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Abstract: Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. It can
cause fatty liver (steatosis), steatohepatitis, fibrosis, cirrhosis, and liver cancer. Alcohol consumption
can also disturb the composition of gut microbiota, increasing the composition of harmful microbes
and decreasing beneficial ones. Restoring eubiosis or preventing dysbiosis after alcohol consumption
is an important strategy in treating ALD. Plant natural products and polyphenolic compounds exert
beneficial effects on several metabolic disorders associated with ALD. Natural products and related
phytochemicals act through multiple pathways, such as modulating gut microbiota, improving redox
stress, and anti-inflammation. In the present review article, we gather information on natural extract
and bioactive compounds on the gut-liver axis for the possible treatment of ALD. Supplementation
with natural extracts and bioactive compounds promoted the intestinal tight junction, protected
against the alcohol-induced gut leakiness and inflammation, and reduced endotoxemia in alcohol-
exposed animals. Taken together, natural extracts and bioactive compounds have strong potential
against ALD; however, further clinical studies are still needed.

Keywords: bioactive compounds; gut-liver axis; alcoholic liver disease; gut microbiota

1. ALD: Epidemiology, Progression, Pathogenesis, and Treatment

Alcohol abuse is the fifth leading cause of disease and death worldwide. Around
2.4 billion people drink alcohol globally, including 1.5 billion (1.4–1.6) men and 0.9 bil-
lion (0.8–1.0) women [1]. However, drinking condition differs from country to country.
For instance, the total per capita intake of alcohol in France is 12–13 L/adult, followed
by the United Kingdom, Eastern Europe, United States of America, Italy, and North
Africa/Middle East of 11–12 L/adult, 11–13 L/adult, 10 L/adult, 7 L/adult, and only
0–2 L/adult, respectively [2].

Alcohol is a major hazard of alcoholic liver disease (ALD), which begins with fatty liver
disease (steatosis) and later progresses to alcoholic steatohepatitis (ASH) and fibrosis [3,4].
Distinguishing between acute and chronic alcohol intake and its impact on ALD prognosis
is critical [5]. Although alcohol intake is the main cause of ALD, environmental variables
and genetics may contribute to its progression [6]. Steatosis is one of several initial man-
ifestations of ALD, essentially defined by an oversized liver. ALD can lead to serious
consequences, such as cirrhosis and hepatocellular carcinoma, and there are currently no
FDA (Food and Drug Administration)-approved treatments [4].
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Despite steatosis being prevalent in ALD, the development of cirrhosis is observed
in only 10% to 15%, whereas the incidence of ASH was reported in up to 20–40% of
individuals [7,8]. Each year, around 2 million individuals die from liver failure worldwide,
and alcohol consumption is responsible for up to 50% of cirrhosis mortality.

In 2010, the global rate of death from alcohol-related cirrhosis was 7.2 per 100,000 people,
which includes 9.7 in 100,000 males and 4.6 in 100,000 females [9]. So far, our expertise
regarding the underlying pathogenesis of ALD is quite limited [10]. Liquor is indeed a
primary hepatotoxin, and its consumption initiates a cascade of metabolic reactions that
contribute to the final hepatotoxic consequence [11].

The preliminary clarification of malnutrition as the primary pathogenic pathway has
been superseded by the current concept that alcohol is metabolized by the hepatocyte,
initiating pathogenic processes that require the yield of peptides and cytokine production,
immunology action, and oxidative damage [12]. In certain situations, the duration of liver
damage is proportional to the amount of alcohol consumed [13]. With prolonged alcohol
intake, alcohol-induced liver diseases can develop into infections, such as steatohepatitis,
fibrosis, cirrhosis, and possibly hepatocellular carcinoma (HCC). Alcoholic-induced fatty
liver is an alcohol-related disease in which alcohol promotes fat storage in liver cells [6].
If patients do not receive any treatment, hepatic fibrosis/cirrhosis or liver failure may
occur [14]. Excessive alcohol intake can also cause steatohepatitis, which causes varying
degrees of liver damage, such as steatosis, blistering, alcohol foam degeneration, lobu-
lar/fibrous inflammation, and acute cholestasis [15]. Alcoholic hepatitis (AH) is an acute
inflammatory liver disease with high morbidity and mortality. Notably, AH was not as-
sociated with alcohol dose. AH is directly related to liver dysfunction and hepatic duct
formation [16]. HCC is the third leading cause of cancer-related death in the world. Alcohol
consumption can lead to oral, bowel, and liver cancers. Alcohol plays an important role in
causing cancer by increasing the expression of many oncogenes, leading to cancer-causing
mutations [6]. Addressing alcohol-induced liver injury requires an understanding of the
complicated interaction of numerous distinct hepatic cell types [17,18].

The liver-gut microbiota axis involved reciprocal processes, including genetic, nu-
tritional, and environmental variables. Modulation of the intestinal barrier explains the
relationship between the gut and liver, occasionally with adverse consequences for the
liver. Alcohol directly acts on liver parenchymal cells during liver pathogenesis, causing
changes in intestinal barrier function, alteration of the microbiota, and enhancement of
toll-like receptors (TLRs) activation in hepatic cells. Particular attention should be paid to
modifying the gut flora, which contributes to the pathogenesis of liver disorders [19].

Modern therapeutics for ALD involve abstinence from alcohol, use of corticosteroids, s-
adenosylmethionine, pentoxifylline, specific anti-TNF-α therapy, and type of diet. However,
these therapies have no significant effect on fighting ALD. Therefore, lifestyle intervention
on diet and exercise becomes the primary recommendation for ALD subjects [3,20,21].
Liver transplantation is a last resort, although invasive and expensive, and remains the
therapeutic option when all other techniques fail to ameliorate the disease, usually only
when patients abstain from alcohol [22,23]. Earlier, several researchers reported that natural
extracts and bioactive compounds might be an ideal option for the prevention and treatment
of many diseases, including ALD [24–32]. The preliminary purpose of the current review
is to provide in-depth information regarding the effects of natural extracts and bioactive
compounds against ALD via the gut-liver axis. This review will help ALD investigators
understand nutritional therapy in regard to ALD.

2. Effect of Alcohol on Gut Microbiota

Alcohol abuse significantly affected many microbes in various parts of the gastroin-
testinal tract (Figure 1). The extent of small intestine bacterial overgrowth was reported to
increase after alcohol exposure [33,34]. Moreover, many key phyla, such as Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria, are affected by alcohol. The increment in the
abundance of Proteobacteria phylum in response to alcohol was also documented [35,36].
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The abundance of Enterobacteriaceae increased, while the abundance of Bacteroidetes de-
creased [37,38].
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Figure 1. Alcohol abuse significantly affects many microbes in the gut. ↑, the abundance was
upregulated; ↓, the abundance was down-regulated.

The relative abundance of Corynebacterium and Actinobacteria phylum was reported to
increase after alcohol exposure, whereas phylum Firmicutes decreased [37,39]. The phylum
Firmicutes contains many genera, namely Lactobacillus, Ruminococcus, Subdoligranulum,
Faecalibacterium, and Roseburia that were decreased, whereas Clostridium, Streptococcus,
Holdemania, and Coprobacillus increased after alcohol exposure [35,36,38,40,41]. The phylum
Verrucomicrobia, which contains the Akkermansia genus, has decreased in the stool of people
exposed to alcohol [36,42].

Collectively, chronic alcohol administration or intake results in dysbiosis, which is
related to a decrease in beneficial bacteria. Restoring eubiosis or preventing dysbiosis after
alcohol intake is an important strategy against ALD.

3. Mechanisms of Dysbiosis Driving Alcohol-Related Liver Diseases
3.1. Dysregulation of Bile Acid Metabolism

One of the significant communicators between the intestine and liver is bile acids. The
hepatic biliary system secretes conjugated bile acids, which are converted as needed by
intestinal bacteria in the duodenum [43]. Then the modified bile acids enter the enterohep-
atic circulation and reach the liver again. As previously mentioned, liver cirrhosis lowers
normal bile flow in patients [44]. Bile acids stimulate the farnesoid X receptor in intestinal
epithelial cells, leading to the induction of antimicrobial molecules [45]. On the contrary,
the overgrowth of intestinal bacteria results from decreased bile flow. The experimental
model of alcohol feeding in rodents showed a correlation between bile acid metabolism
and the intestinal microbiome. Due to ethanol intake, taurine-conjugated bile acids were
reduced in rats’ intestines and livers [46]. Nevertheless, the level of glycine-conjugated
and unconjugated bile acids increased [47]. The partial reason behind this could be the
overgrowth of gastrointestinal bacteria as cirrhosis patients exhibit escalated bile acids
deconjugation [48]. Chronic abuse of alcohol in patients raises the total amount of bile
acids, secondary bile acids, lithocholic acid, deoxycholic acid, and secondary-to-primary
bile acid ratio in the stool [49]. If any patient develops advanced cirrhosis, they show an
increment in serum level of conjugated bile acids and a reduction in the amount of total
bile acids [49,50]. The secretion dimension of bile acid in the intestine of cirrhotic patients
may be the underlying cause of both phenomena [44]. For a better understanding of
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pathogenesis related to chronic alcohol abuse and to develop potential therapeutic agents,
extensive research is needed to further explore the interactions between bile acids and gut
microbiota. This bidirectional crosstalk can better define the communications between the
liver and intestine.

3.2. Microbial Products Contribute to Liver Inflammation and Disease

The liver readily absorbs toxins from the portal vein circulation as the unadulter-
ated intestinal products reach the liver first. The promoters of hepatocellular injury are
microbial toxins; including microbial pathogen-associated molecular patterns (PAMPs),
fungal exotoxins (such as candidalysin), bacterial exotoxins (such as cytolysin secreted by
Enterococcus), bacterial endotoxins (such as lipopolysaccharide [LPS] from gram-negative
bacteria), hepatic toll-like receptors activated by endotoxins, and PAMPs that directly
interact with pattern-recognition receptors present on hepatic stellate and Kupffer cells.
The microbial products can advance cytokine stimulation, fibrotic changes, and oxidative
stress (OS) of the inflammatory cascade [51].

Specific exotoxins exert pathogenicity in ALD patients. Compared to heavy drinking
control, patients with AH show an increased abundance of Enterococcus faecalis, a cytolysin-
producing bacteria. The quantity of cytolysin is associated with both the mortality and
extremity of disease, the same as the fungal exotoxin candidalysin, which is also found in
higher concentrations in AH patients [52]. Ethanol-comprising diet worsened liver injury
in candidalysin-producing Candida colonized mice [53].

Studies have shown that dysbiosis may be related to the amount of endotoxins that
circulate freely. Dysbiosis in ALD patients, along with AH and alcohol-related cirrhosis
patients, revealed a correlated upsurge in flowing LPS [54–56]. Alcohol-related cirrhosis
seemed to show a greater degree of endotoxemia than non-alcohol-induced cirrhosis,
despite the end-stage liver disease scores being irrelevant [54]. Intestinal permeability is
probably a vital implementer of endotoxemia. Markedly, half of the patients with ALD
(about half of alcohol use disorders patients) showed increased permeability in the intestinal
barrier, revealing a close association with microbiome changes. Therefore, increased
intestinal permeability caused by microbial dysregulation is an important prerequisite for
the progression of ALD [57,58].

3.3. Short-Chain Fatty Acids (SCFAs)

There are numerous processes involved in the regulation of intestinal permeabil-
ity. Consumption of alcohol can affect many of those processes. Chronic alcohol intake
deteriorates dysbiosis and subsequently disturbs the integrity of the tight junctions of
the enterocyte, as SCFA-producing commensals are involved in maintaining barrier in-
tegrity [51]. Additionally, hepatic inflammation and adiposity can be mitigated by SC-
FAs [59]. ALD patients exhibited a consistent decrease in the microbiomes of Lachnospiraceae
and Ruminococcaceae families [42,50,54,60–62]. Conversely, Veillonella is also known to pro-
duce SCFAs and is often expanded in patients with ALD [50,60,62,63]. There was a signifi-
cant reduction in SCFAs in the feces of AH patients compared to heavy drinkers, despite
changes in specific microbial patterns [60]. In short, intestinal permeability increases with
the fading production of SCFAs, ultimately leading to hepatic inflammation.

3.4. Endotoxin

Endotoxin is one of the main components of the outer membrane of the gram-negative
bacteria cell wall. Compared to non-alcoholic subjects, plasma of alcohol abused patients
contained a 5-fold higher concentration of endotoxin [64]. Intake of alcohol disturbs
the intestinal barrier functions and magnifies intestinal permeability. In the rat model,
alcohol administration enabled systemic translocation and absorption of endotoxin [65].
The intensity of ethanol-induced liver injury in rats was significantly interrelated with
endotoxin levels in plasma [66]. Endotoxin can cross the intestinal barrier and activate the
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Kupffer cells that generate TNF-α and superoxide in the liver, resulting in severe hepatic
damage [67].

4. Protective Effect of Natural Products and Their Bioactive Compounds
against Alcoholic Induced Gut Microbiota Dysbiosis
4.1. Bioactive Compounds against Alcohol-Induced Gut Microbiota Dysbiosis

Phenolic compounds are a large group of chemicals, such as phenolic acids, flavonoids,
stilbenes, lignans, and other chemicals, commonly present in various edible plants. Phenolic
compounds possess countless health benefits, including the hepatoprotective effect [26,27].
Earlier, Yuan et al. reported that epigallocatechin-3-gallate (EGCG) protected ALD via in-
hibiting alcohol-induced gut leakiness and inflammatory factors expressions, and reducing
endotoxemia in rats [26]. Later, another study documented that EGCG acted as a prebiotic
for L. plantarum, developing microbead synbox, and was promising as a therapeutic option
for the ALD [28]. Similarly, other polyphenolic compounds, puerarin and kaempferol,
alleviated ALD in mice via regulating intestinal tight junctions and inhibiting endotoxin
leakage [29,30].

Earlier, tributyrin supplementation was found to protect mice from alcohol via ex-
pression and co-localization of tight junction (TJ) proteins (ZO-1, occludin), as well as bu-
tyrate receptor (GPR109A) and transporter (SLC5A8) in the ileum and proximal colon [68].
Aplysin, a brominated sesquiterpene compound purified from red alga Laurencia tristicha
was studied against ALD. The daily treatment of aplysin (150 mg/kg bw) for 12 weeks
markedly modulated the composition of Escherichia coli, Bacteroides fragilis, Lactobacillus,
Bifidobacterium, and other key biomarkers, thus protecting ALD [69].

Astaxanthin was also reported to protect ALD via modulating mouse gut microbiota,
such as decreasing the Bacteroidetes, Proteobacteria, Parabacteroides, Butyricimonas, Bilophila
and increasing Akkermansia and Verrucomicrobia in mice [31].

Berberine is a natural compound present in many plant extracts and possesses multiple
health effects. Recently, Li et al. conducted a study to explore the protective effect of berber-
ine against alcohol-mediated gut microbiota dysbiosis. Berberine (10, 50, and 100 mg/kg
bw) was orally administrated to the mice for 33 days. Results revealed that berberine
treatments markedly improve gut microbiota dysbiosis by increasing the abundance of
Akkermansia muciniphila [32]. More recently, Han et al. investigated the protective effect
of cornel iridoid glycoside isolated from Cornus officinalis Sieb. et Zucc against ALD. The
cornel iridoid glycoside was supplemented at the dosage of 50, 100, and 200 mg/kg bw for
16 days in the mice. The results revealed that cornel iridoid glycoside supplementation sig-
nificantly attenuated ALD via enhancing antioxidant activities, reducing inflammation, and
altering intestinal microbial diversity. Cornel iridoid glycoside supplementation increased
the abundance of Lactobacillus and decreased the proportion of norank_f_Muribaculaceae
and norank_f_Desulfovibrionaceae in mice [70]. Furthermore, ursolic acid and antrodin A
have recently been reported in two different studies to protect against alcohol-induced liver
injury via the gut-liver axis [71,72].

Polysaccharides are polymeric carbohydrate molecules abundantly present in various
plants, algae, microorganisms, and animals, exerting a wide array of biological activities,
including hepatoprotective activities [73]. Many authors reported that polysaccharides
could protect the liver from alcohol damage via multiple pathways, including restoring gut
dysbiosis [32,74–76]. In detail, Wang et al. isolated polysaccharides from garlic (molecular
weight: 10 Kda, acid heteropolysaccharide), which was further studied against ALD in
mice. Results showed that daily garlic polysaccharide administration (150 and 250 mg/kg
bw for 30 days) could alleviate various biochemical indicators, increasing the abundance of
Lachnospiraceae and Lactobacillus, and decreasing the abundance of Facklamia and Firmicutes
in ethanol-induced mice [74]. Yang et al. found that inulin administration could ameliorate
ALD via inhibiting the LPS-TLR4-Mψ axis, and rectified gut dysbiosis mainly by increasing
the abundance of Lactobacillus, Lactococcus, and Allobaculum and reducing the abundance
of Parasutterella [75]. In another study, Coprinus comatus polysaccharides could regulate
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gut microbiota in ALD mice by increasing the proportion of Lachnospiraceae, Firmicutes,
Muribaculaceae, and Bacteroidetes and decreasing the Rikenellaceae proportion, which showed
prebiotic-like effects on the intestinal flora in ALD mice [32]. Similarly, Wolfiporia cocos
polysaccharides were also reported to modulate gut microbiota in ALD mice, mainly by
increasing the Firmicutes to Proteobacteria ratio and the abundance of Lachnospiraceae [77].
Oral administration of oyster (Crassostrea gigas) polysaccharides (282 mg/kg bw) could also
increase the proportion of Roseburia spp. and Lactobacillus reuteri, and decrease Escherichia
proportion in ALD mice [78].

4.2. Natural Product Extracts against Alcohol-Induced Gut Microbiota Dysbiosis
4.2.1. Fruits and Vegetables

Lychee (Litchi chinensis Sonn.) pulp extract rich in polyphenolic compounds (pro-
cyanidin B2, (-)-epicatechin, quercetin-3-O-rutinoside-7-O-α-L-rhamnosidase, rutin, and
isorhamnetin-3-O-rutinoside) was orally given (0.2 and 0.4 g/L bw) to the ethanol-exposed
(4%, v/v) mice for 8 weeks. Results revealed that compared with the ethanol group, lychee
pulp extract supplementation increased the relative abundance of the Lactobacillus genus,
Bacteroides acidifaciens species, Actinobacteria phylum, and Coriobacteriaceae family, whereas
it decreased the abundance of Dehalobacteriaceae family and Odoribacter genus. Furthermore,
it was also observed that lychee pulp extract supplementation could upregulate the expres-
sion of intestinal tight junction proteins, antimicrobial proteins, and mucus proteins while
declining the serum endotoxin level. They concluded that lychee pulp extract has strong
potential against alcoholic abuse [79]. In another study, pomegranate extract could also
prevent intestinal apoptosis, endotoxemia, alcohol-induced intestinal leakage, and inflam-
mation by regulating TJ/ adherent junction proteins [80]. Corchorus olitorius L., also known
as molokhia, is a pantropical plant consumed as a vegetable in Africa and Eastern Asia that
exerts a protective effect against several diseases [76,81]. Recently, Do et al. documented
that administration of molokhia extract (50 and 100 mg/kg bw) restored the composition of
Muribaculum and enhanced the intestinal barrier function in mice [76].

4.2.2. Cereals

Tang et al. documented that oats supplementation (10 g/kg bw) for 12 weeks to the
rats could prevent alcohol-induced intestinal leakage by protecting the integrity of tight
junctions and colonic mucosa [82]. Similarly, supplementation with rice bran phenolic
extract was also reported to combat alcohol-induced liver injury via alleviating intestinal
microbiota dysbiosis. Briefly, rice bran phenolic extract supplementation increased the
abundance of Bacteroides acidifaciens and Lactobacillus, whereas it decreased pathogenic
bacteria such as Muribaculum. Furthermore, it was also observed that rice bran phenolic
extract could protect the intestinal barrier from alcohol [83]. Recently, Yang et al. reported
that wheat embryo globulin could maintain the composition of gut microbiota [84].

4.2.3. Oils

Fish oil contains a significant amount of n-3 polyunsaturated fatty acids (PUFAs),
which have been reported to alter gut microbiota. It has also been documented that fish oil
supplementation can increase Bifidobacterium and decrease Escherichia coli in the feces of rats
fed alcohol [85–87]. More recently, Chen et al. also reported that fish oil supplementation
reduced the overgrowth of Rikenellaceae, Bacteroidetes, Alistipes, and Bacillaceae, inhibited
endotoxin production, and suppressed TLR4 activation in chronic ethanol-fed rats [30].

Flaxseed oil was also reported to protect against the adverse effect of alcohol by
modulating gut microbiota in alcohol-induced liver injury mice [88]. According to the
report, Decaisnea insignis seed oil (containing palmitoleic acid, palmitic acid, and oleic acid)
could protect against alcohol-associated liver damage in mice via increasing the abundance
of Lactobacillus, Ruminoccoceae_UCG_004 and decreasing Parabacteroides abundance [89].

Okra seed oil supplementation has been reported to improve ALD via regulating
intestinal microbiota. Briefly, Okra seed oil supplementation at the dosage of 400 and
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800 mg/kg bw for 8 weeks decreased the proportion of Proteobacteria, Clostridium XlVa, and
Staphylococcus, while enhancing the abundance of Bacteroidetes in alcohol-treated mice [90].

4.2.4. Tea

It has been reported that Pu-erh tea extract (PTE) played a protective role against
ALD mainly through improving OS, lipid accumulation, inflammation, and microbiota
dysbiosis. PTE treatment increased the relative abundance of potentially beneficial bac-
teria (Bifidobacterium and Allobaculum) and decreased the relative abundance of harmful
bacteria (Helicobacter and Bacteroides) [91]. More recently, Li et al. studied the effects of
six tea samples: two black teas (Dianhong tea and Yingde Black tea), two oolong teas
(Tieguanyin Tea and Fenghuang Danzong Tea), and two dark teas (Fuzhuan Brick tea and
Selenium-Enriched Dark tea) against ALD in mice. Results revealed that all tea sample
supplementation markedly protected from the adverse effect of alcohol. However, more
profound results were observed in oolong tea and dark tea. Moreover, their findings
suggested that Akkermansia is the target microorganism for Tieguanyin Tea and Fu Brick
Tea [92].

4.2.5. Fermented Liquids

Vinegar is fermented acidic food rich in various bioactive compounds such as polyphe-
nols, flavonoids, and melanoidins. It was previously reported that Shanxi aged vinegar
extract (SAVE) contains chlorogenic acid, p-hydroxybenzoic acid, ferulic acid, rutin, sy-
ringic acid, gallic acid, and other polyphenols, which exerts high antioxidant activity and
protects liver cells from oxidative damage [83]. In another study, the same research group
documented that polyphenol-rich SAVE attenuated ALD via regulating gut microbiota.
Briefly, they found that various microbes (Lactobacillus, Bacteroidetes, Akkermansia, Verru-
comicrobia) showed a significant positive correlation with OS and inflammatory indictors
(occludin, Reg3b, Reg3g, and ZO-1), whereas Proteobacteria, Parabacteroides, Firmicutes,
Bilophila, and Butyricimonas exhibited the opposite effect [93]. In addition, this research
group also investigated the protective effect of another vinegar (Zhenjiang aromatic vine-
gar; ZAV) against ethanol-induced liver injury. Results showed that ZAV could regulate
the composition of gut microbiota and immune factors in ALD mice. Additionally, Lach-
nospiraceae_NK4A136_group, Bacteroidetes, and Akkermansia were positively correlated with
antimicrobial peptides and intestinal immune factors, but negatively correlated with in-
flammatory and OS parameters [94].

Fermented rice liquors (called Makgeolli in Korea) were also documented to restore fecal
microbiota compositions in mice induced by alcohol. The abundance of Bacteroidetes and
Firmicutes phyla was observed to return to the control group level. Moreover, treatment with
fermented rice liquors also increased the content of fecal SCFA and reduced inflammatory
responses in mice induced by alcohol [95]. Baijiu, a Chinese traditional fermented liquor
containing volatile compounds such as esters, acids, and phenols, was also reported to
increase the relative abundance (11%) of Lactobacillus compared to the ethanol-treated group
(1.80%) [96].

Ran et al. studied the protective effect of sea buckthorn-fermented liquid against
ALD. The sea buckthorn was fermented with a Lactobacillus plantarum BNCC194165 strain,
exhibiting a significant increment in the total flavonoids, total triterpenes, and SCFAs
compared with the unfermented sea buckthorn. Furthermore, fermented sea buckthorn
liquid was sterilized and orally given (1.75, 2.675, and 5.35 g/kg bw) to the mice for 15 days.
Results showed that fermented sea buckthorn liquid could protect the liver from alcohol by
improving OS, decreasing inflammation, and regulating gut microbiota. The high dosage
of fermented sea buckthorn liquid (5.35 g/kg bw) significantly enhanced the abundance of
Lactobacillus and decreased the abundance of Ruminiclostridium, Akkermansia, Alistipes, and
Turicibacter in mice [97].
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4.2.6. Herbs and Miscellaneous Extracts

Rhubarb (Rheum palmatum and Rheum officinale), a natural edible herb, contains a
variety of bioactive compounds, including anthraquinone derivatives with hepatoprotective
effects [98]. Neyrinck et al. reported that rhubarb extract (0.3%) could change the microbial
composition of Akkermansia muciniphila and Parabacteroides goldsteinii, improving hepatic
injury and decreasing inflammatory and OS biomarkers in alcohol-induced mice [99].

The mixture of Ginkgo biloba and Rosa roxburghii juice, rich in bioactive compounds
(rutin, quercetin, kaempferol, isorhamnetin, ginkgolide C, bilobalide, ginkgolide A, and
ginkgolide B), was reported to protect alcoholic intestinal barrier dysfunction via restoring
tight junctions [100]. In another study, Lactobacillus fermentum KP-3-fermented ginseng
(Panax ginseng) was orally administrated (390 mg/kg bw) to alcohol-exposed mice for
14 days. Results revealed that fermented ginseng supplementation could improve gut
microbiota dysbiosis via restoring the abundance of Lactobacillus and Bifidobacteria, Bac-
teroidetes phylum, and the Proteobacteria genus of the Sutterella phylum, Verrucomicrobia
phylum, Allobaculum genus, Ruminococcus genus, Adlercreutzia genus, and Actinobacteria
phylum [101].

Choi et al. conducted a study to explore the protective effect of defatted Tenebrio
molitor larva fermented extract against chronic alcohol-fed rats. Results showed that
defatted Tenebrio molitor larva fermented with Saccharomyces cerevisiae strain (KCTC 17299)
extract at the dosage of 200 mg/kg/day could attenuate ALD via modulating intestinal
microflora, steatosis, and inflammation. It was observed that defatted Tenebrio molitor larva
extract restored the Lactobacillus johnsonii abundance [102]. Similarly, many other natural
extracts such as Pogostemon cablin, edible insect Gryllus bimaculatus, Semen Hoveniae, and
Dendropanax morbifera leaf extract were reported to protect against alcohol-mediated gut
microbiota dysbiosis [103–106].

5. Discussion

A large amount of evidence suggests that intestinal microbiome dysregulation is a key
risk factor for the progression/development of ALD. The graphical summary of the effects
of chronic alcohol consumption on the gut-liver axis is shown in Figure 2. Prevention of
alcohol-induced dysbiosis is an important strategy in the treatment of ALD. In this regard,
natural products and bioactive compounds play a significant role. As mentioned above,
edible plants and their bioactive compounds could restore gut microbiota in animal models
(Table 1).

Table 1. Summary of the protective effect of various natural products against ALD.

Extract Bioactive Compound Study Design Major Finding Ref

Litchi chinensis Sonn

Procyanidin B2,
(-)-epicatechin,

quercetin-3-O-rutinoside-7-
O-α-L-rhamnosidase, rutin,

and isorhamnetin-3-O-
rutinoside

Lychee pulp extract was orally
given (0.2 and 0.4 g/L bw) to the
ethanol-exposed (4%, v/v) mice

for eight weeks.

Lychee pulp extract
supplementation

upregulated the expression
of intestinal tight junction

proteins, antimicrobial
proteins, and mucus

protecting proteins while
decreasing the serum

endotoxin level.

[79]

Pomegranate Not investigated

Age-matched 7-week-old female
Fischer 344 wild-type rats were
orally administered a daily dose

of 600 mg pomegranate
extracts/kg, based on the safety

and effective dosages of
pomegranate extract binge

alcohol (5 g/kg/dose).

Pomegranate extract could
protect ALD via modulating
TJ/AJ proteins, preventing

elevated apoptosis of
enterocytes, endotoxemia,

alcohol-induced gut
leakiness, and inflammation.

[80]
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Table 1. Cont.

Extract Bioactive Compound Study Design Major Finding Ref

Corchorus olitorius L. Chlorogenic acid, catechin,
and astragalin

Mice were orally administered
40% ethanol (4.0 g/kg/day) and

50 or 100 mg/kg of Corchorus
olitorius L. extract, respectively.

Corchorus olitorius L. extract
(50 and 100 mg/kg bw)
administration restored

Muribaculum composition
and protected gut barrier

function in mice.

[76]

Oats Not investigated

Male SD rats were gavaged for
12 weeks with alcohol (starting
dose of 1 g/kg increasing to 6

g/kg/day over the first 2 weeks)
or dextrose, with or without oats
supplementation (10 g/kg/day).

Oats supplementation
(10 g/kg bw) could protect

alcohol-induced leaky gut by
protecting the integrity of
tight junctions and colonic

mucosa.

[82]

rice bran phenolic
extract

Acacetin, protocatechuic
aldehyde, caffeic acid,

p-coumaric acid, ferulic
acid, sinapic acid,

quercitrin, vitexin, rutin,
hesperidin, ethyl caffeate,

and ethyl coumarate

Rats were given a control liquid
diet, an ethanol (4%, w/v) liquid

diet, and an ethanol (4%, w/v)
liquid diet supplemented with

0.25 or 0.50 g/L rice bran
phenolic extract for eight weeks,

respectively.

Rice bran phenolic extract
supplementation increased
the Bacteroides acidifaciens

and Lactobacillus population
while decreasing pathogenic

bacteria such as
Muribaculum. Rice bran

phenolic extract could
protect the intestinal barrier

function from alcohol.

[83]

Fish oil Not investigated

Thirty-six male Wistar rats (8
weeks old) were divided into six
groups: control, control diet with
25% fish oil substitution, control

diet with 57% fish oil
substitution, ethanol-containing
diet, an ethanol-containing diet
with 25% fish oil substitution,

and ethanol-containing diet with
57% fish oil substitution groups.

Fish oil supplementation
decreased overgrowth of
Rikenellaceae, Bacteroidetes,
Alistipes, and Bacillaceae,

inhibited endotoxin
production, and suppressed
TLR4 activation in chronic

ethanol-fed rats.

[30]

Decaisnea insignis seed
oil

Palmitoleic acid, palmitic
acid, and oleic acid

Fifty mice were orally
administered with 38% alcohol
(0.4 mL/day) and without or

with Decaisnea insignis seed oil
(3, 6, and 12 g/kg) for
consecutive 12 weeks.

Decaisnea insignis seed oil
increased the abundance of

Lactobacillus,
Ruminoccoceae_UCG_004, and

decreased Parabacteroides
abundance.

[89]

Okra seed oil

Linoleic acid, palmitic acid,
oleic acid, decanoic acid,
lauric acid, tridecanoic

acid, myristic acid,
palmitoleic acid,

trans-9-octadecenoic acid,
stearic acid,

gamma-linolenic acid,
eicosenoic acid, and

behenic acid

Okra seed oil was orally given at
the dosage of 400 and 800

mg/kg bw for 8 weeks to the
alcohol-administered mice.

Okra seed oil
supplementation decreased

the proportion of
Proteobacteria, Clostridium
XlVa, and Staphylococcus,

while enhancing the
Bacteroidetes population in

alcohol-treated mice.

[90]
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Table 1. Cont.

Extract Bioactive Compound Study Design Major Finding Ref

Pu-erh tea extract

(−)-allocatechin,
(−)-gallocatechin gallate,

(−)-epicatechin,
(−)-epicatechin gallate,

(−)-epigallocatechin,
(−)-epigallocatechin
gallate, (−)-catechin,
(−)-catechin gallate,
γ-aminobutyric acid

Mice were orally given Pu-erh
tea extract at the dosage of 0.1 or

0.4% (1 or 4 g/L, w/v) for 4
weeks.

PTE treatment increased the
relative abundance of

potentially beneficial bacteria
(Bifidobacterium and

Allobaculum) and decreased
the relative abundance of

harmful bacteria (Helicobacter
and Bacteroides).

[91]

Green tea

Gallic acid, gallocatechin,
epigallocatechin, catechin,
chlorogenic acid, caffeine,
epigallocatechin gallate,
epicatechin, ellagic acid,

myricetin, quercitrin,
astragalin, theaflavin, and

kaempferol

Green tea samples were given to
the mice at a dosage of

200 mg/kg bw for 4 weeks.

Akkermansia is the target
microbe for the protective

effects of Tieguanyin Tea and
Fu Brick Tea toward ALD.

[92]

Tenebrio molitor larva Not investigated

The alcohol-fed rats were
administered defatted Tenebrio

molitor larva (50, 100, or
200 mg/kg/day) orally for eight

weeks

Defatted Tenebrio molitor
larva fermented with

Saccharomyces cerevisiae strain
(KCTC 17299) extract at the
dosage of 200 mg/kg/day

attenuated ALD via
modulating intestinal

microflora (restoring the
Lactobacillus johnsonii

abundance), steatosis, and
inflammation.

[102]

Garlic polysaccharide Acid heteropolysaccharide

The purified garlic
polysaccharide was orally

administrated at a dosage of 150
and 250 mg/kg bw for 30 days.

Daily garlic polysaccharide
administration (150 and

250 mg/kg bw for 30 days)
could alleviate various
biochemical indicators,

increasing the abundance of
Lachnospiraceae and

Lactobacillus, and decreasing
the abundance of Facklamia

and Firmicutes in
ethanol-induced mice.

[74]

Coprinus comatus
polysaccharides Not investigated

Coprinus comatus
polysaccharides (200 mg per kg
bw) were orally administered for

30 days.

Coprinus comatus
polysaccharides could

regulate gut microbiota in
ALD mice by increasing the
proportion of Lachnospiraceae,

Firmicutes, Muribaculaceae,
and Bacteroidetes, and by

decreasing the Rikenellaceae
proportion, which showed
prebiotic-like effects on the

intestinal flora in ALD mice.

[32]
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Table 1. Cont.

Extract Bioactive Compound Study Design Major Finding Ref

Oyster (Crassostrea
gigas) Not investigated

Oyster polysaccharides
(282 mg/kg bw) were orally

given to mice.

Oral administration of oyster
(Crassostrea gigas)

polysaccharides (282 mg/kg
bw) could also increase the
proportion of Roseburia spp.
and Lactobacillus reuteri, and

decrease Escherichia
proportion in ALD mice.

[78]
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Briefly, Lactobacillus, a therapeutically relevant bacterial genus, decreased after alcohol
intake, which can be further restored through various bioactive compounds and natural
products [70,74,78,79,96,97]. Lactobacillus is a beneficial bacteria that produces bacteriocins
such as antibiotics, which further inhibit harmful microbes of the Enterobacteriaceae family,
such as Salmonella or Shigella [107]. Lactobacillus can protect against pathogenic and
invasive bacteria by adhering to intestinal epithelial cells [108,109]. In addition, they
produce SCFAs (lactic acid, propionic acid, or butyric acid), which provide nutrition to
epithelial cells [110].

Allobaculum and Bifidobacterium are beneficial intestinal bacteria that produce SC-
FAs (butyric and lactic acids) and a small amount of ethanol from glucose. In addition,
Bifidobacterium is a potential acetaldehyde accumulator [101]. Natural products and bioac-
tive compounds increased the abundance of Allobaculum and Bifidobacterium in alcohol-
exposed mice [91].

The Bacteroidetes phylum is composed of three major classes of gram-negative bacteria
present in the intestines, upper respiratory tract, mouth, and genital tracts of animals
and humans, exerting both beneficial and harmful functions. Bacteroidetes may lead to
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endogenous infections due to microecological imbalance. It has been documented that
Bacteroides fragilis can produce polysaccharide A to relieve colitis in animals [111]. Con-
versely, it also produces toxins, which facilitate pro-carcinogenic effects and mediate colon
tumorigenesis [112]. Moreover, the growth of Proteobacteri (pro-inflammatory intestinal mi-
crobes) increased due to imbalanced microbial composition, linked with the occurrence and
development of disease [113]. Natural products and bioactive compounds were reported to
decrease the abundance of Bacteroidetes and Proteobacteria in alcohol-exposed animals [31].

Several studies have documented the beneficial effects of Akkermansia on host metabo-
lites. In the phylum Verrucomicrobia, Akkermansia is a dominant genus that interferes with
intestinal mucin, enhances gut barrier function, increases mucus thickness, and inversely
correlates with metabolic syndrome and inflammation [114–116]. Akkermansia deficiency
is an early sign of alcoholic gut dysbiosis [117]. Furthermore, alcohol exposure reduced
the population of Akkermansia in both mice and humans, and alcoholic fatty liver disease
(AFLD) can be improved by supplementation of the genus, indicating the protective role
of this bacterium against AFLD [118]. Due to the nature of probiotics, the abundance of
Akkermansia may be affected by dietary ingredient supplementation [119]. On the other
hand, the abundance of Staphylococcus was directly related to the expression of TNF-α
in the liver of ALD, and the overabundance of Staphylococcus in the gut may be linked
with the aggravation of hepatic inflammation [120]. Bioactive compounds could decrease
the Helicobacter abundance, a key marker in patients with gastric disease multiplying and
growing in the intestine, slowing its production of a huge amount of endotoxin in the
gut [121,122].

Although many studies support that natural products and bioactive compounds
could modulate gut microbiota in animal experiments, there are still some limitations in
current studies, such as that (a) some plant-based functional food extracts are reported
to exert a protective effect against ALD dysbiosis. However, their bioactive components
have not yet been characterized. (b) the dosage needs to be optimized to avoid adverse
effects and contribute to the beneficial effects of plant-based functional foods, (c) effects of
plant-based functional foods and their bioactive components are mostly investigated based
on animal models, which lacks the in-depth systematic analyses, (d) large-scale clinical
trials investigating the role of plant-based functional foods and their bioactive components
against ALD have not been conducted as results based on animal models and humans
may differ. Despite limitations and gaps, plant-based functional foods and their bioactive
components are a viable approach for treating ALD dysbiosis.

6. Conclusions

ALD is a disease caused by excessive consumption of alcohol with high morbidity
and mortality worldwide. Gut microbiota plays a key role in many metabolic processes
beneficial to the host, such as the production of SCFAs and vitamins. However, exces-
sive intake of alcohol is also associated with gut dysbiosis in the pathogenesis of ALD.
Natural products and phytochemicals are important sources of novel therapeutic agents
against chronic diseases, including ALD. Natural products and related phytochemicals
act through multiple pathways, such as modulating gut microbiota, improving redox
stress, and anti-inflammation. Natural products and phytochemicals can increase the rela-
tive abundance of beneficial microbes (Lactobacillus, Bacteroides acidifaciens, Actinobacteria,
Coriobacteriaceae, Akkermansia, Verrucomicrobia, etc.) and decrease the relative abundance
of harmful microbes (Bacteroidetes, Proteobacteria, Parabacteroides, Butyricimonas, Bilophila,
etc.), indicating the protective effects against ALD. Natural products could also prevent
intestinal apoptosis, endotoxemia, alcohol-induced intestinal leakage, and inflammation by
regulating TJ/adherent junction proteins, LPS-TLR4 pathway, and OS biomarkers, thereby
protecting against ALD. Based on animal studies, natural products and related phytochem-
icals have proved ideal candidates for combating ALD and its complications. Notably,
the transferability of these findings might not yet be possible because clinical trials are
still warranted.
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