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Abstract

Background: Transfer of genetic material from microbes or viruses into the host genome is known as horizontal
gene transfer (HGT). The integration of viruses into the human genome is associated with multiple cancers, and
these can now be detected using next-generation sequencing methods such as whole genome sequencing and
RNA-sequencing.

Results: We designed a novel computational workflow, HGT-ID, to identify the integration of viruses into the
human genome using the sequencing data. The HGT-ID workflow primarily follows a four-step procedure: i)
pre-processing of unaligned reads, ii) virus detection using subtraction approach, iii) identification of virus
integration site using discordant and soft-clipped reads and iv) HGT candidates prioritization through a scoring
function. Annotation and visualization of the events, as well as primer design for experimental validation, are
also provided in the final report. We evaluated the tool performance with the well-understood cervical cancer
samples. The HGT-ID workflow accurately detected known human papillomavirus (HPV) integration sites with
high sensitivity and specificity compared to previous HGT methods. We applied HGT-ID to The Cancer Genome
Atlas (TCGA) whole-genome sequencing data (WGS) from liver tumor-normal pairs. Multiple hepatitis B virus
(HBV) integration sites were identified in TCGA liver samples and confirmed by HGT-ID using the RNA-Seq data
from the matched liver pairs. This shows the applicability of the method in both the data types and cross-
validation of the HGT events in liver samples. We also processed 220 breast tumor WGS data through the
workflow; however, there were no HGT events detected in those samples.

Conclusions: HGT-ID is a novel computational workflow to detect the integration of viruses in the human
genome using the sequencing data. It is fast and accurate with functions such as prioritization, annotation,
visualization and primer design for future validation of HGTs. The HGT-ID workflow is released under the MIT
License and available at http://kalarikrlab.org/Software/HGT-ID.html.
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Background
Horizontal gene transfer (HGT), or the transfer of genes
between organisms in a manner other than traditional
reproduction, was first described in 1928 when Frederick
Griffith converted nonvirulent Streptococcus pneumoniae
cells into infectious cells by exposing them to an extract
made from virulent but dead S. pneumoniae cells [1].
Recently, scientists have begun to question whether
HGT from microbes and viruses could play a role in the
development of cancer [2, 3]. With the most recent esti-
mate, nearly two million cases of cancer—roughly 18%
of the global cancer burden—were thought to be attrib-
utable to infectious origins [4, 5]. Although most known
carcinogenic pathogens in humans are believed to work
by establishing persistent inflammation [6], some
cancer-associated viruses integrate into the genome [7–9].
These integrations could potentially disrupt the genome
like that of transposable elements [3]. For example, hepa-
titis B virus (HBV) integration is observed in more than
85% of hepatocellular carcinomas (HCCs), and
copy-number variation significantly increases at HBV
breakpoint locations, suggesting that integration of the
virus induces chromosomal instability [10]. Also, recur-
rent integration events are associated with up-regulation
of cancer-related genes, and having three or more HBV
integrations is associated with reduced patient survival
[10]. Similarly, various studies have reported integration of
the human papillomavirus (HPV) in 80 to 100% of cervical
cancers [11–13]; here, too, integration is associated with
reduced survival [11], presumably because it disrupts cod-
ing regions important in the regulation of viral genes [14].
Merkel cell polyomavirus integration is found in 80 to
100% of Merkel cell carcinomas, a rare and aggressive
form of skin cancer [15, 16]. Here, it is thought that trun-
cation of the viral T-antigen protein complex, caused by
integration, results in increased cell proliferation, leading
to cancer [17]. Finally, in areas of Africa in which Burkitt’s
lymphoma is endemic, Epstein-Barr virus (EBV) infection
is found in nearly 100% of cases, and one hypothesis is
that viral integration into the host genome contributes to
the translocation involving the MYC oncogene that is re-
sponsible for this disease [18, 19].
Increasingly, researchers have been interrogating

RNA-Seq data to determine whether the expression of
viral sequences is associated with other types of cancer
as well. Two recent studies have attempted to identify
viral signatures in RNA sequencing data from many dif-
ferent types of cancers [20, 21]. These studies found that
although HPV, HBV, and EBV signatures were associated
with various types of cancer, including those mentioned
above, no viral signatures were identified for common
cancers such as breast, ovarian, and prostate cancer.
Also, another study of 58 breast cancer transcriptomes
found no significant viral transcription [22]. Notably,

however, none of these findings exclude the presence of
non-transcribed viral DNA in other common types of
cancers. Thus, it is important to develop methods of in-
terrogating both RNA-Seq and whole genome sequen-
cing (WGS) data for potential viral insertion sites.
Existing methods for identifying viral integration sites

are based on the subtraction approach, which removes
mapped human reads and focuses on unmapped reads
in the aligned bam files. For example, the VirusSeq soft-
ware [23] was one of the first methods to identify poten-
tial viral integration events in RNA-Seq data based on
subtraction analysis. VirusSeq was later outperformed by
ViralFusionSeq [24], VirusFinder [25], and VirusFinder2
[26]. Among the above methods, VirusFinder2 is consid-
ered to have the best performance, achieved by applying
the VERSE algorithm to customize the viral and host ge-
nomes in order to improve mapping rates [26]. Despite
the resource-intensive reassembly and remapping of the
reads, the sensitivity of VirusFinder2 is less than ideal,
possibly due to the stringent hard thresholds chosen in
the VERSE algorithm. Recently, the BATVI software [27]
applied a k-mer aligner to achieve fast and accurate de-
tection of viral integrations. However, we observed the
drawback that most of the above algorithms use ad hoc
read depths as cutoffs to select the candidate events.
Hence, we designed a novel computational workflow,
HGT-ID, to identify the integration of viruses into the
human genome using sequencing data; the HGT-ID
workflow utilizes a scoring function to select and
prioritize the HGT candidates to achieve high sensitivity
and specificity together with high efficiency. We com-
pared our algorithm with VirusFinder2 and BATVI with
a simulation dataset. The algorithm was also applied to
multiple cancer datasets [10, 28–30] and was proved to
have high sensitivity and specificity in detecting the
HGT candidates compared to the existing software. For
the convenience of downstream analysis, our HGT-ID
software provides an integrated HTML report that in-
cludes prioritization of the candidate HGT events,
visualization of the events and primers designed for fu-
ture experimental validation.

Implementation
HGT-ID follows a four-step procedure that includes the
preprocessing of a previously aligned BAM file to the
human genome, the detection of viral species with un-
mapped reads, identification of the viral integration sites
as HGT candidates, and finally the priority score assign-
ment by a scoring function (Fig. 1).

Preprocessing
As input, HGT-ID requires paired-end next-generation
sequencing (NGS) data in the standard BAM file format
generated by any aligner using the human genome
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reference. Unmapped reads from the BAM file are ex-
tracted and then remapped to the human reference gen-
ome (hg19) using BWA-mem [31] to remove any
additional human reads. Both mapped human and un-
mapped paired-end reads are filtered from further ana-
lysis. Only partially mapped read pairs, with one of the
reads mapped to the human genome are collected as po-
tential integrated viral reads for future HGT detection.

Viral reads alignment
For the viral detection, we use the RefSeq Viral genome
database [32] as the reference, which covers 6009 known
species (ftp://ftp.ncbi.nih.gov/refseq/release/viral, as of
March 2015) and is a reasonable collection of represen-
tative consensus sequences for different strains. Potential
viral reads from the preprocessing step above are then
aligned to the RefSeq viral reference genome using the
BWA-mem software. After the viral alignment, read
pairs with both ends mapped to viral species only are fil-
tered. As direct evidence of viral integration, reads with
one end mapped to the viral genome and other end
assigned to the human genome are retained for further
analysis. In order to remove low complexity sequence
that is common in viral sequences and might affect the
alignment, we calculate the sequence linguistic complex-
ity (LC) score [33] of each read mapped to the viral gen-
ome. The recommended default threshold is 0.8, which
is the upper range of LC scores of the low complexity
and simple sequence of length 50-150 bp in the Repeat-
Masker [34]. Reads with LC scores < 0.8 are removed to
improve both accuracy and efficiency. Low quality reads
with mapping quality scores (MAPQ) below 20 are also
removed, which ensures the mapping correctness with a

p-value less than 0.01 for each kept read. The remaining
discordant read pairs are considered as confident sup-
porting reads for the viral integration step. Although we
have set the default to recommended values, all the pa-
rameters listed in this section are customizable through
the configuration files by the user.

Viral integration site detection
The viral integration sites are identified in a two-step
process. First, for the discordant read pairs, HGT-ID
clusters the human reads by their genomic location. The
clusters then expand to both upstream and downstream
directions recursively (default 500 bp, which is slightly
larger than the size of the library fragments) until no
more human reads from discordant read pairs can be re-
cruited. For each cluster, a putative breakpoint is then
estimated by taking the average of the start points of all
reads in the cluster. The same procedure is also applied
to the virus side to obtain a putative viral genomic
breakpoint (Fig. 2a).
In the second step, HGT-ID scans for soft-clipped hu-

man reads around the putative breakpoint. The search
window is centered at the breakpoint, spanning both up-
stream and downstream regions to match the size of the
library fragments. Before each soft-clip read can be re-
cruited into the read cluster, the soft clipped section is
compared with the viral genome to remove spurious
soft-clipped reads that do not belong to the virus.
Among the cleaned reads, if there are soft-clipped reads
that span through the breakpoint, a precise integration
site can be inferred for the human side (Fig. 2b).
Otherwise, the middle point of the clustered discordant
read pairs is obtained as the approximate integration site

Fig. 1 Overview of the HGT-ID workflow
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(Fig. 2c). Similarly, on the viral side, the integration sites
can be obtained by the same procedure described above.

HGT candidate score function
The goal of HGT-ID is to identify high confident HGT
events that are associated with high genomic instability.
High confident HGT events tend to have high read
coverage that supports the event against the background.
On the other hand, false positive HGT events are indica-
tive of a relatively low number of supporting reads that
might occur due to random chimeric integration of frag-
ments during sequencing [35]. Thus, the HGT-ID algo-
rithm ranks the candidate events by applying a scoring
function that compares the HGT supporting reads to the
local background.
To estimate the local expected background for a given

candidate event, first, the local coverage Nlocal is counted
by including all the reads falling in a window that is
centered at the breakpoint and spanning both upstream
and downstream for the library fragment length. The
local probability of a human read to randomly integrate
with viral reads can be roughly estimated as PH =mH/
Nlocal, where mH is the number of human reads that are
either split or spanning through the breakpoints.
Similarly, for the integrated viral reads, we can calcu-
late PV =mV/Nlocal, where mV is the number of viral
reads that are either split or spanning through the break-
points. Then, the probability of supporting coverage gen-
erated by a random integration of human and viral reads

should be proportional to the product of PH and PV. The
expected number of random discordant reads countbg can
then be estimated as:

countbg ¼ PH � PV � Nlocal ¼ mH �mV=Nlocal

The supporting coverage of the given candidate event
(countsp) is calculated as the sum of discordant read
pairs (countD), soft-clipped reads identified in human
(countsch) and viral (countscv) bam files respectively, i.e.,

countsp ¼ countD þ countsch þ countscv

And the prioritizing score of the given candidate
events can be calculated as

score ¼ countsp−countbg

If the score is negative for a given candidate event,
HGT-ID will still report it, but the event should be taken
as false positive.

Primers design for experimental validation
The HGT candidates can be typically validated by poly-
merase chain reaction (PCR) experiments. The HGT-ID
workflow thus provides a primers design function, which
designs oligonucleotide primers that flank the detected
viral integration sites (a sample report together with
sample results are provided in the website http://kalar-
ikrlab.org/Software/HGT-ID.html) using Primer3 [36].
The best primer candidates are chosen by optimizing

a

b c

Fig. 2 Diagram of HGT event and break point identification. a The searching starts with clustered discordant read pairs. Reads that fall within a
search window of twice of the library size around the cluster are extracted. b If soft-clipped reads are available, an exact integration site can be
inferred. c If only discordant read pairs are available, only an approximate integration site can be inferred
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primer length, melting temperature, and binding tenden-
cies in addition to product length. Only the top-scoring
primer pair from each side of the viral integration site is
returned to the user. These four primers make two PCR
products, which can be used to validate the human
boundaries of the viral integration site; they are intended
to be utilized in a standard PCR experiment to confirm
findings from the HGT-ID workflow. If the viral se-
quence integrated into the human genome is short
enough (< 5 kb), the user can use the forward primer for
the first product and the reverse primer for the second
product to amplify the entire integration event.

Visualization and report
For each sample processed through the workflow, the
method provides a comprehensive report in HTML with
annotation, visualization and customer primer design for
experimental validation (a sample report is provided in
the website http://kalarikrlab.org/Software/HGT-ID.html).
Beyond the details of each candidate event and the de-
signed primers, the report also gives circos plots to
visualize the location and coverage of each event in both
human genome and viral genome.

Generation of simulated data
We used a simulator program provided by the ViralFu-
sionSeq [24] package (simulate-viralfusion.pl) to gener-
ate a simulated FASTA file. In the simulated genome,
the human chromosomes 1–4 (hg19) were randomly in-
fected by HPV strain (HPV18 9,626,069). We used the
option as “–virus-block-len 400 –lowvirus 75 –high--
virus 100”. The resulting simulated genome contained
249 HGT integration sites, based on the simulation re-
port. Next, we generated 40× coverage whole genome
sequencing simulated data with a 300 bp library frag-
ments size and 101 bp read length using the Wgsim
simulator [37] with default parameters. Specifically, we
generated 20 million paired-end reads from the simu-
lated genome with the options “-N 10000000 -1 101 -2
101”. It should be noted that Wgsim is able to simulate
genomes with SNPs and insertion/deletion (INDEL)
polymorphisms, and simulate reads with uniform substi-
tution sequencing errors [37]. From these simulated
WGS data, we generated additional sequencing datasets
by downsampling to 75% (30X), 50% (20X), 25% (10X),
10% (4X) and 5% (2X) of the original data, respectively.

Sequencing datasets used to validate HGT-ID
To test and validate the performance of HGT-ID work-
flow, we have applied the HGT-ID algorithm to several
publicly available NGS datasets, including both WGS
data and RNA-Seq (Table 1).

Results
HGT event detection in simulated data
We compared the performance of HGT-ID, BATVI, and
VirusFinder2 with the simulated data. In this compari-
son, if an integration site falls within the distance of the
library fragment size (which was 300 bp in this simula-
tion data) from the actual inserted site, it was counted as
true positive.
Table 2 provides the performance comparison of

HGT-ID, BATVI, and VirusFinder2 with the simulated
data at different sequence depth coverage. HGT-ID
demonstrated the highest sensitivity among all three al-
gorithms. HGT-ID detected all of the true positives (TP)
in the datasets with coverage of 4X or more, and it was
still highly sensitive at the very low coverage of 2X.
BATVI demonstrated both lower sensitivity and lower
specificity than did HGT-ID in the datasets with cover-
age of more than 4X. VirusFinder2 demonstrated the
lowest false positive (FP) rate in the simulation data;
however, it had the lowest sensitivity, which also
dropped substantially with coverage of 4X or less.
From the performance evaluation in Table 2, we rec-

ommend using at least 4X coverage to ensure optimal
performance of HGT-ID. Figure 3 illustrates the ROC of
HGT-ID across different coverages, which also
confirmed the optimal usage of 4X and above. ROC
curves (Fig. 3) as well as the distribution of scores (a
sample report together with sample results are provided in
the website http://kalarikrlab.org/Software/HGT-ID.html)
of HGT events indicated that the optimal cutoff scores
across different coverages was 0. It is noted that the per-
formance evaluations of HGT-ID were based on this cutoff
if not otherwise stated.
Different color lines illustrate different coverages. The

false positive ratio (FPR) was calculated as the ratio of
the number of false positives and the number of total
identified HGT events. The true positive rate (TPR) was
calculated as the ratio of the number of true positives
and the number of total positives. The coverages were

Table 1 Sample sets that were used to validate the performance of HGT-ID

Sample Set Possible Virus Data type No. of Samples Ref

1. Cervical cell lines and cervical carcinoma Human papillomavirus WGS 4 WGS [28]

2. Hepatocellular carcinoma Hepatitis B virus WGS 13 WGS [10]

3. TCGA Breast invasive carcinoma NA WGS 220 WGS [29]

4. Hepatocellular carcinoma Hepatitis B virus WGS + RNA-Seq 7 WGS + 7 RNA-Seq https://cancergenome.nih.gov/
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down-sampled from 40× to 30X, 20X, 10X, 4X and 2X,
respectively.

HPV detection in WGS data from cervical carcinoma
samples and cell lines
We applied the HGT-ID workflow to a publicly avail-
able WGS dataset (SRA180295) with at least 30×
coverage containing four HPV-positive samples: two
HPV-positive cell lines (SiHa and HeLa) and two cer-
vical carcinomas (T4931 and T6050) [28] (Table 3).
Hu and co-authors generated WGS data for the four
HPV samples and identified integration sites with ex-
perimental validation. They subsequently validated the

integration sites with Sanger sequencing. Using the
default parameters, HGT-ID detected the same 11 in-
tegration sites identified in the original publication
(Table 3) with 1~ 3 bp difference because of the ap-
proximation of the algorithm. All 11 identified inte-
gration sites were either in the intron or the
intergenic region. Some integration breakpoints that
we detected in the human genome would be approxi-
mated close but not identical to the experimentally
validated breakpoints due to the lack of soft-clip
reads to refine the precise location in the two-step
procedure we used to identify integration sites (see
Methods for details). To compare HGT-ID’s perform-
ance with a similar viral integration site detection
program, we also processed the same data with Virus-
Finder 2.0, using the default parameters. VirusFinder
2.0 was able to only detect 6 of the 11 integration
sites identified in the original article. All detected in-
tegration events were scored high by HGT-ID except
one in the T4931 cell line, due to less discordant sup-
porting reads. As an example, the final HTML report
generated by HGT-ID with details for the HeLa cell
lines can be found in the website (http://kalarikrla-
b.org/Software/HGT-ID.html).
As shown in Table 3, the HGT events in HELA cer-

vical cancer cell lines were observed in the upstream re-
gion of the long non-coding RNA CCAT1. A recent

Table 2 Performance comparison of HGT-ID, BATVI and
VirusFinder2

Coverage Simulated data N = 249

HGT-ID BATVI VirusFinder2

TP FP TP FP TP FP

40 249 16 244 52 234 3

30 249 16 244 40 234 1

20 249 14 246 24 220 4

10 249 8 246 11 206 2

4 249 6 230 6 121 1

2 237 20 190 2 40 2

Fig. 3 ROC curve of the simulation data with different coverages of HGT-ID. Different color lines showed different coverages. The false positive
ratio (FPR) was calculated as the ratio of the number of false positives and the number of total identified HGT events. The true positive rate (TPR)
was calculated as the ratio of the number of true positives and the number of total positives. The coverages were down-sampled from 40X to
30X, 20X, 10X, 4X and 2X, respectively
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Table 3 All 11 viral integration sites identified in whole genome sequencing data from two HPV-positive cell lines (SiHa and HeLa)
and two cervical carcinomas (T4931 and T6050) using HGT-ID

Sample ID
(coverage)

Affected
Gene

Function of integration
site

Integrated
Position

Score Reported and
validateda

Identified by VirusFinder
2.0

HELA (40x) CCAT1 intron chr8 128,230,630 1273.7 yes yes

CCAT1 upstream chr8 128,233,368 121.2 yes no

CCAT1 upstream chr8 128,234,256 180.3 yes no

CCAT1 upstream chr8 128,241,549 235.7 yes yes

SIHA (37×) KLF12 downstream chr13 74,087,563 158.0 yes yes

KLF12 downstream chr13 73,788,864 136.4 yes yes

T4931 (41×) GLI2 intron chr2 121,670,164 2.4 yes yes

GLI2 intron chr2 121,687,141 213.4 yes no

GLI2 intron chr2 121,688,179 48.9 yes no

T6050 (42×) KLF12 downstream chr13 74,230,820 305.1 yes no

KLF12 downstream chr13 74,231,436 342.2 yes yes
aReported and validated in the original paper [28]

Table 4 Validation of the integration sites in HPV data

Sample ID and
coverage

Affected
genes

Function of
integration site

Integration breakpoints in the
human genome

Integration breakpoints in
HBV virus

Score Identified by
HGT-ID?

145 T (37×) CCNE1 intron chr19: 30303492 1053 87.2 yes

CCNE1 intron chr19: 30303498 1819 87.2 yes

177 T (43×) SENP5 intron chr3: 196625752* 1827* – no

180 N (121×) FN1 intron chr2: 216280279 1822 11.9 yes

186 T (36×) KMT2B exon chr19: 36214005 2448 206.2 yes

KMT2B exon chr19: 36214017 1605 206.2 yes

198 T (34×) TERT intron chr5: 1269387 821 137.5 yes

TERT intron chr5: 1269405 1950 137.5 yes

26 T (66×) DUX4 intron chr18: 107920* 670* – no

200 T (32×) CCNE1 exon chr19: 30315003 1798 51.4 yes

CCNE1 downstream chr19: 30315365 316 222.751 yes

268 T (34×) CCNE1 upstream chr19: 30298787 1931 155.2 yes

TERT intron chr5: 1291758 3175 134.3 yes

TERT intron chr5: 1292403 354 134.3 yes

43 T (33×) SENP5 intron chr3: 196625710* 1910* – no

46 T (32×) TERT upstream chr5: 1295367 751 34.4 yes

70 T (114×) KMT2B exon chr19: 36212331 1931 1015.6 yes

KMT2B exon chr19: 36212311 227 1015.6 yes

71 T (32×) SENP5 intron chr3: 196625776* 417* – no

KMT2B intron chr19: 36213141 1884 10 yes

KMT2B intron chr19: 36213136 619 10 yes

95 T (35×) KMT2B exon chr19: 36212564 2240 27.3 yes

Eighteen of 22 previously experimentally validated viral integration sites identified in sequencing data from 13 HBV-positive hepatocellular carcinoma samples
using the HGT-ID algorithm. Integration breakpoints of the four missing events (noted with *) were obtained from the original publication [10]
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study indicated that CCAT1 might promote proliferation
and inhibit apoptosis of cervical cancer cells by activat-
ing the Wnt/β-catenin pathway [38]. The HGT-ID work-
flow also identified an HGT candidate downstream of
KLF12, a tumor suppressor gene [39, 40], in both the
SIHA cervical cancer cell line and a tumor sample.
HGT-ID also identified another target gene GLI2 that is
important in the Hedgehog pathway and is known to be
critical in tumorigenesis [41].

HBV detection in liver cancer samples
Dataset I
We tested the performance of HGT-ID by applying the
algorithm to 13 HBV-positive HCC samples [10] with
default settings and requiring at least two discordant
read pairs as direct evidence. In total, we detected 83
viral integration sites, of which 67 events had a
prioritization score larger than or equal to 10.
We compared our results with the original paper, which

provided experimental validation for 22 randomly selected
viral integration sites from 13 tumor samples. HGT success-
fully identified 18 of these 22 experimentally identified viral
integration sites, with all 18 scoring 10 or higher (Table 4,
http://kalarikrlab.org/Software/HGT-ID.html). The four
missing events have no discordant human-viral read pairs,
resulting in their being filtered out from our candidate
events. Further investigation of the missing events re-
vealed that these four events consisted of very short viral
insertions (~ 60 bp) that were smaller than the read length
(90 bp). Thus, there were no complete viral reads to
form a discordant pair to pass the minimal evidence
required for an HGT candidate event in HGT-ID.
To further validate the specificity of HGT-ID, we down-

loaded five samples (106 T, 117 N, 126 N, 203 T, and 73 T)
from the same data set, which contained false positive
HGT events that the original publication identified as can-
didates but failed to validate. HGT-ID did not pick up any
negative events reported in these five samples. While this
did not indicate that all other candidate events identified by
HGT-ID were true positives due to the limited validation
available, HGT-ID had exhibited great performance in ac-
curacy. Overall HGT-ID accurately identified and con-
firmed 23/27 events (85.2%). On the contrary, VirusFinder
2.0 identified only 16 of 22 (72.7%) [26]. Once again,
HGT-ID showed a higher sensitivity, though specificity
could not be calculated because of the lack of validation
data. In-depth investigation of the four events missed by
the HGT-ID workflow determined that the candidates did
not meet the minimum requirement of 2 read pairs; hence
they likely did not meet the detection criteria.

Data set II
To check the performance of HGT-ID in both DNA and
RNA sequencing data, we processed paired WGS

(100 bp PE) and RNA-Seq samples (50 bp PE) from
seven TCGA hepatocellular carcinoma (HCC) sam-
ples that were originally contributed by the Mayo
Clinic. The summary of NGS reads for WGS and
RNA-Seq platforms for these seven tumor-normal pairs are
described in the website (http://kalarikrlab.org/Software/
HGT-ID.html). The HGT algorithm was applied to all of
the samples with the default settings, and integration events
with a score > 10 were reported for both DNA and RNA
samples.
Using WGS tumor data, we identified Hepatitis B virus

(HBV) integration events in six out of seven TCGA
HCC tumors (a sample report together with sample re-
sults are provided in the website http://kalarikrlab.org/
Software/HGT-ID.html). In addition, HGT-ID workflow
identified zero HGT events and a total of 42 HGT candi-
dates in liver normal and tumor samples, respectively. In-
vestigating RNA-Seq data from the same seven TCGA
liver samples, the HGT-ID workflow, identified eight
HGT candidates in tumors and six HGT events in normal
adjacent samples. Comparison of the HGT sites from
WGS and RNA-Seq data has identified an overlap of six
events in TCGA liver tumors (Table 5). Details of the 62
HGT events detected in the seven samples are listed the
website (http://kalarikrlab.org/Software/HGT-ID.html).
Application of the HGT-ID workflow to the two

HCC data sets has identified several HGT integra-
tion sites of HBV in liver cancer samples [10]. The
affected genes included TERT, which plays a signifi-
cant role in cancer cell immortality, and the muta-
tion in its promoter region which is one of the most
frequent alterations in HCC [42, 43]. Other genes
like CCNE1, SENP5, FN1, KMT2B, and DUX4 were
alsoidentified by HGT-ID; these genes were previ-
ously reported to be associated with tumorigenesis
or cancer invasion [44–49].

Table 5 Viral HGT events detected by HGT-ID algorithm
between paired TCGA HCC tumor and normal samples via WGS
and RNA-Seq datasets

Sample ID WGS-T WGS-N RNA-T RNA-N Common HGT

TCGA-BW-A5NP 11 0 2 NA 0

TCGA-CC-5262 3 0 2 NA 2

TCGA-CC-A1HT 5 0 2 NA 2

TCGA-DD-A1EH 0 0 0 2 NA

TCGA-DD-A1EI 2 0 1 2 1

TCGA-DD-A1EL 17 0 1 2 1

TCGA-G3-A3CK 4 0 0 NA 0

T stands for primary solid tumor and N for matched solid normal tissue. Only 3
of the 7patients had RNA-Seq data for matched normal tissue. The “Common
HGT” column contains the number of events that were identified in both WGS
and RNA-Seq for the primary tumor (T)
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Viral integration detection in WGS data from breast
cancer samples
The HGT-ID algorithm was applied to WGS data from 220
breast cancer samples collected by The Cancer Genome
Atlas (TCGA) (a sample report together with sample re-
sults are provided in the website http://kalarikrlab.org/Soft-
ware/HGT-ID.html). No exogenous viral integration events
were detected in these samples. Our results are consistent
with the results reported in previous studies [20, 21] and
consistent with our findings using RNA-Seq data.

Software performance evaluation
We compared the computational performance of our
workflow with VirusFinder2 (VERSE algorithm). Using
the HPV dataset as an example, HGT-ID used on aver-
age 14% of the time required by VirusFinder2 with
VERSE when running on the same machine with default
settings (a sample report together with sample results
are provided in the website http://kalarikrlab.org/Soft-
ware/HGT-ID.html). As an example, for the HELA cell
line sample, HGT-ID used only 4.3 h while VirusFinder2
with VERSE used 23.4 h. BATVI was not able to finish
processing any of the four cervical cell line dataset in
our system. Further, we compared the running time on
the smaller simulation datasets for all three algorithms
(a sample report together with sample results are pro-
vided in the website http://kalarikrlab.org/Software/
HGT-ID.html). HGT-ID demonstrated the fastest pro-
cessing on the simulation datasets with highest coverage.
The fast and accurate identification of HGT events by
the HGT-ID workflow is primarily helpful in elucidating
the effect of viral gene horizontal transfer on tumorigen-
esis and other diseases.

Discussion
In this study, we present the HGT-ID workflow, which
detects the viral integration sites in the human genome.
The HGT-ID workflow is comprehensive and fully auto-
mated from the initial pre-processing step to the viral
integration site detection, prioritization, and downstream
visualization as well as primer design for validation. This
workflow enables unbiased detection of viral integration
events against the RefSeq viral database [32] without
knowing the species in advance. Unlike VirusFinder2
and BAVTI [26, 27], HGT-ID reports both the viral
names and the integration sites from multiple viral spe-
cies/strains simultaneously, which will be convenient for
co-infection analysis.
We have shown both higher sensitivity and specificity

than the recent BATVI software. We also demonstrated
better sensitivity than VirusFinder2 with comparable
specificity across different coverage depths in both the
simulation data set and the cancer data sets. Unlike
other algorithms that directly use read counts as the

cut-off threshold, HGT-ID calculates a score for each
candidate HGT event making use of both supporting
reads and background reads. The scores are used to rank
the candidate HGT events. The higher the score, the
more confident the HGT event tends to be. We suggest
an empirical cutoff score of 10 for use with cancer data
sets. By default, HGT-ID will output all candidate HGT
events, ranked in order of decreasing score.
We applied the HGT-ID workflow to publicly available

large cancer cohorts, such as TCGA, to study HCC and
breast cancer. We have shown the applicability of the tool
in HCC samples where we have both WGS and RNA-Seq
data sets available. We have surveyed the breast cancer
data set using our workflow and did not find any evidence
of HGTs. Among all of the events detected by HGT-ID in
this report, we found about ~ 50% of events occured in
highly repetitive regions masked by RepeatMasker [34],
like microsatellite, long terminal repeat (LTR), short inter-
spersed elements (SINE) and Alu elements. In general,
these regions are known to be related to genome instabil-
ity and cancer development. It should be noted that in the
simulation study, most of our small number of false posi-
tives (~ 5% of total reported events) were from such re-
gions. As a precaution to users, we currently annotate the
results if the candidate event is located in a RepeatMasker
region (please refer to the sample output at the software
download page).
We compared the computational performance of our

workflow with VirusFinder2 (VERSE algorithm). VERSE
intends to capture the consensus sequence to cover pos-
sible mutation in the virus by performing de-novo as-
sembly. However, executing the VirusFinder2 with the
VERSE algorithm is very time-consuming. Using the
HPV dataset as an example, HGT-ID used on average
only 14% of the time required by VirusFinder2 with
VERSE when running on the same machine with default
settings (a sample report together with sample results
are provided in the website http://kalarikrlab.org/Soft-
ware/HGT-ID.html). In addition, for the HELA cell line
sample, HGT-ID used only 4.3 h while VirusFinder2
with VERSE used 23.4 h. To study other cancers or dis-
eases with WGS or RNA-Seq data, the researchers can
easily download the workflow and process the data
through the HGT-ID to detect additional HGT candi-
dates. The user manual and workflow are available to
download. The fast and accurate identification of HGT
events by the HGT-ID workflow is primarily helpful in
elucidating the effect of viral gene horizontal transfer on
tumorigenesis and other diseases.
As limited by the design of the algorithm, which re-

quires discordant read pairs to start clustering, HGT-ID
can only be applied to paired-end sequencing reads.
HGT-ID applies a subtraction strategy to focus on un-
mapped reads that don’t belong to the human genome.
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Viral species are identified by aligning against the RefSeq
viral genome database; thus, novel viral species will not be
detected. We recommend updating the viral reference
genome database to the latest NCBI RefSeq version before
running HGT-ID workflow. Viral genomes are known for
high mutation rates, which might prevent some of the se-
quences from being mapped to the reference viral gen-
ome. This problem can be partially solvedd by adjusting
the aligner parameter to tune it to a more sensitive mode.
HGT-ID workflow was implemented in Perl and Bash

programming language and has been tested on various
Linux platforms. It depends on several third-party tools, in-
cluding SAMtools [50], BedTools [51], in addition to the
BWA-mem as mentioned earlier [30]. HGT-ID provides
visualization of the detected integration sites using the
RCircos [52] method. All of these tools are publicly avail-
able and are also packaged as part of the HGT-ID package.
The software package together with an example is available
at http://kalarikrlab.org/Software/HGT-ID.html.

Conclusion
HGT-ID is a novel computational workflow to detect
the integration of viruses in the human genome using
the sequencing data. It is fast and accurate with func-
tions such as prioritization, annotation, visualization and
primer design for future validation of HGTs. The pipe-
line is now applied in several research and clinical pro-
jects at the Mayo Clinic for cancers that are associated
withviruses. In the future, we plan to extend the applica-
tion to detect bacterial HGT as well.

Availability and requirements

� Project name: HGT-ID
� Project homepage: http://kalarikrlab.org/Software/

HGT-ID.html
� Operating system(s): Linux or VM
� Programming language: PERL, JAVA, R and BASH
� Other requirements: none
� License: Open Source (MIT license)
� Any restrictions to use by non-academics: none
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