considered in this paper, but replacement sites are 
selected to be similar in local habitat, size, and location to those that 
have left the scheme. In total over the 36 years, 693 different sites 
were monitored, with an average of 174 sites per year (five number 
summary [53, 138.5, 147.5, 226.5, 306]). This was somewhat skewed 
by the first 3 years, where fewer sites were monitored and after this 
all but 1 year saw at least 125 sites monitored. In total over the full 
period, 6,185 individual site‐year observations were included in the 
analysis.

Here, we consider the impact of a single avian predator, namely 
the Sparrowhawk, on the 10 species of avian prey considered by 
Chamberlain et al. (2009). Specifically, we model changes in Collared 
Dove Streptopelia decaocto, Blackbird Turdus merula, Robin Erithacus 
rubecula, Blue Tit Cyanistes caeruleus, Coal Tit Periparus ater, Great 
Tit Parus major, House Sparrow, Starling Sturnus vulgaris, Chaffinch 
Fringilla coelebs, and Greenfinch Carduelis chloris. These species are 
recorded regularly in the diet of the Sparrowhawk and were re‐
corded at >80% of sites monitored and (aside from Coal Tit), >75% of 
all weekly observations in this analysis (Table 1).

Figure 1 shows the variability in the mean number of the 26 
weekly observations that are successfully completed each year, 
across sites monitored in that year. There is clearly a dip in observa‐
tions during the late 1970s and early 1980s, which has been followed 
by much more uniform and consistent surveillance since 1990.

2.2 | Analytical methods

Due to the fact that multiple observations are conducted within 
each site every year, it would require very computer intensive 
methods to analyze all the raw data. Following the approach 
adopted by Bell et al. (2010), observations across the 26 weeks 

were therefore averaged to give a mean of weekly maxima per site 
in each winter that the survey was conducted at that site. Despite 
the species selected being some of the most commonly recorded 
under the GBFS scheme, any given species is absent for many 
site‐by‐year combinations. This is particularly the case for more 
localized or habitat‐specific species such as Coal Tit, where up to 
20% of the annual average site counts were exactly zero. The data 
therefore relate to an assumed continuous distribution, bounded 
below by zero, but also with a discrete mass at zero. Due to some 
sites being particularly large and/or well provisioned, and thus ca‐
pable of sustaining large numbers of birds, the distributions are 
often heavily right‐skewed. Careful consideration must therefore 
be given to the specification of the distributional form of the fit‐
ted model.

The Tweedie distributions (Dunn & Smyth, 2005; Jørgensen, 
1987, 1997) are a class of distributions belonging to the expo‐
nential dispersion models and can be specified through their 
mean–variance relationship. A Tweedie distribution with mean μ 
has variance ��p, where φ is a positive dispersion parameter and 

TA B L E  1   Proportion of sites where each species is observed 
at least once during the survey period and percentage of all 
conducted weekly counts where each species is observed

Species Site occupation (%)

Mean week 
occurrence 
(%)

Collared dove 89.61 77.1

Coal tit 94.23 69.1

Starling 97.84 80.1

House sparrow 98.27 89.7

Chaffinch 98.99 83.6

Greenfinch 99.28 80.4

Great tit 99.57 85.9

Robin 99.86 90.5

Blackbird 100 87.2

Blue tit 100 96.1

F I G U R E  1   Mean number of weekly observations (of 26) 
completed per site in each year of the study
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p ∉ (0, 1) a real‐valued index parameter. This class of distributions 
is incredibly flexible, shown particularly by the fact that they con‐
tain many standard distributions as special cases, such as normal 
(p = 0), Poisson (p = 2), gamma (p = 3), and inverse Gaussian (p = 4). 
For values of p ∈ (1,2), the Tweedie distributions are non‐nega‐
tive continuous with a discrete mass at zero. A greater discussion 
of these distributions is provided in Swallow, Buckland, King, and 
Toms (2016), but, in essence, the distribution corresponds to a 
zero‐inflated distribution when p ∈ (1,2). The Tweedie distribu‐
tions offer a unified alternative to other zero‐inflated approaches, 
where the proportion of zeros is commonly modeled through a 
Bernoulli variable, with a separate distribution for the positive ob‐
servations. The power mean–variance relationship of the Tweedie 
distributions is also one that is common to ecological applications 
(Taylor, 1961). These distributions have been previously used in 
the environmental sciences to analyze fisheries biomass data (e.g., 
Candy, 2004; Foster & Bravington, 2013) and rainfall data (e.g., 
Dunn, 2004; Hasan & Dunn, 2010) but not for averaged data such 
as those analyzed in this paper.

The modeling process adopted in this paper approaches the 
question of Sparrowhawk effects on each of the 10 prey species 
independently, using two different methods. First, we use the meth‐
odology described in Swallow, Buckland, et al. (2016) and extended 
in Swallow, King, Buckland, and Toms (2016), modeling change in the 
log expected count as a function of spatially varying environmental 
covariates, some of which also vary over time. Let yit be the mean of 
weekly maxima at site i in year t for a given species of prey, then the 
model is expressed in the following terms:

where xi is a vector of site‐dependent covariates and vit are both site‐ 
and time‐dependent covariates with regression parameter vectors β 
and γ, respectively. We refer to this as the “standard model.” In order to 
make full use of the data available, μi0 (i.e., the expected value at site i in 
the year before the survey commences at that site), is estimated using 
a data augmentation approach.

We use the following covariates that depend on site only: north‐
ing and easting values obtained from a six‐figure grid reference for 
each site and a two level factor variable denoting whether the site 
is rural (−1) or suburban/urban (+1). We also include time‐varying 
covariates, namely a year‐lagged expected count of the prey spe‐
cies being modeled to test for density dependence, the mean annual 
count of Collared Dove (except in the analysis of Collared Dove) and 
Sparrowhawk and number of ground frost days over the months the 
survey is conducted (October–March) from the Met Office UKCP09 
gridded datasets (http://ukcli matep rojec tions.metof fice.gov.uk/). 
Collared Dove is included as a “pseudo‐predator,” which has previ‐
ously been used to test for spurious correlations that may arise coin‐
cidentally (Newson et al., 2010; Thomson et al., 1998). The method 

used to test for density dependence assumes a first‐order Markov 
property that the number of birds observed in year t depends only 
on the previous year, and is restricted to be negative (Dennis & 
Taper, 1994).

The εi denote site‐specific random effects such that

which account for variation that is specific to the sites but unexplained 
by the fixed effects. Using hierarchical centering, we can reparameter‐
ize Equations 1 and 2 as follows:

and

We use this parameterization in order to reduce correlation be‐
tween parameters and improve the efficiency of the parameter es‐
timation process.

The second modeling approach, the “change model,” modifies 
the above methodology into the framework outlined by Newson 
et al. (2010), modeling change in log abundance as a function of 
change in covariates, that is a change‐change model. The vector of 
site‐specific covariates above xi remains the same. However, vit, the 
time‐varying covariates, are replaced with the rate of change of the 
log covariate between year 1 and year t. Under this framework the 
expected value at site i in year t can be written as follows:

Newson et al. (2010) show an algebraic equivalence between this 
parameterization and one equivalent to Equation 3.

The algebraic manipulation becomes a little more complicated 
in the presence of random effects as the new random effects 
εi from Equation 6 relate to a ratio of the random effects from 
Equation 5. We assume that the εi from Equation 6 is normally 
distributed in order to specify the model in an equivalent form to 
that of the first model, and can be written equivalently to Equation 
4, remains.

We adopt a fully Bayesian approach to obtaining inference on 
the model parameters of interest, using a Markov chain Monte 
Carlo (MCMC) framework to obtain samples from the marginal 
posterior distributions of interest. The same prior distributions 
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are used in both modeling approaches and are specified in Table 2. 
Covariates are normalized to ensure all covariates are on the same 
scale and hence priors on the corresponding coefficients are also 
specified on a meaningful scale (King, Morgan, Gimenez, & Brooks, 
2010). We are particularly interested in which environmental fac‐
tors best explain the observed changes in populations of songbirds. 
We therefore include an array of environmental covariates and use 
reversible jump (RJ) MCMC, allowing us to quantitatively compare 
competing models with different covariates. The RJMCMC algo‐
rithm allows us to estimate posterior model probabilities and hence 
Bayes factors. In this paper we test for covariate dependence by 
testing the two hypotheses θi = 0 versus �i≠0 where θ ∈ {β,γ}. The 
common intercept α under both model specifications is assumed 
to be always present in the model. Kass and Raftery (1995) outline 
a scale for the interpretation of Bayes factors and suggest a value 
greater than three constitutes positive evidence in support of one 
hypothesis over another. We assume significant covariates to be 
those with Bayes factors exceeding three in relation to the above 
hypotheses.

Goodness‐of‐fit is assessed through the Bayesian p‐value p�, a 
measure of posterior predictive fit (Gelman et al., 1996). The devi‐
ance is used as the discrepancy statistic and p‐values outside the 
interval 0.025 ≤ p� ≤ 0.975 would give rise to evidence of poor fit of 
the model.

3  | RESULTS

The two models were run independently for all 10 species. The 
standard model converged very quickly. Using 20,000 iterations with 
the first 5,000 being discarded as burn‐in appeared to be very con‐
servative. The change model took longer to converge and here we 
ran 100,000 iterations with the first 60,000 iterations discarded as 
burn‐in. Posterior summary statistics from the two analyses are pre‐
sented in Tables 3 and 4. For the regression parameters, significance 

was assumed for covariates with Bayes factors >3. Goodness‐of‐fit 
was assessed through Bayesian p‐values using the deviance as the 
discrepancy statistic (Table 5). The only analysis giving possible con‐
cern was Coal Tit under the standard model, with an estimated p‐
value just inside the rejection region. This may be due to a marginally 
bimodal distribution for this species which the Tweedie distributions 
have difficulty in fitting to.

3.1 | Sparrowhawk effect

Across the two models, eight of the possible 20 correlations be‐
tween prey species and Sparrowhawks were found to be significant. 
Of these, five came from the standard model and three from the 
change model. Under the standard model, two of these correlations 
were positive and three negative. The three species showing signifi‐
cant correlation with Sparrowhawk under the change model were all 
negative and corresponded to the same three species with negative 
significant covariates in the standard model. No significant positive 
effects were found in the change model. Despite the significance 
of the negative effects, the results suggest at most around a 3.6% 
reduction, on average, in the rate of population change in response 
to every additional Sparrowhawk under the standard model or, 
equivalently, a 2.2% reduction in response to the doubling of preda‐
tor numbers under the change model (interestingly both for House 
Sparrow).

Gotmark and Post (1996) estimated the relative predation risk for 
a number of species of songbirds to predation by Sparrowhawks, a 
measure of how frequently the species occurs in the Sparrowhawk's 
diet having normalized for its prevalence in the surrounding environ‐
ment. In particular, species frequently found feeding on the ground 
have been shown to be particularly susceptible to Sparrowhawk 
predation (Chamberlain et al., 2009; Götmark & Andersson, 2005). 
Associations between high relative predation risk and negative 
Sparrowhawk coefficients may give further support to a genuine 
Sparrowhawk impact on prey populations.

Relative predation risks for all of the species analyzed in this 
paper, aside from Collared Dove, were calculated by Gotmark and 
Post (1996) and following Chamberlain et al. (2009), these are plotted 
against the posterior means for the regression parameters obtained 
from the two modeling approaches used in this paper (Figure 2). A 
relatively strong negative relationship was found between the two 
measures with linear correlation estimated as −0.81, giving further 
support to the weak correlations found in Chamberlain et al. (2009). 
This suggests that those species appearing most at risk to preda‐
tion by Sparrowhawks are also showing negative relationships with 
Sparrowhawk abundance. Of the four species most at risk from pre‐
dation by Sparrowhawk, three had significant negative estimates 
under both our models. Under the relative predation risk, a value of 
zero is equivalent to a Sparrowhawk randomly searching for prey. 
According to the linear model fitted to our results and predation risk, 
a zero value of relative predation risk relates to a value close to, but 
slightly below, zero under the two models used in this paper. This 
could relate to the fact that a zero relative predation risk does not 

TA B L E  2   Prior specification for model parameters

 Parameter Prior distribution

β Regression param‐
eters (time‐invariant 
covariates)

N(0,0.01)

�DD Regression parameter 
for density‐dependence 
covariate

HN(0,0.01)

�(DD) Regression parameters 
(for time‐variant covari‐
ates other than above)

N(0,0.01)

� Tweedie dispersion 
parameter

U[0,5]

p Tweedie index parameter U[0,2]

�2 Random effect variance InvGamma (0.001,0.001)

�i0 Estimated mean of year 
before survey starts

U[0,200]
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equate to zero risk and hence the prey species could still be suscep‐
tible to increases in Sparrowhawk numbers.

3.2 | Effects of other variables

With reference to the other regression covariates, easting was found 
to be a more important predictor of changes in songbird numbers 
than was northing. Northing was only significant for one species, 
positive for House Sparrow in the change model. However, Coal 
Tit and Greenfinch were the only species with significant estimates 
to show consistency across the two models with respect to these 
two covariates, both having negative estimates for easting. The 
other time‐invariant covariate, the rural or suburban factor variable, 
showed some differences between the two models. Where signifi‐
cant, the parameter was always negative suggesting that urban sites 
are on average faring worse than their rural counterparts.

In the standard model, evidence of density dependence was 
found in all but two of the species, namely House Sparrow and 
Starling. Treating Collared Dove as a dummy predator, there were 
three small but significant positive correlations between prey spe‐
cies and Collared Dove under the standard model, and six under the 
change model, again all positive.

Over half of the species showed significant changes in rela‐
tion to frost days. In each case the relationship was positive in the 
standard model. All but one of these species (Blue Tit) also showed 

positive relationships under the change model, with the estimate for 
Greenfinch and Collared Dove also now being significant. In addi‐
tion, Coal Tit was the only species to show a significant negative 
estimate for this covariate, but only in the change model. The param‐
eter estimates associated with this covariate were on average the 
largest of all the covariates, suggesting frost has the greatest effect 
on annual changes in the numbers of birds observed visiting gardens.

Estimates of the random effect variance σ2 were fairly similar 
across model specifications, suggesting the fixed effects were cap‐
turing a similar amount of the variation in both cases. There was, 
however, a ten‐fold difference between the species with the small‐
est (Robin) and largest (Collared Dove, House Sparrow, Greenfinch) 
variances. Estimates of the Tweedie parameters φ and p were also 
consistent under both model formulations.

4  | DISCUSSION

Our results suggest that after controlling for effects of environmen‐
tal factors, such as weather and surrounding habitat, there is still an 
additional negative Sparrowhawk effect for three of the 10 species 
considered. Despite the statistical significance of the covariate for 
these three species, in practical terms the effect is relatively small 
with at most only a 3% reduction in the rate of change in observa‐
tion rate attributed to each additional Sparrowhawk. Given that the 

TA B L E  3   Posterior means (above) and Bayes factors (below) for model parameters from the standard model

Species Intercept Northing Easting Rur/sub
Density 
dep. Sparrowhawk

Collared 
dove Frost � p �2

Collared 
dove

0.0185 −0.0016 0.0099 −0.0091 −0.0466 −0.0043 NA 0.0096 0.5393 1.328 0.0129

— 0.0705 0.2483 0.1895 >10 0.0515 NA 0.3194 — — —

Blackbird 0.011 0.0049 −0.0069 −0.0077 −0.0328 0.0103 0.0153 0.0119 0.204 1.2434 0.0032

— 0.105 0.3951 0.9539 >10 >10 >10 >10 — — —

Robin 0.0044 0.0012 −0.0046 −0.0095 −0.0291 0.0049 0.003 9e−04 0.0638 1.0581 0.0013

— 0.0292 0.4229 >10 >10 2.7092 0.1842 0.0227 — — —

Blue tit −0.0205 −0.0011 −0.0044 −0.0074 −0.0142 −0.0077 −0.0017 0.0077 0.1683 1.4424 0.0019

— 0.0309 0.1269 3.0502 >10 >10 0.0438 >10 — — —

Coal tit −0.0118 0.0125 −0.0168 6e−04 −0.0243 0.0135 0.0069 0.0034 0.3323 1.265 0.004

— 1.3283 7.058 0.0467 >10 >10 0.068 0.0637 — — —

Great tit −0.0099 −7e−04 −0.001 −0.009 −0.0188 0 −0.0018 0.0045 0.1994 1.1796 0.0018

— 0.0279 0.0219 >10 >10 0.0236 0.0261 0.2957 — — —

House 
sparrow

−0.0541 −0.0118 −0.0262 −0.0116 −3e−04 −0.0369 5e−04 0.0404 0.6895 1.3552 0.0147

— 0.2492 >10 0.3793 0.0016 >10 0.0121 >10 — — —

Starling −0.0594 −0.008 −8e−04 8e−04 −0.0014 −0.0332 0.008 0.0429 0.6982 1.3875 0.0082

— 0.1696 0.0433 0.0378 0.0185 >10 >10 >10 — — —

Chaffinch 0.0045 0.0041 −0.0141 −0.0155 −0.0249 0.0035 0.0088 0.029 0.3815 1.3634 0.0063

— 0.0669 7.3963 >10 >10 0.1306 >10 >10 — — —

Greenfinch −0.0243 0.0027 −0.02 −0.0145 −0.0199 −0.0044 −0.0051 0.0104 0.5212 1.4127 0.0102

— 0.0655 >10 2.4329 >10 0.2908 0.2192 0.374 — — —

Note: “—” relate to parameters always present in the model. Significant covariates are highlighted in bold.
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majority of Sparrowhawk observations relate to single birds, occa‐
sionally two, it seems reasonable to suggest that the Sparrowhawk 
effect is likely a contributory factor to the declines seen in House 
Sparrow and Starling rather than the main cause. In addition, Blue Tit 
populations have remained largely stable over the UK during this pe‐
riod so any negative effect of Sparrowhawks appears to have been 
compensated for by other means.

This analysis was conducted on data relating to garden birds at‐
tracted to feeding stations. The nature of the survey protocol, as men‐
tioned above, requires that we must be careful in extending inference 
from these results to wider populations of these species. Chamberlain 
et al. (2005) found c.96% correlation between winter abundance at 
GBFS sites and annual indices of relative breeding population change 
derived from CBC data for both House Sparrow and Starling. Due to 
the strong correlation in these cases, it seems reasonable to expect 
that the studied gardens are a good representation of wider popula‐
tions. Observations of Blue Tits from GBFS were weakly negatively 
(−0.32) correlated with equivalent breeding density. Nonetheless, the 
species showing significant negative relationships with Sparrowhawks 
are also largely those most at risk from predation from Sparrowhawks, 
appearing more frequently in the Sparrowhawk's diet than would be 
expected based on their overall abundance (Figure 1).

The significant positive relationships of Sparrowhawk with Coal 
Tit and Blackbird in the standard model may well represent con‐
founding factors that lead to Sparrowhawks recolonizing sites that 
were also more attractive to the former species, rather than a causal 

relationship. We cannot be certain that the same interpretation does 
not hold in reverse for the species with negative effects; however, 
the lack of positive effects under the change model framework and 
the relationship with predation risk add to the evidence for the neg‐
ative effects.

Our modeling quantifies the effect of Sparrowhawks on the 
numbers of birds of various species attending feeding stations. It 
does not, however, quantify the corresponding effect on breed‐
ing populations. Many previous studies have found no evidence 
to suggest that Sparrowhawks have depleted the breeding densi‐
ties of songbirds (Newson et al., 2010; Thomson et al., 1998). The 

TA B L E  4   Posterior means (above) and Bayes factors (below) for model parameters from the change model

Species Intercept Northing Easting Rur/sub S‐hawk Collared dove Frost φ p �2

Collared dove −0.0232 8e−04 0.0073 −0.0069 −0.0069 NA 0.0365 0.5748 1.342 0.0126

— 0.0602 0.1451 0.12693 0.1566 NA >10 — — —

Blackbird 0.0036 −0.0018 −0.0073 −0.0051 0.0043 0.0131 0.0076 0.2086 1.278 0.0016

— 0.3951 3.0556 0.268 0.1378 >10 4.6705 — — —

Robin 2e−04 3e−04 −0.001 −5e−04 −5e−04 0.0045 2e−04 0.0681 1.0674 7e−04

— 0.0175 0.0163 0.0204 0.0143 3.2283 0.0496 — — —

Blue tit −0.0313 0.0027 −0.0026 −0.0015 −0.0087 0.0016 0.0087 0.1661 1.4603 0.00184

— 0.0494 0.0406 0.0221 >10 0.0301 1.7093 — — —

Coal tit −0.033 0.0102 −0.0146 0.0016 0.0117 0.0166 −0.0165 0.3476 1.2738 0.0034

— 1.9351 3.3085 0.0282 1.2831 >10 8.311 — — —

Great tit −0.02 0.0013 −0.0014 −8e−04 5e−04 0.0022 0.0069 0.2044 1.1859 0.0017

— 0.0298 0.0306 0.0357 0.0263 0.0483 0.5576 — — —

House sparrow −0.0782 0.0183 −0.0108 −0.0166 −0.0325 0.01 0.0556 0.6574 1.339 0.0105

— >10 0.4088 >10 >10 3.3365 >10 — — —

Starling −0.0798 0.0076 0.0021 0.0000 −0.0187 0.0131 0.0427 0.6945 1.3864 0.0079

— 0.2296 0.066 0.04 >10 >10 >10 — — —

Chaffinch −0.0113 0.0083 −2e−04 −0.01 0.002 0.0122 0.0266 0.3884 1.3712 0.0061

— 0.6088 0.0471 1.5913 0.0332 >10 >10 — — —

Greenfinch −0.0393 0.007 −0.0199 −0.0131 −0.0032 −0.002 0.0182 0.5291 1.422 0.0088

— 0.1685 >10 1.482 0.0763 0.0494 >10 — — —

Note: “—“relate to parameters always present in the model. Significant covariates are highlighted in bold.

TA B L E  5   Bayesian p‐values for the two model formulations

Species BPV (standard) BPV (change)

Collared dove 0.8941 0.8499

Blackbird 0.8164 0.524

Robin 0.7511 0.2228

Blue tit 0.4399 0.5097

Coal tit 0.0204 0.165

Great tit 0.1683 0.2229

House sparrow 0.6263 0.5812

Starling 0.4644 0.8089

Chaffinch 0.7005 0.7182

Greenfinch 0.7132 0.8919
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apparent reduction in numbers observed at feeding stations when 
Sparrowhawks colonize a site might represent an overall depletion 
of the total nonbreeding population by Sparrowhawks, or might re‐
flect a behavioral response among birds avoiding the feeding sta‐
tion, or spending less time at it (and hence becoming more difficult 
to observe). Behavioral changes, such as avoidance of sites where 
Sparrowhawks have been encountered previously, may lead to sub‐
lethal predation‐risk impacts, such as limited access to food and re‐
sult in increased levels of starvation and a decline in population size 
(Cresswell, 2008; Seress, Bókony, Heszberger, & Liker, 2011). The 
reality may be some combination of these two explanations.

The prevalence of significant negative easting effects over north‐
ing is most likely due to the higher level of intensive agriculture seen 
in the eastern UK. This intensification has been shown to be closely 
linked to negative changes in the populations of many farmland birds 
(Fuller et al., 1995; Newton, 2004). This might add support to the 
hypothesis that the intensification of farming has led to decreases 
in House Sparrow populations. The decreases in farmland may be 
having an additional effect on the surrounding gardens in this region, 
something perhaps evident in the regional patterns found in House 
Sparrow productivity, as revealed by BTO Garden BirdWatch, another 
study focused on urbanized landscapes (Morrison, Robinson, Leech, 
Dadam, & Toms, 2014). Coal Tit is a species of coniferous woodland, 
that makes greater use of garden feeding stations when access to cone 
crops is limited by a poor seed year (Mckenzie, Petty, Toms, & Furness, 
2007). The establishment and maturation of new conifer plantations 
may influence Coal Tit distribution and we would therefore expect 
there to be some pattern to the species distribution linked to easting.

The parameter relating to the categorical variable of suburban 
or rural habitat is, where significant, negative, suggesting that urban 
populations are faring less well than their rural counterparts. The 

negative effect of urbanization suggests that there are additional 
factors common to urban gardens above the level of individual site 
variation that cannot be explained through the other fixed effects. 
Previous studies on rural and urban populations confirm that differ‐
ent trends are taking place in the two different habitats, with popula‐
tions in urban environments generally doing worse (e.g., Beckerman, 
Boots, & Gaston, 2007; Newson, Ockendon, Joys, Noble, & Baillie, 
2009; Robinson, Siriwardena, & Crick, 2005; Vincent, 2005). The 
factor variable is only able to pick up general differences between 
the two habitat types that cannot be explained by the other covari‐
ates or the random site effects. Reasons for the significant differ‐
ences in these subpopulations may warrant further study.

Our results also suggest that density dependence is an important 
factor governing the numbers of most species observed. It is per‐
haps not surprising that this is the case given that our data come 
from garden feeding stations, where birds may well be competing 
for food within a small area and where other factors linked to the 
densities of birds present, such as disease transmission (Lawson et 
al., 2012), may have a role to play.

As outlined in the methods, we included Collared Dove as a 
“pseudo‐predator” to act as a control alongside our investigations 
of Sparrowhawk effects. Our analyses revealed no negative effects 
of Collared Doves, but with estimated positive effects for Blackbird, 
Chaffinch and Starling under both models in addition to Robin, Coal 
Tit and House Sparrow under the change model. These correlations 
in numbers may indicate similar habitat or food requirements among 
the species.

The positive parameter estimates for frost days from the standard 
model are consistent with the idea that the birds are subject to a be‐
havioral response where they move to gardens as access to natural 
food resources becomes restricted. Chamberlain et al. (2005) found 
significant negative correlations between the probability of bird oc‐
currence and minimum temperature in all 10 species studied in this 
paper. The covariate used in this paper, frost days, was very strongly 
negatively correlated (−0.87) with minimum temperature at the same 
site. The negative relationship between numbers of Coal Tits visiting 
gardens and change in the number of frost days was contrary to the 
results of Chamberlain et al. (2005). The use of garden feeding sta‐
tions by Coal Tits has been shown to be influenced by the size of co‐
nifer seed crops, the birds switching to feed on supplementary food 
more often in years with few cones than in mast years (Mckenzie et 
al., 2007). Access to the conifer seeds may also be influenced by win‐
ter weather conditions—the cones opening on dry days and closing 
on damp ones. A winter with more frost days, which are typically as‐
sociated with clear skies and dry conditions, may see the cones open 
more often throughout the winter, leaving Coal Tits with greater ac‐
cess to this natural food resource and less reliant on garden feeders.

The magnitude of parameters associated with continuous covari‐
ates also gives an idea of the relative importance of each covariate in 
predicting the number of birds visiting the feeding sites. The climate 
variable used seems to be the most important on average, followed 
by Sparrowhawk abundance. The effect of weather, if it induces a be‐
havioral response, is likely to be instantaneous as birds respond to a 

F I G U R E  2   Relationship between posterior means of 
Sparrowhawk covariate from our standard model (filled) and change 
model (open) versus relative predation risk from Gotmark and Post 
(1996). Solid line is a fitted linear model to all the points with the 
dotted line showing the estimated effect when relative predation 
risk is zero
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lack of food. The larger effect on counts of birds in relation to these 
fluctuations in temperature is therefore not too surprising.

We found a fairly large degree of variation in the consistency 
of species trends across sites. Robins and Blackbirds, for example, 
seemed to show relatively small intersite differences, while House 
Sparrow, Starling, Collared Dove and Greenfinch showed less con‐
sistency. This suggests that there may be additional factors affect‐
ing the latter species that we have not considered in our analyses. 
The species with larger random effect variances are ones that tend 
to form larger groups or flock together. In addition to the factors 
modeled, there are clearly additional factors that encourage these 
species to form larger groups at some feeding stations than others, 
such as the size of site that is not implicitly modeled here.

We see the Tweedie distributions as a widely‐applicable but un‐
derused tool in ecology and suggest they could become much more 
widely used outside of their current limited applications. The mean‐
variance relationship has been shown to be one common to ecology, 
while remaining incredibly flexible and avoiding the need for strong as‐
sumptions to be made about the distribution a priori. Using the two al‐
ternative model formulations in general provided consistent results in 
this case. Overall neither model formulation appeared to consistently 
outdo the other in terms of posterior predictive power; most varia‐
tion in Bayesian p‐values was between, rather than within, species. We 
propose that where possible, the use of multiple model formulations 
is advantageous, allowing different hypotheses and ecological mecha‐
nisms to be tested or highlighted. In addition, we have also shown that 
how the covariates enter a model is not arbitrary. We recommend that 
careful thought should always be given to the model specification to 
ensure it is both statistically and ecologically sensible.
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