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Abstract Cachexia is an irreversible process that can
develop in the course of chronic disease. It is characterized
by the remodeling of the metabolic, inflammatory, and
endocrine pathways. Insulin, growth hormone (GH), and
insulin-like growth factor 1 (IGF-1) are involved in
glucose, protein, and fat metabolism, which regulates body
composition. In body wasting and cachexia, their signaling
is impaired and causes anabolic/catabolic imbalance.
Important mechanisms include inflammatory cytokines
and neurohormonal activation. Remodeled post-receptor
insulin, GH, and IGF-1 pathways constitute a potential

target for pharmacological treatment in the setting of body
wasting and cachexia. Peroxisome proliferator-activated
receptor gamma agonists, drugs inhibiting angiotensin II
action (angiotensin II antagonists and inhibitors of
angiotensin-converting enzyme), and testosterone, which
interfere with post-receptor pathways of insulin, GH,
and IGF-1, were investigated as pharmacological inter-
vention targets and various clinically important implica-
tions were reported. There are several other potential
targets, but their treatment feasibility and applicability is yet to
be established.
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Abbreviations
ATP Adenosine triphosphate
CAP Cbl-associated protein
CHF Chronic heart failure
COPD Chronic obstructive pulmonary disease
GH Growth hormone
GLUT4 Glucose transporter type 4
HOMA Homeostatic model assessment
IGF-1 Insulin-like growth factor 1
IGF1R Insulin-like growth factor 1 receptor
IRS-1/2 Insulin receptor substrate 1 and 2
JAK2 Janus kinase 2
MAFbx Muscle atrophy F-box
mTORC1 Mammalian target of rapamycin complex 1
MURF1 Muscle ring finger 1
PI3K Phosphatidylinositol 3-kinase
STAT Signal transducer and activator of transcription 5
SOCS Suppressor of cytokine signaling

K. Trobec
Hospital Pharmacy,
University Clinic of Respiratory and Allergic Diseases Golnik,
Golnik, Slovenia

S. von Haehling : S. D. Anker :M. Lainscak
Applied Cachexia Research, Department of Cardiology,
Charité Medical School, Campus Virchow-Klinikum,
Berlin, Germany

S. von Haehling
Center for Cardiovascular Research (CCR),
Charité Medical School, Campus Mitte,
Berlin, Germany

S. D. Anker
Center for Clinical and Basic Research, IRCCS San Raffaele,
Rome, Italy

M. Lainscak (*)
Division of Cardiology,
University Clinic of Respiratory and Allergic Diseases Golnik,
Golnik 36,
SI-4204 Golnik, Slovenia
e-mail: mitja.lainscak@guest.arnes.si

J Cachexia Sarcopenia Muscle (2011) 2:191–200
DOI 10.1007/s13539-011-0043-5

# The Author(s) 2011. This article is published with open access at Springerlink.com



1 Introduction

Cachexia is a syndrome associated with weight loss and
changes in body composition due to loss of muscle mass,
alterations in bone structure, and reduction of fat tissue.
Over the years, various definitions have been used [1],
which has caused a lack of reliable epidemiological data.
After expert consensus meetings, cachexia is more precisely
defined as weight loss of at least 5% in 12 months or less
and fulfillment of at least three out of five criteria:
decreased muscle strength, fatigue, anorexia, low fat-free
mass index, and abnormal biochemistry [2, 3]. This
definition enables the research community to perform
epidemiological and intervention trials [3, 4]. In chronic
disease, including chronic heart failure (CHF), chronic
obstructive pulmonary disease (COPD), rheumatoid arthritis,
or cancer, an ongoing inflammatory process leads to changes
in metabolic and hormonal pathways. These can yield
alterations in body composition and can eventually cause
cachexia [4–6].

The human body regulates its composition through
various hormonal effectors, including insulin, insulin-like
growth factor 1 (IGF-1), and growth hormone (GH), which
are primarily involved in the regulation of protein synthesis
and degradation, fat mobilization, and glucose uptake and
mobilization. All processes are significantly affected in
cachexia. The aim of this article is to review the importance
of signaling pathways in body wasting and cachexia
development and to discuss some possible targets for
pharmacological interventions.

2 Insulin, GH, and IGF-1 signaling

GH, IGF-1, and insulin are involved in regulating body
composition through action on different body compart-
ments. They all act as anabolic agents in skeletal muscle,
promoting muscle mass gain. GH primarily regulates liver
IGF-1 expression with downstream anabolic effects in
skeletal muscle. In the skeleton, GH and IGF-1 induce
bone growth and help maintain bone mass. Insulin and GH
are involved in fat metabolism: GH induces lipolysis and
insulin promotes synthesis of fatty acids in the liver and
inhibits their degradation in adipose tissue [7, 8]. Generally,
skeletal muscle, bone, and fat tissue are regulated by GH,
IGF-1, and insulin, which can induce changes in body
composition through distinct and overlapping pathways.

GH or somatotropin is a peptide produced by the
pituitary gland. Its secretion is stimulated by hypothalamic
GH-releasing hormone and inhibited by somatostatin,
another peptide hormone secreted from the hypothalamus.
There are also other stimuli that affect GH levels in serum.
These include ghrelin—a peptide primarily synthesized not

only in the stomach, but also in the hypothalamus and
pituitary gland [9]—and other individual factors such as
gender, age, diet, exercise, adiposity, and sleep. Negative
feedback mechanisms of GH and IGF-1 levels are involved
in regulating serum GH concentrations [10, 11].

GH binds to the growth hormone receptor (GHR), which
is expressed in skeletal muscle, the liver, adipose tissue, the
heart, the kidneys, and other tissues. Activation of GHR
induces the synthesis of IGF-1 protein in most tissues, with
the liver being the organ that contributes the major part to
serum IGF-1 level. Circulating IGF-1 is bound to IGF-
binding protein, which prolongs IGF-1 half-life and
regulates its availability for target tissues [12, 13].

GH and other factors—for example, exercise—also induce
IGF-1 expression locally in the muscle, where it acts as a
paracrine modulator [14]. It has been shown that local
expression of IGF-1 in CHF can be significantly reduced
despite normal serum levels of IGF-1 [15]. IGF-1 binds to
the insulin-like growth factor 1 receptor (IGF1R) and insulin
receptor, but the affinity for the latter receptor is 100-fold to
1,000-fold lower than insulin affinity. It has to be considered,
however, that IGF-1 concentrations in plasma are still 100-fold
higher than those of insulin [16]. This ratio may change in the
postprandial phase because levels of insulin increase in
response to food ingestion, whereas food intake increases
IGF-1 levels to a lesser degree [17].

Insulin receptors mainly modify glucose metabolism and
can be found in the liver, adipose tissue, and muscle.
However, tissues like the brain, the heart, the kidneys, and
blood cells also express insulin receptors. Because of the
amino acid sequence homology of the insulin receptor and
IGF1R, the insulin and IGF-1 half-receptors can heterodi-
merize, forming an insulin/IGF-1 hybrid receptor that has
higher affinity for IGF-1 and, therefore, acts more like IGF-1
than an insulin receptor [18, 19].

GH, IGF-1, and insulin exert their actions on various
tissues. Signaling pathways are not the same in all organs
and exact mechanisms in different cell types have not been
revealed yet. The effects of GH, IGF-1, and insulin on
muscle tissue have already received much attention in
sports. As naturally occurring substances with anabolic and
performance-enhancing effects, they have considerable
potential to overcome routine doping-detection procedures
and have been misused by elite athletes. Nonetheless, the
research community has gained some insight into the
effects of supraphysiological levels of GH, IGF-1, and
insulin on muscle tissue and into other desirable and
undesirable actions [20, 21]. The muscle seems to be the
most important tissue affected in body wasting and
cachexia processes, and loss of muscle tissue may be the
most undesirable way of wasting. Therefore, this discussion
focuses on signaling mechanisms of GH, IGF-1, and insulin
in skeletal muscle cells.
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3 Skeletal muscle

3.1 Insulin signaling in skeletal muscle

The insulin receptor consists of two α-subunits and two
β-subunits, linked together with disulfide bonds. Binding
of insulin to the α-subunit induces a conformational
change that enables adenosine triphosphate (ATP) bind-
ing to the intracellular domain of the β-subunit.
Following ATP binding, the receptor autophosphorylates,
activating its protein kinase function. The insulin
receptor can phosphorylate various substrates, and one
of the main signaling pathways starts with the phosphor-
ylation of insulin receptor substrate (IRS) proteins. There
are six different IRS proteins (IRS-1 to IRS-6) [22],
among which IRS-1 plays the main role in skeletal muscle
[23]. Phosphatidylinositol 3-kinase (PI3K) recognizes
phosphorylated IRS with the p85 regulatory subunit and
further catalyzes phosphorylation of serine/threonine
kinases with the p110 subunit (Fig. 1). The main
downstream effector of this pathway is Akt kinase, which,
when phosphorylated, translocates to the nucleus. There it
regulates lipid, protein, and glycogen synthesis and cell
survival [16].

Another important action of insulin is insulin-dependent
glucose transport facilitated through glucose transporter
type 4 (GLUT4) translocation to the membrane; this
process can be stimulated by insulin or by other stimulatory
factors like muscle contraction [24, 25]. Insulin induces
GLUT4 translocation through the PI3K-dependent pathway
and through the PI3K-independent pathway associated with
Cbl-associated protein (CAP)/Cbl complex (Fig. 2). Herein,
its role in GLUT4 transport remains questionable, especially
in skeletal muscle [26, 27].

3.2 IGF-1 signaling in muscle

IGF-1 mainly acts through binding to IGF1R. This
receptor is a transmembrane tyrosine kinase that
autophosphorylates after IGF-1 binding. Phosphorylation
creates a docking site for its substrates: IRS-1 and Shc
protein. Again, IRS-1 can activate the p85 regulatory
subunit of PI3K, resulting in the activation of the PI3K/
Akt pathway, which inhibits cell apoptosis and promotes
protein synthesis and cell differentiation. Alternatively,
phosphorylation of Shc protein leads to the activation of
a mitogen-activated protein kinase (MAPK) cascade,
ending in induced cell proliferation [28].

Fig. 1 Schematic presentation
of GH, IGF-1, and insulin
signaling. IGF-1 insulin-like
growth factor 1, GH growth
hormone, IR insulin receptor,
IGF1R insulin-like growth
factor 1 receptor, GHR growth
factor receptor, IRS-1 insulin
receptor substrate 1, Shc Shc
protein, GRB2 growth factor
receptor-bound protein 2, PI3K
phosphatidylinositol 3-kinase,
Akt Akt protein, JAK2 Janus
kinase 2, STAT5 signal
transducer and activator of
transcription 5, SOCS
suppressor of cytokine
signaling
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3.3 GH signaling in muscle

As discussed earlier, GH exerts its effects through GHR,
a transmembrane receptor, which undergoes dimerization
after binding of GH. The phosphorylation of receptor-
associated Janus kinase 2 (JAK2) leads to the formation
of a docking site for members of the signal transducers
and activators of transcription (STAT) family of tran-
scription factors [29]. Phosphorylation of STAT5 leads to
its dissociation from the receptor and translocation into the
nucleus, where it regulates the expression of various genes
that enable physiological actions of GH [30]. Among
these genes, the expression of suppressors of cytokine
signaling (SOCSs) is induced. This family of proteins
negatively modulates cytokine-mediated signal transduc-
tion pathways. SOCSs, in turn, inhibit GH signaling
through a negative feedback mechanism [29]. The JAK/
STAT signaling pathway is also responsible for the
induction of IGF-1 mRNA expression [31], although
Jørgensen et al. found this to be regulated like this only
in fat tissue and not in muscle [32].

There are two additional pathways in GH signaling that
are triggered by JAK2 phosphorylation. First, there is the
MAPK pathway, similar as in IGF-1 signaling, and second,
the PI3K/Akt pathway, starting with phosphorylation of
IRS proteins by JAK2 [33].

The exact mechanisms of GH signaling remain to be
investigated, especially the distinction of signaling path-
ways in adipose tissue and muscle. Although the JAK2/
STAT5 pathway seems to be fully activated with GH
administration, the MAPK and PI3K/Akt pathway response
to GH is questionable [29, 32].

4 The role of insulin, GH, and IGF-1 in cachexia

4.1 Insulin and GH resistance

In patients with chronic diseases such as CHF and
cancer, increased levels of GH accompanied by com-
paratively low serum concentrations of IGF-1 have been
observed. If GH is the main stimulus for IGF-1
secretion, this condition points to unresponsive periph-
eral tissues and GH resistance [34]. Similarly, insulin
signaling becomes impaired in chronic disease and insulin
resistance develops. Indeed, in patients with CHF, insulin
resistance and higher insulin levels have been observed
[35]. With these changes in metabolic signaling, two
important anabolic stimuli that induce protein synthesis
and inhibit protein degradation in muscle cells are lost.
Although GH and insulin seem to have synergistic actions
in promoting protein synthesis, GH actually induces
insulin resistance. The exact mechanism is not known,
nor is the distinction between influences of GH on insulin
signaling in the liver, adipose tissue, and muscle.
Increased SOCS3 expression and uncoupling of PI3K
and its downstream effectors are some of mechanisms that
have been suggested [29, 36].

4.2 Loss of lean mass

Loss of lean mass is a result of either increased protein
degradation or decreased protein synthesis. Protein
degradation/synthesis homeostasis is maintained through
various mediators, including insulin, GH, and IGF-1. In
human cells, protein degradation follows various pro-
teolytic pathways, where the main five are the ATP-
dependent ubiquitin–proteasome system, the calcium-
dependent (calpains) pathway, the caspase system,
matrix proteinases, and the lysosomal (cathepsins)
pathway [5]. The ubiquitin–proteasome system seems to
be importantly involved in cachectic muscle wasting
because its overexpression and overactivation have been
shown in various diseases related to cachexia [37, 38].
More specifically, this system is responsible for increased
myosin degradation [39]. The ubiquitin protein ligases
muscle atrophy F-box (MAFbx) and muscle ring finger
protein 1 (MuRF1) are responsible for linking ubiquitin to
proteins and targeting them for degradation in this
proteasome system [38]. These ligases are regulated by
the Akt/PI3K pathway, which lies downstream of IGF-1
and the insulin receptor. Moreover, it has been shown that
IGF-1 and insulin also directly suppress the expression of
MAFbx [40]. Protein synthesis is also regulated by the
Akt/PI3K pathway because Akt forms a complex with
mTORC1, a serine/threonine protein kinase that induces
protein synthesis.

Fig. 2 Stars indicate the proteins of insulin signaling cascade affected
by PPAR-γ agonists. Cbl Cbl protein, CAP Cbl-associated protein,
IRS-1 insulin receptor substrate 1, Shc Shc protein, GRB2 growth
factor receptor-bound protein 2, PI3K phosphatidylinositol 3-kinase,
Akt Akt protein, GLUT4 glucose transporter 4, IR insulin receptor
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4.3 Inflammatory processes

Body wasting and cachexia are associated with (over)
activation of the inflammatory system [5, 41, 42]. The
exact interference mechanisms with metabolic and endo-
crine pathways are multifactorial but they remain poorly
understood. Inflammatory cytokines are able to regulate
cellular responses and are, therefore, also involved in the
modulation of GH, IGF-1, and insulin signaling.

4.3.1 Tumor necrosis factor alpha

Tumor necrosis factor alpha (TNF-α) seems to be an
important link between various forms of cachexia [5].
Indeed, its inhibitory action on heart and muscle protein
synthesis has been shown [43]. TNF-α contributes to GH
resistance by downregulating the expression of GHR [44].
Similarly, a connection between TNF-α and reduced
expression of GLUT4, leading to insulin resistance, has
been proved [45]. TNF-α also reduces phosphorylation of
IRS-1 and IRS-2 by IGF1R, thus inhibiting signaling of
IGF-1 in muscle cell development [46]. Moreover, it
inhibits IGF-1 expression locally in muscle. Activation of
transcription factor nuclear factor-κB and increased
expression of MAFbx ubiquitin ligase are another two
TNF-α actions; these result in the induction of protein
breakdown and inhibition of myogen differentiation [47,
48].

4.3.2 Interleukin-1

Interleukin (IL)-1 is another cytokine involved in catabolic
processes [49]. In hepatocytes, IL-1β and TNF-α inhibit
GH-stimulated IGF-1 gene expression. On the other hand,
IL-1β and TNF-α had no influence on basal IGF-1
expression [50]. IL-1β also prevents IGF-1 from promoting
protein synthesis [46].

4.3.3 Interleukin-6

Interleukin (IL)-6 is a cytokine recognized to play an
important role in cachexia [51]. It is produced in most cell
types; the major contributor being skeletal muscle, where it
is formed in response to exercise [41]. Investigating IL-6
interference with GH, IGF-1, and insulin signaling has led
to various conclusions. The effects of IL-6 on insulin
sensitivity in skeletal muscle show different patterns over
time. They are thought to be positive in the short-term and
negative after chronic exposure [52]. IL-6 not only
stimulates basal IGF-1 gene expression [53], but also the
expression of SOCS3, which induces ubiquitin–proteasome
system-mediated degradation of IRS-1 and thereby impairs
insulin/IGF1 signaling [54]. This dual role of IL-6 may not

be surprising because cytokines are generally involved in
regulating various pathways.

5 GH/IGF-1/insulin signaling: potential targets
for cachexia treatment

An ideal drug for treating cachexia would have anabolic,
anti-inflammatory, and appetite-stimulating actions. Unfor-
tunately, an effective remedy for this devastating condition
has not been found yet. GH, IGF-1, and insulin signaling
pathways have already been identified as important con-
tributors and we believe that these pathways could be
clinically relevant targets for pharmacological treatment.

5.1 GH/IGF-1/insulin administration

The application of GH, insulin, and IGF-1 has already been
misused by star athletes, exploiting their anabolic actions [21,
55]. To achieve an anabolic effect in cachectic patients, use of
high doses of GH would be required because GH resistance is
a common condition in this population [34]. Safety concerns
arise when using GH for cachexia treatment because
increased mortality has been associated with GH administra-
tion in critically ill patients [56]. Insulin treatment is similarly
limited through insulin resistance, which is often present in
cachectic patients [5]. To avoid these issues, targeting post-
receptor pathways could be effective. Insulin, GH, and IGF-1
have their own receptors and signaling through specific
pathways, but most of them use similar effector molecules.
All three receptors (GHR, IGF1R, and IR) are tyrosine
kinases, sharing the PI3K/Akt and MAPK pathway, which
could be considered a pharmacological target.

However, one must bear in mind the oncogenic potential
of interference with pathways promoting cell growth.
Abnormalities in PI3K/Akt signaling are common in
cancers and this has been widely exploited for targeted
cancer treatment [57]. This raises the need for more
targeted intervention, which might be offered by pharma-
cological entities, as subsequently discussed in this article.

5.2 Peroxisome proliferator-activated receptor
gamma agonists

Peroxisome proliferator-activated receptor gamma (PPAR-γ)
agonists are involved in insulin signaling (Fig. 2). Their
primary action is binding to PPAR-γ receptors and stimulat-
ing transcription of genes, leading to improvement of insulin
sensitivity. One potential target of PPAR-γ agonists is
GLUT4. Reduced GLUT4 in skeletal muscle was shown
to contribute to insulin resistance in CHF [58] and
rosiglitazone was shown to induce GLUT4 translocation
to the membrane in mouse skeletal muscle [59]. Rosigli-
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tazone also stimulates the transcription of the CAP gene
[60] and pioglitazone has been shown to stimulate the
expression of IRS proteins in adipocytes [61]. It is,
therefore, likely that glitazones interfere with IGF-1 and
GH actions. Because they act on the post-receptor path-
ways of these receptors, they are putative agents for
treating diseases with insulin and GH resistance. Indeed,
glitazones are effective in reducing GH-induced liver and
skeletal muscle insulin resistance [62].

PPAR-γ agonists also affect the inflammatory component
of chronic diseases, which is closely connected to the
metabolic pathways shown previously. Rosiglitazone reduced
plasma concentrations of C-reactive protein, IL-6, and sTNFα
R2 (a cleavage product of the activated tumor necrosis factor
TNF-α receptor) in nondiabetic patients with metabolic
syndrome [63]. Pioglitazone prevents THF-α-induced insulin
resistance by restoring TNF-α-reduced insulin-stimulated 2-
deoxyglucose uptake, tyrosine phosphorylation, and protein
levels of insulin receptor and IRS-1. It also restores
association of p85 with IRS-1 and PI3K activity [61]. Anti-
inflammatory actions of PPAR-γ agonists are generally
recognized and could be used in treating cardiovascular
diseases [64]. Unfortunately, PPAR-γ agonists can lead to
fluid retention, and overexpression of PPAR-γ receptors has
been related to cardiac dysfunction in mice [65]. Accordingly,
PPAR-γ agonists are contraindicated or require careful
monitoring in patients with heart failure [66].

PPAR-γ agonists have been extensively studied in the
light of their insulin-sensitizing actions, but so far, the
effects of PPAR-γ agonists on muscle mass in patients with
cachexia have not been investigated. There were some
studies performed in patients with CHF, but the weight gain

in these patients remained mostly undefined with respect to
fluid retention [67].

5.3 Angiotensin II antagonists

The role of angiotensin II in vasoconstriction has been
recognized and extensively investigated in arterial hyper-
tension, whereas its role in metabolic processes and
involvement in muscle wasting has been increasingly
recognized in recent years. Angiotensin II has been shown
to cause insulin resistance in skeletal muscle by inhibiting
insulin-stimulated GLUT4 translocation, and various mech-
anisms have been proposed [68, 69]. Its role in muscle
wasting has also been confirmed: angiotensin II was shown
to promote protein degradation by lowering IGF-1 in
skeletal muscle [70] and through induction of the ubiq-
uitin–proteasome pathway [71].

There are two main pharmacologic approaches to target the
effects of angiotensin II: inhibiting the formation of angioten-
sin II (angiotensin convertase inhibitors, ACEI) and blocking
the receptor of angiotensin II (angiotensin II receptor
antagonists). Because alternative ACE-independent pathways
of angiotensin II formation exist, the use of angiotensin II R
antagonists (“sartans”) could be more specific in targeting
angiotensin II-mediated muscle wasting.

The impact of inhibitors of angiotensin-converting
enzyme (ACEI) and angiotensin II R antagonists on muscle
wasting in chronic diseases has already been observed
because these drugs are widely used in clinical practice.
Enalapril was shown to reduce the risk of weight loss in
CHF patients [72] and ACEI helped maintain weight but
not muscle strength in patients with congestive heart failure

Table 1 Observed effects of selected drugs on muscle function and weight in humans with CHF, COPD, or cancer

Drug CHF COPD Cancer

PPAR-γ agonists ↑ body weight [67] No data available No data available

Ang II R antagonists
and ACEI

Maintenance of weight, but not muscle
strength [73]

No changes in body weight and no
effect on exercise parameters [89]

No data available

↓ risk of weight loss [72, 87]

ACEI/digoxin/diuretic combination
increases muscle bulk and
subcutaneous fat [88]

Testosterone and other
anabolic steroids

↑ functional capacity and muscle strength
in elderly women [90]

↑ LBM and muscle strength [93] Less severe weight loss [95]

↑ functional capacity, improved symptoms;
no changes in skeletal muscle bulk and
hand-grip strength [91]

↑ body weight, ↑ fat-free mass [94] ↑ hand-grip strength [96]

Improved exercise capacity and muscle
strength [86]

Restored weight (primarily LBM)
after weight loss [83]

↑ body weight (but inferior to
dexamethasone and MA) [97]

No effect on skeletal muscle bulk or
strength, improved exercise capacity [92]

CHF chronic heart failure, COPD chronic obstructive pulmonary disease, PPAR-γ peroxisome proliferator-activated receptor gamma, Ang II R
angiotensin II receptor, ACEI angiotensin-converting enzyme inhibitor, LBM lean body mass, MA megestrol acetate
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or hypertension [73]. Elderly patients without heart failure
on antihypertensive treatment with ACEI were associated
with larger muscle mass than patients receiving other
hypertensive therapy [74]. In addition, insulin sensitivity
was improved by losartan and lisinopril in hypertensive
patients [75]. On the contrary, the TRAIN study reported no
significant modifications in muscle strength after 6 months
of fosinopril therapy in older persons with high cardiovascular
risk profile [76].

Due to the proven clinical indications of ACEI and
angiotensin II R antagonists, these studies were performed
only in patients with CHF or hypertension. Moreover, the
lack of cachexia definition left the patients from these
studies unclassified regarding their cachectic state. Further
studies are, therefore, needed to describe the role of ACEI
and angiotensin II R antagonists in cachexia.

5.4 Testosterone

Testosterone, a naturally occurring anabolic hormone, has
already been recognized as a substance with the potential to
prevent muscle wasting and cachexia [5]. Moreover, its
involvement in insulin, GH, and IGF-1 signaling has been
recognized and investigated.

The influence of testosterone on insulin signaling is exerted
by affecting GLUT4 and IRS-1 expression and Akt phosphor-
ylation. This effect is dose-dependent: low doses of testoster-
one improve insulin sensitivity (especially in testosterone
deficiency conditions) and high doses cause insulin resistance
[77, 78].

IGF-1 is also associated with testosterone signaling, but
the mechanism is still not clarified. IGF-1 signaling in
skeletal muscle is not obligatory to mediate the anabolic
effects of testosterone [79], and thus, testosterone induction
of IGF-1 expression in the androgenic anabolism process is
likely, but remains unproven [80, 81].

Relatively low serum levels of both testosterone and GH
have been observed in elderly men. It is not surprising that
application of both substances alone or in combination
improved muscle protein synthesis in this population.
However, a disruption in GH and testosterone signaling
was suggested in elderly men [82]. It is, therefore, possible
that, in cachexia, similar changes in post-receptor processes
hinder the signaling of both hormones, leading to decreased
production of IGF-1 in skeletal muscle along with loss of
other signals important for muscle protein synthesis.

Use of testosterone or other anabolic steroids to treat
muscle wasting in cachexia has been tested in different
populations. In COPD patients, muscle wasting was
reversed by oxandrolone, an anabolic steroid, and muscle
mass and strength were increased by testosterone [83, 84].
The latter two parameters were also improved in CHF
patients that received testosterone replacement [85, 86].

5.5 Evidence from clinical studies in humans

CHF, COPD, and cancer are the main conditions driving
the incidence of body wasting and cachexia [4]. To cope
with the increasing burden, it is plausible to focus clinical
trial efforts on these conditions. Only a few trials have been
completed, and most of them have demonstrated skeletal
muscle/body size benefits (Table 1). Whether this translates
into better outcomes remains to be established.

6 Clinical implications and future research

In cachexia, insulin, GH, and IGF-1 signaling is impaired.
Although the action of these three signaling molecules on
muscle tissue is essential for preserving muscle mass and
function, targeting their signaling pathways should be
considered in the search for new compounds for cachexia
treatment. Due to the lack of response to the basic stimuli
of insulin, IGF-1, and GH in muscle cells in cachexia, two
approaches seem reasonable: (1) targeting post-receptor
pathways—for example, with PPAR-γ agonists, or (2) using
alternative pathways in muscle cells to reach the same targets
inside the cell (angiotensin II R antagonists/ACEI and
testosterone). Several studies have addressed this issue, but
the results do not fully support implementation in clinical
practice. Potential pharmacological targets can be found
among the effector molecules involved in overlapping
pathways of GH, IGF-1, and insulin signaling.
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