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Abstract

Despite evidence of the clustering of metabolic syndrome components, current approaches for identifying unifying genetic
mechanisms typically evaluate clinical categories that do not provide adequate etiological information. Here, we used data
from 19,486 European American and 6,287 African American Candidate Gene Association Resource Consortium participants
to identify loci associated with the clustering of metabolic phenotypes. Six phenotype domains (atherogenic dyslipidemia,
vascular dysfunction, vascular inflammation, pro-thrombotic state, central obesity, and elevated plasma glucose)
encompassing 19 quantitative traits were examined. Principal components analysis was used to reduce the dimension of
each domain such that .55% of the trait variance was represented within each domain. We then applied a statistically
efficient and computational feasible multivariate approach that related eight principal components from the six domains to
250,000 imputed SNPs using an additive genetic model and including demographic covariates. In European Americans, we
identified 606 genome-wide significant SNPs representing 19 loci. Many of these loci were associated with only one trait
domain, were consistent with results in African Americans, and overlapped with published findings, for instance central
obesity and FTO. However, our approach, which is applicable to any set of interval scale traits that is heritable and exhibits
evidence of phenotypic clustering, identified three new loci in or near APOC1, BRAP, and PLCG1, which were associated with
multiple phenotype domains. These pleiotropic loci may help characterize metabolic dysregulation and identify targets for
intervention.
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Introduction

The metabolic syndrome represents metabolic dysregulation

expressed as the clustering of several physiologic risk factors and is

associated with an increased risk of atherosclerosis and type 2

diabetes [1]. The core metabolic syndrome domains are

abdominal obesity, atherogenic dyslipidemia, elevated blood

pressure, elevated plasma glucose, a pro-thrombotic state, and a

pro-inflammatory state [2], which are represented to varying

degrees in commonly used metabolic syndrome scoring systems

[3–7].

Several lines of evidence support a genetic basis underlying the

core metabolic syndrome domains. Measures of metabolic

domains cluster in families [8] and heritability estimates range

from 16% for systolic blood pressure to 60% for high-density

lipoprotein (HDL) cholesterol [9]. Genome-wide association

(GWA) studies have also identified common variants in CETP,

LPL, APOA5, and GCKR that influence the co-occurrence of

metabolic domain phenotypes [10,11].

Despite evidence of the clustering of metabolic domain

phenotypes, current approaches for identifying unifying genetic

mechanisms (i.e. pleiotropy) remain largely focused on clinical

categories that do not provide adequate etiological information

[12]. As an alternative, a phenomics approach that assembles

coherent sets of phenotypic features that extend across individual

measurements and diagnostic boundaries creates the opportunity

for novel genetic investigations of established biological pathways

and complements the traditional GWA study or candidate gene-

based strategy focused on individual phenotypes [13–15]. In

addition to making use of existing knowledge on process-related

information or pathways, a multi-phenotype phenomics approach

also may provide greater statistical power than analyses of

individual phenotypes [16] and improve the ability to detect

effects of small magnitude [17]. Although several authors have

advocated the use of such strategies [15,18,19], the approach is

implemented infrequently.

This study evaluated evidence of pleiotropy in clustered

metabolic domains using data from five well characterized

population-based studies composed of approximately 20,000

European American and 6,200 African American participants:

the Atherosclerosis Risk in Communities (ARIC) study, the

Coronary Artery Risk Development in Young Adults (CARDIA)

study, the Cardiovascular Health Study (CHS), the Framingham

Heart Study (FHS), and the Multi-Ethnic Study of Atherosclerosis

(MESA). Six phenotype domains (atherogenic dyslipidemia,

vascular dysfunction, vascular inflammation, pro-thrombotic state,

central obesity and elevated plasma glucose) encompassing 19

quantitative traits were examined. After dimension reduction, we

applied a statistically efficient and computationally feasible

multivariate approach that related the phenotype domains to

250,000 imputed SNPs. Our approach, which is applicable to

studies of heritable, clustered interval scale outcomes, identified

several genome-wide significant loci associated with multiple

phenotype domains, which may help characterize metabolic

dysregulation and identify targets for intervention.

Results

After excluding duplicate samples (N = 56), first- and second-

degree relatives (N = 1,152) in all studies except the family-based

Framingham Heart Study, and individuals identified as genetic

outliers (N = 20), there were 19,468 European American and

6,287 African American Candidate Gene Association Resource

Consortium (CARe) participants available for analysis. As

expected, CARDIA participants (mean age: 25 years) had better

cardiovascular health profiles, including lower low density

lipoprotein concentrations, markers of vascular inflammation,

and blood pressure levels when compared to the older cohorts

(Tables S1, S2, S3, S4, S5).

Eight principle components were used to characterize the six

metabolic syndrome trait domains (Figure 1): one principal

component each for vascular dysfunction, elevated plasma glucose,

pro-thrombotic state and central obesity and two principal

components for atherogenic dyslipidemia and vascular inflamma-

tion. Correlation between the principal components, which served

as the eight phenotypes of interest, was modest and consistent

across studies and racial groups. As an example, race- specific

results from the ARIC Study are presented in Tables S6, S7.

ARIC and CARDIA were the only studies with full phenotype

data for all 19 of the variables used to define the metabolic trait

domains. Although apolipoprotein A1 and B measurements were

unavailable in three cohorts, the high correlations with high-

density and low-density lipoprotein concentrations (r.0.70 in

ARIC data, Tables S8, S9) suggested that all five cohorts provided

similar atherogenic dyslipidemia phenotypes. A similarly high

correlation was observed between von Willebrand factor and

factor VIII in the ARIC data, implying a common pro-thrombotic

phenotype in studies missing either measurement. The modest

correlation between systemic markers of inflammation in the

MESA study, which did not measure white blood cell count and

uric acid concentration, suggests that this study may contribute a

slightly different vascular inflammation phenotype. The MESA

study also did not assay factor VII, suggesting that this study also

contributed a somewhat different pro-thrombotic phenotype.

However, a sensitivity analysis excluding pro-thrombotic and

inflammation principal components estimated in the MESA study

yielded comparable results.

In European Americans, we identified 606 SNPs representing

19 loci that were associated with at least one metabolic trait

domain (Table 1, Figure 2) at the genome-wide significance level

(P,2.1361027; the SNP with the lowest P – value chosen if

multiple significant SNPs were identified for a given locus) and

these results were consistent across the multiple large cohorts

(Table S10 and Figure S1). Several of these loci overlapped results

in African Americans (Table 2, Figure 3), including associations

with LPL, ABO, VWF, CTEP, and LDLR. In addition to these 19

loci, we also identified 15 additional secondary signals in European

Americans, defined as genome-wide significant SNPs (the SNP

with the lowest P – value chosen if multiple significant SNPs were

identified for a given locus) in very low linkage disequilibrium (LD)

(r2,0.05) with the most significant SNP and within the same

1,000-kb region (Table S11). To verify the independent contribu-

Metabolic Phenotype Dimensions GWAS

PLoS Genetics | www.plosgenetics.org 2 October 2011 | Volume 7 | Issue 10 | e1002322



tions of these additional loci, we performed a conditional analysis

using the most significant SNP at each significant locus as a

covariate. Thirteen of these signals remained significant, including

one APOC1 variant, after adjusting for the primary signals.

Previously identified loci associated with single
metabolic trait domains

The strongest signal for both European American and African

American participants was located on chromosome 9 in the ABO

gene (P,1.06102300 and P = 6.1610275, respectively). These

signals overlap earlier findings between factor VIII and von

Willebrand factor with ABO [20]. Nine additional loci in European

Americans and eight loci in African Americans demonstrated

effects limited to one metabolic syndrome trait domain that have

already been reported in the GWA literature and are therefore not

considered further: ABCA1, APOB, CD36, CELSR2, CETP, CRP,

F7, LDLR, LIPC, PVRL2, TRIB1, VWF, and ZNF259.

Previously identified loci associated multiple trait
domains

Six loci were associated with at least two trait domains in

European Americans: GCKR, ABCB11, LPL, HNF1A, FTO, and

SUGP1, results which overlap published associations identified

through GWA studies for individual trait components. For

example, several GWA studies have identified associations

between GCKR and elevated plasma glucose [21], atherogenic

dyslipidemia [22], and vascular inflammation [23–25]. GCKR is a

plausible unifying mechanism for the clustering of metabolic

domains, as the protein inhibits glucokinase, the predominant

glucose phosphorylating enzyme [26]. HNF1A, which encodes the

transcription factor hepatocyte nuclear factor (HNF)-1a, also

suggests a common pathogenic background, as previous GWA

studies have identified associations with atherogenic dyslipidemia

[27], vascular inflammation [28], and type 2 diabetes [29]. Of

note, FTO was the only previously identified and consistently

replicated obesity locus we identified.

Candidate genes at new loci
The strongest new pleiotropic signal in European Americans

was for rs4420638 (P 1.7610257), located approximately 0.32

kilobases (kb) downstream of APOC1 and associated with elevated

Figure 1. Variables used to characterize six metabolic syndrome domains.
doi:10.1371/journal.pgen.1002322.g001

Author Summary

The metabolic syndrome represents a clustering of
metabolic phenotypes (e.g. elevated blood pressure,
cholesterol levels, and plasma glucose, as well as
abdominal obesity) and is associated with an increased
risk of atherosclerosis and type 2 diabetes. Although
multiple genes influencing the specific metabolic syn-
drome components have been reported, few studies have
evaluated the genetic underpinnings of the syndrome as a
whole. Here, we describe an approach to evaluate multiple
clustered traits, which allows us to test whether common
genetic variants influence the co-occurrence of one or
more metabolic phenotypes. By examining approximately
20,000 European American and 6,200 African American
participants from five studies, we show that three regions
on chromosomes 12, 19, and 20 are associated with
multiple metabolic phenotypes. These genetic variants are
highly intriguing candidates that may increase our
understanding of the biologic basis of the clustering of
metabolic phenotypes and help identify targets for early
intervention.

Metabolic Phenotype Dimensions GWAS
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plasma glucose (P = 8.761024), atherogenic dyslipidemia

(1610231), vascular inflammation (P = 5610212), and central

obesity (P = 1.261026). Although associations between APOC1

with atherogenic dyslipidemia [22,30,31] and vascular inflamma-

tion [32,33] have been reported and replicated in the GWA study

literature, we consider it a novel locus due to the strong and

previously unreported associations with elevated plasma glucose

and central obesity. Localizing this signal is challenging, as the

region contains a 48-kb gene cluster that also includes the APOE

and pseudo-APOC’ genes [34]. However, the modest levels of

linkage disequilibrium (Figure 4), the presence of a second signal

(Table S11), studies which demonstrate that mice overexpressing

human APOC1 show a marked reduction in the update of fatty

acids into adipocytes [35], and the fact the physiological role of

APOC1 is less well established than APOE, APOB, and APOA1 [36]

all support further evaluation and fine mapping of APOC1.

The second new locus was rs11065987 (P = 2.9610210), located

approximately 9.9 kb upstream of BRAP and associated with

atherogenic dyslipidemia (3.161023), vascular dysfunction

(2.261024), and central obesity (9.761023). Initial reports

suggested that the BRAP protein binds the breast cancer

suppressor protein BRCA1 [37]. BRAP is also known to modulate

mitogen activated protein kinase signaling [38], an established cell

survival, growth, differentiation, transformation, and proinflam-

matory pathway [39].

The GWA study literature provides few clues that link BRAP

with metabolic trait domains, as associations have only been

identified for alanine aminotransferase [24] and esophageal cancer

[40], both in populations of Japanese descent. However, the

recombination rate (cM/Mb) is low from approximately 110.3 Mb

to 111.5 Mb (Figure 4) and this extended region includes loci

associated with type 1 diabetes [41,42], vascular dysfunction [43],

and waist-hip ratio [44]. The ATXN2 gene, located 27 kb from the

index SNP, is an intriguing candidate gene. Expansion of a CAG

repeat in the ataxin-2 protein causes the neurodegenerative disease

spinocerebellar ataxia type 2. However, instead of a neurodegen-

erative phenotype, ATXN2-deficient rodents exhibited phenotypes

characterized by abdominal obesity, insulin resistance, and

marked hepatosteatosis (i.e. lipid accumulation in the liver) [45].

Linkage studies of obesity in humans have also associated this

region with BMI and total fat percentage [46].

A third genome-wide significant signal was identified for

rs753381 (P = 4.361028), a missense mutation in PLCG1 that

results in a change from an isoleucine to a threonine. PLCG1

encodes a protein that catalyzes the formation of inositol 1,4,5-

trisphosphate and diacylglycerol from phosphatidylinositol 4,5-

bisphosphate and plays an important role in the intracellular

transduction of receptor-mediated tyrosine kinase activators [47].

Few epidemiologic studies of PLCG1 or neighboring genes have

been published. However, mice nullizygous for PLCG1 stop

growing mid-gestation and show no evidence of vasculogenesis

[48]. Vasculogenesis has been associated with insulin resistance

[49], plasminogen activator inhibitor-1(PAI-1) concentration [50],

hyperglycemia, and adiponectin levels [51]. This suggests that

Figure 2. Multivariate association scan of the metabolic syndrome in n = 19,468 European American participants from five cohorts.
Y-axis P–values are truncated at 1610220.
doi:10.1371/journal.pgen.1002322.g002
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PLCG1 may contribute to the clustering of metabolic domains in a

more subtle manner, such as through small alterations in the

structure of the PLCG1 protein. Thus, the missense mutation we

identified would serve as a highly intriguing candidate SNP for

further study.

Discussion

In this study composed of approximately 20,000 European

American and 6,200 African American participants, we identified

three new loci associated with multiple metabolic trait domains:

APOC1, BRAP, and PLCG1. These loci were in or near genes

previously associated with atherogenic dyslipidemia, vascular

inflammation, type I diabetes, vascular dysfunction, and central

adiposity. No previous genome-wide or gene-centric studies

examining evidence for pleiotropy in metabolic domains has

detected these loci at genome-wide significant levels.

The pathogenesis of the clustering of metabolic phenotypes

remains poorly understood, although it is likely that a sedentary

lifestyle, combined with dietary patterns and genetic suscepti-

bility factors, contribute. Candidate genes associated with

metabolic syndrome phenotypes largely reflect current knowl-

edge of established pathways regulating obesity, free fatty acid

metabolism, insulin sensitivity, lipid metabolism, and inflam-

mation. Although candidate gene and GWA studies have

successfully identified loci influencing variation in these

pathways, studies examining genetic factors influencing the co-

occurrence of metabolic phenotypes are limited. Additionally,

those that examine the clustering of syndromic components

using the pre-defined clinical cutpoints are largely inconsistent

or inconclusive. This general lack of success may reflect ongoing

controversy over metabolic syndrome definitions, leading to

phenotypic heterogeneity and inconsistent genetic findings

across studies [52]. The utility of studying the syndrome as a

binary entity as opposed to a series of component traits is also

debated [12], especially since the dichotomization of interval

scale traits will discard information.

Methods for examining evidence of pleiotropy remain uncom-

mon in the GWA literature and most likely reflect the lack of

methodologies and software that are scalable to GWA studies. In

this paper, we present a statistically efficient and computational

feasible approach to testing for pleiotropy on a genome-wide scale.

Our method is applicable to population-based and family studies

and identified several associations that would not have been

identified through typical univariate analyses. The approach

presented herein is also not limited to metabolic phenotypes.

Instead, our method could be applied to any set of interval scale

traits that are heritable and exhibit evidence of phenotypic

clustering.

Although alternative analytic approaches were available, for

example estimating principal components for all traits simulta-

neously, we focused on the phenotype clusters presented in

Figure 1. First, evaluating the nineteen phenotypes of interest as

six domains of interest is biologically plausible given evidence of

phenotypic clustering. It was also easier to interpret principal

components that were derived in separate phenotype domains

rather than components estimated simultaneously. Additionally,

estimating principal components within each phenotype domains

ensured that each domain was sufficiently represented in the

analysis.

Challenges to the approach presented herein include careful

phenotype curation, made more difficult by the inclusion of 19

traits across multiple cohorts that were not measured with a

common protocol. Only the ARIC and CARDIA studies had full
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phenotype information on all 19 traits and CHS was the only

study with all traits measured during a single visit. The use of a

multivariate phenotype comprised of 19 variables also limited the

number of contributing cohorts and the identification of

replication cohorts, as few studies have such comprehensive

phenotypic data. Nonetheless, we were able to identify approx-

imately 25,000 participants from studies that used standardized,

comparable protocols and many of the associations were consistent

across cohorts.

Further challenges that are not unique to large scale genetic

studies incorporating a phenomics approach include the consistency

of results across populations defined by age, race, sex, or other

demographic characteristics. For example, the three new loci

identified in the European American population were not detected

in the African American population. Given a modest sample size of

6,287 participants it is difficult to determine whether an inability to

generalize results to the African American population reflects

different patterns of LD, varying environmental contexts, or limited

statistical power. Variation in mean age between contributing

cohorts, which ranged from 25 years in the CARDIA study to 72

years in the CHS, could introduce additional heterogeneity, as

associations between metabolic phenotypes have been shown to

diminish with age [53]. Finally, marked variation in the prevalence

of the metabolic syndrome by gender, regardless of clinical

definition, suggest the possibility of sex-specific metabolic syndrome

effects [54]. Analyses that examine modification by sex, age, and

other important clinical covariates are therefore warranted.

Our use of the IBC array, which is composed of variants

implicated in cardiovascular, inflammatory, hemostasis/coagulation,

and metabolic pathways, was beneficial in that it allowed us to

leverage the wealth of information on pathways implicated in

metabolic disturbances while reducing multiple testing penalties.

Admittedly this approach was limited in that it potentially excludes

novel pathways not captured by the IBC chip. Although imputation

allowed us to increase the number of variants, genome-wide

approaches might identify additional pleiotropic loci.

In summary, our results support phenomics as a complementary

approach that leverages phenotypic variation for the evaluation of

pleiotropy, a clear limitation of existing studies examining the

metabolic syndrome using clinical definitions. Our approach,

which is applicable to studies of heritable, clustered interval scale

outcomes, also takes advantage of the wealth of phenotype data

available in longitudinal cohort studies as well as emerging

analytical and bioinformatics approaches. Ultimately, these results

support the presence of genetic variants with pleiotropic effects on

adiposity, inflammation, glucose regulation, dyslipidemia, vascular

dysfunction and thrombosis. Such loci may help characterize

metabolic dysregulation and identify targets for intervention.

Materials and Methods

Study population
This study arose from a collaboration between investigators

from two National Institute of Health funded consortia examining

Figure 3. Multivariate GWAS of metabolic syndrome in n = 6,287 African American participants from four cohorts. Y-axis P–values
are truncated at 1610220.
doi:10.1371/journal.pgen.1002322.g003
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the genetic basis of common complex diseases: the Population

Architecture using Genomics and Epidemiology (PAGE) study, a

National Human Genome Research Institute funded effort

examining the epidemiologic architecture of common genetic

variation that have been reproducibly associated with human

diseases and traits [55] and the CARe Consortium [56], a

National Heart, Lung, and Blood Institute-supported resource for

genetic analyses examining cardiovascular phenotypes. Briefly,

PAGE investigators participating in the phenomics working group

wanted to extend existing efforts examining evidence for

pleiotropy in approximately 300 replicated genetic variants [57]

to include a more comprehensive evaluation of common SNPs. A

collaboration between PAGE and CARe investigators was

therefore initiated, and used data from five CARe studies of

European American and African American with adequate

phenotype data: ARIC, CARDIA, CHS, FHS, and MESA. All

participating institutions and CARe sites obtained Institutional

Review Board approval for this study. Additional information on

the participating CARe studies is provided in Text S1.

Genotyping
The Institute for the Translational Medicine and Therapeutics

(ITMAT)-Broad-CARe (IBC) genotyping array [58] was used to

evaluate approximately 2,100 genes related to cardiovascular,

inflammatory, hemostasis/coagulation, and metabolic phenotypes

and pathways. The IBC array tagging approach was designed to

capture maximal genetic information for both common and lower

frequency SNPs (,5% minor allele frequency (MAF)) in HapMap

as well as European American and African American populations.

The array included 49,320 SNPs, 15,000 of which were gene

variants not present in HapMap. Additional details of the SNP

selection and tagging approach are given in Text S1.

Imputation of untyped and missing SNP genotypes was

performed using MACH 1.0.16. [59] For the European samples,

phased haplotypes from the CEU founders of HapMap 2 were

used as reference. For African American populations, a combined

CEU+YRI reference panel was created that includes SNPs

segregating in both CEU and YRI, as well as SNPs segregating

in one panel and monomorphic and non-missing in the other.

Imputation for the IBC array was performed in two steps. First,

individuals with pedigree relatedness or cryptic relatedness were

filtered. A subset of individuals was randomly extracted from each

panel and used to generate recombination and error rate estimates

for the corresponding sample. Second, these rates were used to

impute all sample individuals across the entire reference panel.

Before cleaning, there were an average of 246,740 (range:

245,816, 247,505) and 227,224 (range: 225,111, 229,061) imputed

SNPs in the European American and African American study

populations, respectively. Imputation results were then filtered at

an imputation quality limit of 0.30 and a MAF threshold of 0.01,

yielding 235,077 (95.3% of total) and 227,222 (96.2% of total)

SNPs for analysis in European American and African American

participants, respectively.

Phenotypes
The clustered risk factors of interest were characterized as a six-

domain phenotype: atherogenic dyslipidemia, vascular dysfunc-

tion, vascular inflammation, pro-thrombotic state, elevated plasma

glucose, and central obesity (Figure 1). These domains were

constructed a priori based on a review of literature examining

clustering in metabolic phenotypes, placing specific emphasis on

the National Cholesterol Education Program’s Adult Treatment

Panel III report [4,60]. Nineteen variables were then selected to

represent one of the six domains with preference for variables

measured in at least four of the contributing cohort studies or

variables that were highly correlated with available measures.

Measurement protocols for each variable by study are provided in

Table S21. We assessed normality, and transformations were used

when variables exhibited excessive skewness or kurtosis as

determined by numerical summary information and visual

inspection of histograms and normal probability plots. Dimension

reduction using principal components analysis was then performed

for each phenotype domain separately in each race/ethnic and

study population. For example, principal components for the

vascular inflammation domain were calculated using the following

traits: albumin, C reactive protein, fibrinogen, uric acid, and white

blood cell count. Principal components were chosen so that.55%

of the variance for each domain was explained (Tables S12, S13,

S14, S15, S16, S17, S18, S19, S20). This threshold was chosen

because all of the first (waist circumference, pro-thrombotic state,

elevated plasma glucose, and vascular dysfunction) and the sum of

first and second (vascular inflammation and atherogenic dyslipi-

demia) principal components exceeded 55% across all studies and

racial/ethnic groups.

Statistical methods
For each phenotype, we fit a linear regression model relating the

phenotype to the SNP genotype under the additive mode of

inheritance; the model includes environmental variables (i.e., age, sex

and study center) as well as the first ten principal components from

EIGENSTRAT to adjust for population substructure [61]. Ten

population substructure components were included because each

component was associated with at least one of the eight phenotypes of

interest in at least one study. If the SNP genotype is not associated with

any phenotype domain, then the regression coefficients for the SNP

genotype are zero in all eight linear models. We tested this global null

hypothesis by constructing a multivariate test statistic based on the joint

distribution of the score statistics from the eight linear models, which

accounted for the correlation between the eight phenotypes. We chose

the score statistic because it is computationally efficient and numerically

stable. The test statistic is referred to the chi-squared distribution with

eight degrees of freedom. The genome-wide significance level was set

as P,2.1361027 (i.e. 0.05/235,077). Q-Q plots by race are not

presented, as our use of a gene-centric array highly enriched for

metabolic loci complicated the identification of markers with low prior

probabilities of association (i.e. ‘‘null markers’’) for all phenotypes of

interest. The data from each cohort were analyzed separately and the

Figure 4. Regional association plots for metabolic syndrome trait dimensions associated with APOC1, BRAP, and PLCG1. Positions are
from NCBI build 36 and recombination rates are estimated from HapMap phase II CEU data. SNPs are represented by circles, and the large blue
diamond is the SNP with the lowest P-value. Circle color represents correlation with the top SNP: blue indicates weak correlation and red indicates
strong correlation. Recombination rate is plotted in the background and known genes in the region are shown at the bottom of the plot.
doi:10.1371/journal.pgen.1002322.g004
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results were combined via meta-analysis as described in Text S2. All

analyses were stratified by race and were performed in SAS 9.1 and

C++. Further details are given in the Text S2.

Supporting Information

Figure S1 Forest plots of univariate effect estimates and 95%
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