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ABSTRACT

The cMonkey integrated biclustering algorithm iden-
tifies conditionally co-regulated modules of genes
(biclusters). cMonkey integrates various orthogonal
pieces of information which support evidence of
gene co-regulation, and optimizes biclusters to be
supported simultaneously by one or more of these
prior constraints. The algorithm served as the cor-
nerstone for constructing the first global, predictive
Environmental Gene Regulatory Influence Network
(EGRIN) model for a free-living cell, and has now
been applied to many more organisms. However, due
to its computational inefficiencies, long run-time and
complexity of various input data types, cMonkey was
not readily usable by the wider community. To ad-
dress these primary concerns, we have significantly
updated the cMonkey algorithm and refactored its im-
plementation, improving its usability and extendibil-
ity. These improvements provide a fully functioning
and user-friendly platform for building co-regulated
gene modules and the tools necessary for their ex-
ploration and interpretation. We show, via three sep-
arate analyses of data for E. coli, M. tuberculosis and
H. sapiens, that the updated algorithm and inclusion
of novel scoring functions for new data types (e.g.
ChIP-seq and transcription factor over-expression
[TFOE]) improve discovery of biologically informa-
tive co-regulated modules. The complete cMonkey2

software package, including source code, is avail-
able at https://github.com/baliga-lab/cmonkey2.

INTRODUCTION

It is widely acknowledged that gene regulatory networks
(GRNs) are inherently modular in nature and organized hi-
erarchically (1–3). This modular structure results from the

regulation of genes by distinct combinations of regulatory
factors; transcripts regulated by the same (set of) factor(s)
are presumed to express similar patterns of differential ex-
pression over different cellular and environmental condi-
tions. Such modularity is evident in GRNs across organ-
isms, from the simplest prokaryotes to complex metazoans.
Therefore, identifying co-regulated gene modules can sig-
nificantly reduce the complexity of the problem of inference
of genome-wide GRNs from data, and they can be exploited
to greatly improve the accuracy of the inferred regulatory
network topology (4–7).

For this reason, the detection of co-regulated gene mod-
ules via integrated modeling of multiple supporting data
types has been an active research topic for more than a
decade. Since the seminal integrated ‘module networks’
publications of Segal et al. (5,8), SAMBA (2) and cMonkey
(9), many groups have released tools with similar overar-
ching goals of data integration for the discovery of con-
ditionally co-regulated modules, using various underlying
statistical models and optimization methods. For example,
LeMoNe (4) infers co-regulated gene modules from ex-
pression data, including detection of conditionality of co-
regulation. DISTILLER (10) extends the LeMoNe frame-
work to integrate known regulation with gene expression
data. Like cMonkey, COALESCE (11) and Allegro (12)
integrate de novo detection of sequence motifs with co-
expression clustering to identify co-regulated gene modules
and the cis-regulatory sequence features putatively respon-
sible for their co-regulation. We refer the reader to a recent
review (13) of integrated methods for detection of biologi-
cal modules, and note the caveats presented by (14) regard-
ing the large search-space involved (particularly for com-
plex metazoan systems). One primary issue with all afore-
mentioned methods and tools is the difficulty of easily ex-
tending them to new data types or organisms. Many of these
are implemented as complex command-line tools or graph-
ical user-interfaces that can only be applied to a limited pre-
defined set of model organisms (typically, a few metazoans
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[human, mouse, fruit fly, etc.], and often E. coli and S. cere-
visiae).

The cMonkey integrated biclustering algorithm (9) was
designed to decipher, from genome-wide measurements, the
conditional co-regulation of genes by integrating different
types of information which support evidence for their co-
regulation and effectively constrain, or regularize, the com-
plex search space mentioned above. In the end, cMonkey
produces biclusters that are constrained by one or more
of these streams of data (9), over subsets of experimental
measurements. The three primary data sources that were
originally integrated and optimized by cMonkey were (i)
transcript co-expression (similarity of expression profiles)
of clustered genes across subsets of measurements; (ii) de
novo detection of common putative cis-acting gene regula-
tory motifs (which we will hereafter abbreviate as GREs,
for gene regulatory elements) in the promoters of clustered
genes (putative binding locations of the same transcrip-
tional regulators); and (iii) significant connectivity between
clustered genes in functional association or physical inter-
action networks (implying meaningful functional associa-
tion, which is often correlated with co-regulation). We used
cMonkey to construct a Environmental Gene Regulatory In-
fluence Network (EGRIN) model (15) for Halobacterium
salinarum NRC-1, and have more recently used it to con-
struct EGRIN models for many more organisms covering
all three branches in the tree of life ((7,16–19), and unpub-
lished). Work on the cMonkey algorithm and its implemen-
tation has been ongoing during that time, and we are now
releasing a completely updated and reengineered version
of the cMonkey software tool, with optimized performance,
improved documentation and ease-of-use for end-users, and
enhanced modularity which will make it straightforward to
extend by interested developers.

The primary algorithmic modification in the new im-
plementation is that it uses a global optimization, rather
than the local, individual cluster optimization utilized by
the original procedure. Additional algorithm updates in-
clude changes to the individual scoring scheme for sub-
network clustering, as well as to the heuristic used to in-
tegrate the different scores. All of these changes, which
serve to improve the procedure’s runtime performance by
roughly 3-fold, result in additional benefits which we will
elucidate below. We have reimplemented the updated algo-
rithm into a new framework, called cMonkey2, which im-
proves ease-of-use for the end-user; greatly simplifies au-
tomated integration of additional data types and scoring
mechanisms; and enhances the resulting output to facilitate
visualization and exploration of biclusters and their associ-
ated evidence (e.g. de novo predicted GREs) in the context
of other databases and web services. These improvements
make cMonkey2 a fully functioning, unified platform for in-
tegrating many kinds of genome-wide data to build gene co-
regulatory modules, plus the necessary tools to explore and
use them to inform biological insights.

MATERIALS AND METHODS

Hereon, we refer to the originally published version of
cMonkey as cMonkey1. For a detailed overview of the

cMonkey1 algorithm and its data integration model, we refer
the reader to (9).

cMonkey2 algorithm modifications

In the following we describe only the relevant and no-
table algorithm changes which have been made in the up-
dated version, which we call cMonkey2. These include (i)
a switch from local bicluster optimization to a global op-
timization procedure; (ii) a switch from a probabilistic as-
sociation network-based score to a network density-based
scoring function; (iii) a modified, more efficient heuristic for
combining the three model components into an integrated
clustering score while enabling stochastic exploration of the
search space. Although all three of these modifications ap-
pear to replace rigorous statistical models and distributions
with heuristics, as we will show, the practical effect is a sig-
nificant decrease in algorithm run-time with no detriment
to performance (to the contrary, cMonkey2 actually achieves
improvement in performance).
cMonkey1 is a local optimization procedure, in which bi-

clusters are seeded, one at a time, and then optimized indi-
vidually. As each additional bicluster is generated and opti-
mized, any overlap (in the form of gene membership) be-
tween it and previously-optimized biclusters was reduced
by constraining the number of biclusters (default expected
value $v$ = 2) into which each gene may fall. The most
significant modification we have made to the algorithm is
that cMonkey2 instead performs a global optimization, that
is modeled on the simple, widely-used and effective k-means
clustering algorithm (20). After beginning with a chosen
distance metric and an initial partitioning of all genes into
exactly k clusters ($v$ = 1 cluster per gene), the basic k-
means algorithm iterates between two steps until conver-
gence: (i) (re-)assign each gene to the cluster with the clos-
est centroid and (ii) update the centroids of each modified
cluster. The updated cMonkey2 algorithm performs an anal-
ogous set of moves with four primary distinctions relative
to k-means: (i) the distance of each gene to the centroid
of each cluster is computed using a measure that combines
condition-specific expression profile similarity, similarity of
putative GREs detected in gene promoters, and connected-
ness in one or more gene association networks (and/or addi-
tional scoring measures added via the new modular plug-in
framework; see below); (ii) each gene can be (re-)assigned
to more than one cluster (default $v$ = 2); (iii) at each step,
conditions (in addition to genes) are moved among biclus-
ters to improve their cohesiveness; and (iv) at each step,
genes and conditions are not always assigned to the most
appropriate clusters. We now elaborate upon these four de-
tails.

In cMonkey2, as with standard k-means (as well as the
original cMonkey1), k must be chosen a priori; by default,
cMonkey2 sets k such that each bicluster will contain ∼20
genes on average (thus, given that each gene is assigned to
$v$ = 2 biclusters by default, k is set to Ng × $v$/20, where
Ng is the number of transcripts measured across all experi-
ments). cMonkey2 begins each iteration with a set of biclus-
ter memberships mi for each element (gene or condition) i,
where by default |mi| = $v$ = 2 for genes (as described pre-
viously), and |mi| = Nc/2 for conditions (Nc is the number
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of conditions, or measurements, in the expression data set;
note that for standard k-means clustering, |mi| = 1 for genes
and |mi| = Nc for conditions). cMonkey2 then computes log-
likelihood score matrices Rij, Sij and Tij, for membership of
each element i in each bicluster j based upon, respectively,
co-expression with the current gene members (R), similarity
of GREs in gene promoters (S), and connectivity of genes
in networks (T). For the network scores (T), the original
procedure computed a p-value for enrichment of network
edges among genes in each bicluster using the cumulative
hypergeometric distribution. This computation was ineffi-
cient, and moreover could not account for weighted edges
in the input networks, so we replaced it in cMonkey2 with a
more standard weighted network clustering coefficient (20)
evaluated only over the genes within each bicluster.

Following computation of the individual component
scores, cMonkey2 computes a score matrix Mij that contains
the integrated score (a weighted sum of log-likelihoods, as
in cMonkey1) supporting the inclusion of gene i in bicluster
j. At this stage cMonkey1 would then train an ‘iteratively-
reweighted constrained logistic regression’ on each biclus-
ter’s M.j to obtain a posterior probability distribution pij,
to classify potential bicluster members i based upon these
scores. This procedure proved to be a significant bottleneck
on algorithm performance. In cMonkey2 we instead com-
pute a kernel-based cumulative density distribution from
these scores, to estimate the relative probability pij that each
element i belongs in each cluster j. The width of the density
distribution kernel is set dynamically to be larger for smaller
(fewer gene) biclusters, so as to increase the tendency to
add genes to small biclusters, rather than remove them.
Whereas cMonkey1 would then sample elements i from pij
to stochastically add or remove elements from each biclus-
ter j, in the new implementation cMonkey2 we instead add a
small amount of normally-distributed random ‘noise’ to the
scores Mij in order to achieve a similar type of stochasticity
(which helps prevent the algorithm from falling into local
minima; this noise decreases during the run to zero at the
final iteration). The result of this noise is that at the begin-
ning of a cMonkey2 run, biclusters are rather poorly defined
(co-expression, for example, is poor), but during the course
of a full set of 2000 iterations, as this noise is decreased, the
biclusters settle into a much more significant set of minima
(Supplementary Figure S1).

At the end of each iteration, cMonkey2 chooses a ran-
dom subset of genes or conditions i, and moves i into bi-
cluster j if, for any biclusters j′ which it is already a member,
pi j > pi j ′ ,∀ j ′, and out of the corresponding worse biclus-
ter j′ for which pi j > pi j ′ . Thus, as with the k-means clus-
tering algorithm, cMonkey2 performs a global optimization
of all biclusters by moving elements among biclusters to
improve each element’s membership scores, rather than by
optimizing each bicluster one-at-a-time (as cMonkey1 did).
Note, however, that we have introduced an added degree of
stochasticity to the optimization procedure, both from the
selection of a random subset of genes and conditions to be
moved at each iteration, and from the randomization de-
scribed above. This type of metaheuristic does not exist in
the standard k-means clustering algorithm.

The cMonkey2 tool: implementation details

We have completely re-implemented the cMonkey2 software
tool, transforming it into a data integration platform that
enables non-technical researchers to easily analyze their
gene expression data in the context of additional evidence,
while allowing developers to extend and tailor the base
functionality with minimal development effort. cMonkey2
is available as a command-line-driven Python application.
All aspects of the implementation center on modularity and
extensibility, enabling developers to easily incorporate their
novel data types and/or scoring methodologies into the pro-
cedure. For data input and integration, the tool now down-
loads, automatically from external databases, relevant in-
formation for nearly any microbe, including genome data
and gene annotations (currently using NCBI parsed anno-
tations from RSAT (21); Microbes Online (22)); gene func-
tional associations (STRING (23)), expression data (Gene
Expression Omnibus (GEO) (24)) and others (e.g. DoE
KBase).

We implemented cMonkey2 in object-oriented Python, in
order to more effectively modularize and streamline the
codebase. This switch alleviated all of the major speed and
memory bottlenecks which were causing difficulty with the
original implementation in GNU R.

For a typical cMonkey2 run, the user provides a file con-
taining a set of mRNA expression log-ratios in standard
tab-delimited text file format. The user will also typically
provide a three-letter KEGG organism code (e.g. ‘eco’ for E.
coli), which is used to identify and automatically fetch addi-
tional information (genome sequence, annotations, operon
predictions, promoter sequences, functional associations)
from various scientific databases (21–23). For sequenced
prokaryotes and unicellular eukaryotes (such as S. cere-
visiae), cMonkey2 provides solutions to common tasks such
as name mapping and abstraction of organism-specific as-
pects including genomic information. Upon initialization,
the tool downloads (if necessary) and caches the relevant
public data locally. For example, predicted operons (25)
are downloaded from Microbes Online (22), full genome
sequences and gene annotations are fetched from NCBI
via RSAT (21), and these data are used to parse out pre-
dicted promoter sequences for each annotated transcript
(Figure 1). In cases where the organism of interest is not yet
included in these databases (e.g. it is newly sequenced), cus-
tom versions of these files may be supplied in standard for-
mats (e.g. tab-delimited, GFF, FASTA, etc.) to enable motif
searching and network clustering. If these additional data
are not available, biclustering on the expression data only is
still possible, and will be performed by default.

cMonkey2 scoring functions. At the core of a cMonkey2
computation lies a cMonkey run. A run consists of a set
of input data and configuration parameters and a set of
scoring algorithms that are activated at certain iterations of
the optimization procedure (i.e. following a schedule), and
combined using user-specified weights. All parameters have
defaults which have been configured to work well with all
test cases, data sets and organisms tested (at this point, over
twenty). The user can override certain configuration param-
eters or methods to customize the run. The configuration
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cMonkey2 Algorithm

Seed Biclusters

Calculate Scores

Adjust Weights

Results
Database
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NCBI, RSAT, GEO,

STRING, Microbes online

User data:
Tab delimited, SIF,

FASTA, GFF

Input data:
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Genome Sequences,
Networks,
Gene Sets

Data Downloader
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Offline
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Progress Viewer Cluster Visualization Bicluster Network

External Tools:
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Figure 1. The cMonkey2 data integration and analysis pipeline. Only expression data (User data) is required as input by the user. All other input data, if
not provided by the user, is fetched automatically from online services (Web resources). All of these data are passed into the cMonkey2 algorithm (dark gray
area) which seeds, and then iteratively refines biclusters by integrating the output of various modularized scoring functions, following a weighting schedule
(Scheduler) which may be customized by the user. Resulting clusters are stored in a database which may be queried by the cmViewer tool to view progress
and visualize results.
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parameters may be set via command-line or a hierarchy of
user-defined and default configuration files.

At the heart of the cMonkey run is a scheduler that ex-
ecutes specific scoring functions at user-defined iterations
and with a user-defined scoring weight. Each scoring func-
tion computes the corresponding k × |i| scores for associat-
ing a given gene/condition i with each of the k biclusters.
An important detail is that these scores are not required
to be comprised of standard distance measures which may
be difficult or expensive to calculate. They can alternatively
simply consist of a (relative) measure of prior expectation
that gene/condition i belong in cluster k given the data and
given the other genes/conditions in the cluster. An example
of such an ad hoc scoring mechanism is delineated in detail
in our description of the new set-enrichment scoring func-
tion (see below).

After computation of all scoring matrices, cMonkey2 in-
tegrates the scores, as described in more detail below, via
a combiner function, which runs a list of scoring functions
in sequence and combines their results according to spec-
ified weights. Bicluster memberships (rows and columns)
are then updated based upon these combined scores. A
cMonkey2 scoring function has a standard interface, so users
can implement and run an arbitrary number of differently-
weighted scoring functions based upon user preferences.
The user has the choice to override the parameters of the
scoring functions, via command-line options and/or con-
figuration files. Default scoring functions for the three stan-
dard cMonkey data types––co-expression, MEME-detected
conserved promoter GREs and network clustering––are
provided by default. Below, we describe implementations
and use-cases for two additional, newly implemented scor-
ing functions.

Implementation and integration of novel row scoring func-
tions

To demonstrate the utility and ease of integrating additional
streams of evidence for gene co-regulation via implemen-
tation of new scoring mechanism (as described above), we
implemented two additional row (gene) scoring functions
which were not part of the original cMonkey1 algorithm.
The first of these integrates a ‘set-enrichment’ scoring func-
tion, which enables the user to influence bicluster optimiza-
tion to enrich for user-defined sets of genes (e.g. similar gene
functional annotations; known promoter binding mapped
via ChIP or RNase hypersensitivity; or known GREs). The
second scoring function integrates an additional motif de-
tection algorithm (Weeder (26)) to add motif detection via
enriched k-mers, and to search for motifs in regions other
than gene promoters (here, we use 3’ UTRs)––a functional-
ity complementary to that already provided by MEME. Below,
we describe the motivation and implementation of these two
scoring functions. Later, in the Results section, we present
an analysis of their influence on cMonkey2 biclustering re-
sults on data sets for three different organisms.

Set-enrichment row scoring function. The set enrichment
scoring function was developed to easily incorporate (and
enrich biclusters for) predefined gene sets. Given a file which
lists annotations or groupings of genes into (possibly over-

lapping) sets with unique identifiers, the set enrichment
scoring function computes, at each iteration, the signifi-
cance of overlap between each bicluster’s member genes and
the genes annotated for each set using the Fisher’s exact test.
For each bicluster, the set with the most significant overlap
(smallest p-value) is chosen for training, and a set of row
scores is generated that increases the probability of retain-
ing cluster genes or adding new genes that are the enriched
set. The gene scores are computed by a simple heuristic in
which we multiply the log10 of the aforementioned p-value
by 1.0 for genes which are in the bicluster and are members
of the enriched set; by 0.5 for genes which are in the set but
are not in the bicluster; and by 0.0 for all other genes. To
increase stability of the set enrichment approach we added
a low-pass filter which sets the p-value to a minimum of the
Bonferroni cutoff p-value given the number of sets tested.
These final gene (row) scores are then normalized and com-
bined with the other scoring functions to train cMonkey2
biclusters.

Weeder motif detection row scoring function for detection of
enriched k-mers. While MEME (27) has been shown (28,29)
to be among the most sensitive and robust sequence motif
detection algorithms available, the fact that it models GREs
as position-specific scoring matrices (PSSMs) and uses ex-
pectation maximization to detect the most overrepresented
signatures in a set of input sequences means that it is more
sensitive to detecting certain types of motifs. The Weeder
algorithm (26) searches for overrepresented degenerate k-
mers (rather than PSSMs), and has been shown (28) to be
quite sensitive to detecting other types of regulatory motif
signatures, including miRNA binding sites in mammalian
genomes (30). Thus, in order to detect putative signatures
for miRNAs in human genomes that might be associated
with disease, we developed a cMonkey2 scoring function that
integrates Weeder motif detection and optimization into the
algorithm. This custom row scoring function replaces MEME
with Weeder to search for enriched motifs in gene promot-
ers (using default parameters, in ‘medium’ search mode on
both strands), and returns gene-specific scores assessing the
significance of each promoter’s match to the detected mo-
tifs. Specifically, the function records the n ≤ 4 highest-
scoring motifs, ranked by score and provided as PSSMs by
Weeder. As with the default MEME scoring function, it then
provides those PSSMs as input to MAST (31) to compute
the significance (sequence p-values) of the match of each
gene’s promoter to the detected motif(s). These sequence
p-values are then used by the remainder of the cMonkey2
pipeline identically to the default MEME calculation.

cMonkey2 output, monitoring and visualization and explo-
ration

Provenance is a key concern in the new implementation,
and all information necessary to completely reproduce a
given run is stored in the output, including code version,
input parameters and configuration files and random num-
ber seeds. cMonkey2 provides a web interface to the out-
put cMonkey2 results database, served via an embedded web
server, that enables a user to observe the progress of the run,
via histograms of scores and optimization progress of mean
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statistics at each iteration (Supplementary Figure S4(A)).
The design of this monitoring implementation as an embed-
ded web server allows cMonkey2 analyses to be run on a re-
mote server (e.g. Amazon’s EC2 platform) and monitored
using a local web browser. In the future, we intend to ex-
tend this interface to enable initialization and control over
cMonkey2 runs, as well as remote storage, visualization and
exploration of computation results.

The interface also enables searching, selection and view-
ing of individual biclusters during a run, and upon com-
pletion, a Cytoscape (32) network visualization for ex-
ploring relationships between genes, detected GREs, and
their membership in biclusters (Supplementary Figure
S4(B)). All of these resources are populated with FireGoose
(33)/ChromeGoose XML microformats, which enable easy
integration and exploration using other external tools and
databases via the Gaggle (34), such as MeV (35) for ex-
pression analysis, STAMP (36) and RegPrecise/RegPredict
(37,38) for motif comparisons, DAVID (39) for function
analysis, KEGG (40) for pathway analysis, among many
others. Additionally, we have implemented an interface
which enables recorded exploration of biclusters via an in-
teractive IPython notebook.

Methods for evaluation of cMonkey2 module detection

E. coli: Comparisons to other published module detection al-
gorithms. In order to assess the ramifications of the algo-
rithm changes which we made to cMonkey2, we evaluated
its performance relative to both cMonkey1, to other popu-
lar clustering methods––k-means (41) and WGCNA (42),
and to published data integration/module detection algo-
rithms COALESCE (11), DISTILLER (10) and LeMoNe
(4). We note that this list is by no means comprehensive, but
is rather meant to provide a representative sampling of the
various data integration and module detection algorithms
available. For all algorithms, we used an E. coli gene expres-
sion compendium, containing 868 measurements of mRNA
expression for 4203 genes, compiled and normalized by
(10). To quantify algorithm performance, we used intrinsic
(tightness of cluster co-expression; motif significance) and
extrinsic (recapitulation of known biology) measures. For
the intrinsic measures, we used the mean square residue (43)
and MEME (27) motif E-value to quantify bicluster and
detected GRE quality, respectively. For the extrinsic qual-
ity assessment, we used the RegulonDB (44) database as the
gold standard for comparing with known E. coli regulatory
network modularity and known regulation. We ran all algo-
rithms listed, other than DISTILLER, for which we used
the author-provided clusterings (based upon the same E.
coli data set). For all algorithm runs, we attempted to gen-
erate clusters with a similar average number of genes to that
of the cMonkey runs (either, for example, by adjusting k for
k-means, or trying different size k-mers for COALESCE).

Comparisons of intrinsic measures of cluster quality. For
the intrinsic measures of cluster and motif detection, we
used cluster mean squared residue (43)) to quantify cluster
cohesiveness across included conditions. For motif detec-
tion, we quantified the likelihood of detecting clusters with

genes that contain a statistically significant putative GRE
(MEME (27) E-value ≤ 1).

Detection of known E. coli regulons. The primary goal of
cMonkey is to reconstruct, from expression data, a com-
prehensive set of co-regulated gene modules. We have cho-
sen to define a co-regulated gene module as a set of genes
which are regulated by the same combination of transcrip-
tion factors (TFs). We assessed cMonkey and the other algo-
rithms in their capability to recapitulate experimentally an-
notated E. coli regulons in RegulonDB (44) using precision
and recall. For precision, we computed the fraction of com-
puted biclusters that had significant gene membership over-
lap (more than two genes, computed via cumulative hyper-
geometric p-value, controlled for false discovery rate FDR
≤ 0.01) with at least one of the 257 such combinatorial reg-
ulons in RegulonDB. For recall, we computed the fraction
of all 257 combinatorial regulons which were rediscovered
by the algorithm.

A standard measure of algorithm performance relative to
an incomplete gold standard is an area under the precision-
recall (AUPR) curve. However given our evaluations which
use a single clustering for each algorithm, we use the ge-
ometric mean of precision and recall, or G-measure (45).
Thus, for a given number of true positives (TP), false posi-
tives (FP) and false negatives (FN),

P = TP
TP + FP

; R = TP
TP + FN

; G = √
R × P. (1)

For completeness, we also report the F1 score, which is the
harmonic mean of precision and recall.

Detection of known E. coli transcription
factor binding sites. cMonkey has the distinction
among the algorithms tested (along with COALESCE)
that it infers, de novo, conserved putative GREs in the
promoters of genes in each cluster using MEME (27) (by
default), and optimizes the clusters to improve those GREs.
To evaluate this aspect of cMonkey, we assessed the per-
formance of all algorithms in identifying groups of genes
containing significant combinations of bona fide GREs
in their promoters. For each cluster generated by each
algorithm, we applied MEME for motif detection post facto,
with the same set of parameters utilized by cMonkey, to the
promoters of each cluster’s member genes. Using FIMO
(46), we then scanned the GREs detected by MEME across
the entire E. coli genome to identify significant (FDR ≤
0.05) motif instances. We then compared the locations of
these motif instances with 2283 experimentally-determined
binding locations for 101 transcription factors (TFs) with
at least three binding sites in the RegulonDB BindingSiteSet
table. If positions of a GRE aligned to the positions of
a TF significantly more often than expected at random
(FDR ≤ 0.01), then we classified that GRE as a match to
the TF.

As previously, we assessed each algorithm’s precision
(fraction of all clusters with a match to a RegulonDB TF)
and recall (fraction of all 101 RegulonDBTFs independently
detected), and combined these into a single G measure.
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Evaluations of new set-enrichment scoring module for E. coli.
To evaluate the efficacy of the set-enrichment module (see
Methods section for details), we parsed the RegulonDB reg-
ulons into gene sets and integrated these into cMonkey2 us-
ing the set enrichment row scoring function. Thus, we added
an additional constraint to cMonkey2 which allowed the al-
gorithm to optimize biclusters that (simultaneously with the
other aforementioned constraints––coexpression, GRE de-
tection, and network connectivity) should be more consis-
tent with the annotated E. coli regulons.

Mycobacterium tuberculosis: Integration of ChIP-seq
and TF overexpression via set-enrichment. The newly-
introduced cMonkey2 set-enrichment scoring function was
developed to improve the capability of cMonkey2 to con-
struct co-regulated gene modules which are simultaneously
enriched for known gene sets. By enriching clusters for gene
sets which are expected to include additional evidence for
co-regulation (e.g. regulons from ChIP-chip/seq or known
regulons; functional annotation such as Gene Ontology;
or co-regulation via some other pre-computed evidence
type). To further test the capability of the cMonkey2
set-enrichment scoring function to improve detection of
experimentally validated regulons, we investigated its influ-
ence on modules detected for Mycobacterium tuberculosis,
using a large gene expression compendium and new global
ChIP-seq and transcription factor overexpression (TFOE)
measurements.

M. tuberculosis data. We used a compendium of 2,325
publicly available Mycobacterium tuberculosis transcrip-
tome measurements collated from TBDB (http://tbdb.org),
as described in (18). For our set-enrichment assessment, we
integrated genome-wide binding measurements for 154 M.
tuberculosis TFs, assayed via ChIP-seq (47), and transcrip-
tome measurements following induction (over-expression;
hereafter, TFOE) of 206 TFs (48). As described in (18), from
the ChIP-seq measurements we distilled 7,248 significant
TF-gene interactions through significant binding in regions
spanning -150 to +70 nucleotides around transcriptional
start sites for 142 TFs. Similarly, for the TFOE measure-
ments, we used RNA measurements from the same cultures
in which the TFs were induced for ChIP-Seq to obtain tran-
scriptomes resulting from overexpression of 205 TFs. From
these measurements, we identified 3,785 mRNAs with sig-
nificant expression change (p-value ≤ 0.01).

Running cMonkey2 on M. tuberculosis. We ran cMonkey2
on the M. tuberculosis data in eight different combina-
tions: (i) without the ChIP-seq or TFOE gene sets (de-
fault); (ii) with only the ChIP-seq gene sets via the set-
enrichment scoring function; (iii) with only the TFOE gene
sets via the set-enrichment scoring function; and (iv) both
ChIP-seq and TFOE gene sets, weighted equally via the
standard cMonkey2 weighting mechanism. We additionally
ran cMonkey2 with motif detection/integration turned off
for all four combinations. For all runs, we used k = 600,
as in (18), but excluded the (default) inclusion of EMBL
STRING functional co-association networks, in order to
eliminate the possibility of redundancy between test- and
training data. Given the non-deterministic optimization of

cMonkey2, we ran each combination of parameterizations
ten times, enabling us to report estimates of the mean and
standard errors to facilitate comparisons. In total, this in-
vestigation comprised 80 separate cMonkey2 runs.

Recovery of gene sets significantly enriched in cMonkey2
modules. For each run, we used a Benjamini-Hochberg-
corrected p-value (p-value ≤ 0.01) to identify the total num-
ber of biclusters (out of 600) which were significantly en-
riched for any of the 142 ChIP-seq gene sets or any of the
205 TFOE gene sets.

Human Lung Squamous Cell Carcinoma (LUSC). To test
the capability of the new cMonkey2 set-enrichment and
Weeder scoring functions to improve detection of validated
regulons in mammalian systems, we investigated their per-
formance on The Cancer Genome Atlas (TCGA) lung
squamous cell carcinoma data set. In particular, we assessed
the recovery of miRNA regulators (using 3’ UTR sequences
as input for training to the Weeder scoring function, and a
pre-computed database of miRNA to target gene predic-
tions as training input for the set-enrichment function).

Human LUSC data. We downloaded RNA-seq gene
level counts for 20 351 genes across 475 lung squa-
mous cell carcinoma (LUSC) tumors (49) from the Oc-
tober 17, 2014 run of the Broad TCGA GDAC Firehose
(doi:10.7908/C1CJ8CFD). Using DESeq2 (50) we normal-
ized the RNA-seq gene level counts using the variance-
stabilizing transformation, computed the coefficient of vari-
ation for each gene, and selected the top 2000 genes with
largest coefficients of variation as input for cMonkey2.
Each cMonkey2 run detected 133 biclusters. Significant co-
expression for each bicluster was ensured by filtering out all
biclusters where the variance explained by the first princi-
pal component was less than the variance explained by the
first principle component for randomly sampled gene sets
of same size for more than 5% of the random samples. This
filtering led to an average of 112 ± 8 biclusters per cMonkey2
run on the LUSC tumors.

Running cMonkey2 on LUSC tumors. We used GeneMA-
NIA (51,52) as the gene-gene interaction network train-
ing input for human cMonkey2 runs. A gene synonym the-
saurus was created from the Ensembl BioMart database to
covert between different gene identifiers. Weeder was used
to discover motifs in the 3’ UTR sequences that were ex-
tracted from the UCSC genome browser FTP site using
the same methods we have described previously (30,53).
The TargetScan database of predicted human miRNA tar-
get genes release 6.2 (54) was used for set-enrichment train-
ing. We ran cMonkey2 on the LUSC normalized RNA-seq
gene expression using three different training approaches:
(i) no cis-regulatory training inputs (i.e. no de novo motif
detection); (ii) training on de novo-detected 3’ UTR Weeder
motifs; and (iii) training only on set-enrichment using Tar-
getScan miRNA target gene predictions. As cMonkey2 is
non-deterministic in nature we ran each of the three train-
ing approaches six times to provide estimates of the mean
and standard errors to facilitate comparisons.

http://tbdb.org
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Human LUSC: comparing number of significant weeder mo-
tifs. The significance of Weeder motifs was determined
by calculating empirical p-values for each bicluster Weeder
motif score using pre-computed Weeder motifs scores from
1000 randomly sampled gene sets. As bicluster sizes vary we
precomputed gene sets sizes from 5 to 65 genes on the inter-
val of 5 genes and selected the closest gene set size for empir-
ical p-value calculation. A Weeder motif score was consid-
ered to be significant if it had an empirical p-value less than
or equal to 0.05. A post-hoc Weeder motif discovery and
empirical p-value calculation was conducted to determine
the number of significant motifs detected for cMonkey2 runs
that did not train on Weeder motifs. A Student’s t-test was
used to compare the number of significant Weeder motifs
between the three approaches.

Recovery of miRNAs implicated in LUSC. Each biclus-
ter was tested for enrichment of miRNA target genes from
the TargetScan database of predicted human miRNA tar-
get genes as described previously (53). For each run we de-
termined the overlap of the miRNAs enriched in biclusters
with the manually curated miR2Disease database which im-
plicates 110 different miRNAs in the etiology of lung can-
cer and/or non-small cell lung cancer. A Student’s t-test
was used to compare the number of LUSC miRNAs re-
discovered between the three approaches.

RESULTS

Below, we summarize results of our three separate analy-
ses described in the Methods section. Overall, cMonkey2
proves to be a worthy successor to cMonkey1, and, based
upon our assessments of both cluster quality and recapit-
ulation of known modularity and mechanisms in prokary-
otic gene regulatory networks, is an excellent tool for this
purpose. We also would like to note that these comparisons
may be supplemented by our previously-published evalua-
tions of cMonkey1, which included extensive performance
comparisons with many other biclustering methods, and an
analysis of performance on randomized and shuffled data
sets.

Evaluation and comparison of module detection for E. coli

In the following sections, we evaluate the performance of
cMonkey2 in recapitulating known regulation as annotated
in the RegulonDB database (see Methods section for de-
tails). Results of all comparisons are summarized in Table
1 and plotted in Supplementary Figure S2.

Intrinsic measures of cluster quality. When compared to
the algorithms tested (see Methods section, we found that
cMonkey2 identified clusters with, on average, tighter co-
expression (cluster mean squared residue (43)), and, other
than cMonkey1, with a greater likelihood of containing a
statistically significant GRE (MEME (27) E-value ≤ 1) (Table
1 and Supplementary Figure S2). Typically, there is, some-
what paradoxically, a tradeoff between obtaining tight co-
expression and detecting significant GREs. Thus it is note-
worthy that cMonkey2 obtained tighter clusters, while still
detecting more clusters with more statistically significant

GREs. While cMonkey1 clusters were more likely to contain
a significant motif (96%), this is primarily because it is both
(a) training more heavily on GREs than on expression data,
which explains the less coherent (higher residual) cMonkey1
biclusters; and (b) redundantly detecting the same signif-
icant GREs in multiple redundant clusters (i.e. achieving
greater precision at the expense of lower recall). This also ex-
plains the reason that even cMonkey2 (no motif), for exam-
ple, achieved greater recall (and hence greater G score) than
cMonkey1. The modified algorithm of cMonkey2, which only
allows each gene to be assigned to no more than two biclus-
ters, is far more stringent than the probabilistic constraint in
cMonkey1. A similar effect explains the greater precision of
some other algorithms (e.g. WGCNA) than cMonkey––the
discovery of relatively fewer (e.g. only 25 by WGCNA) and
significantly larger (∼8 × larger, for WGCNA) modules, en-
ables it to focus on only the most significant (and thus most
easily characterized) modules.

Detection of known E. coli regulons. Surprisingly,
cMonkey2 detected combinatorial regulons with substan-
tially greater precision (51% vs. 42%) and recall (79% vs.
50%) than cMonkey1. In fact, cMonkey2 achieved greater
recall than all algorithms tested, and greater precision
than all except COALESCE (54%). cMonkey2 achieved the
greatest G score (see Methods section) for combinatorial
regulon detection vs. RegulonDB (Table 1 and Supple-
mentary Figure S2; using the F1 score instead (Methods
section) produces the same outcome). If we instead com-
pare performance in recovering standard regulons (as
opposed to combinatorial regulons; see Methods section),
cMonkey2 again achieved the greatest G (and F1). It is
noteworthy that cMonkey2 surpassed even DISTILLER on
these combined measures, even though DISTILLER uses
known regulon data as part of its training set, which gives
it greater precision.

Detection of known E. coli GREs. cMonkey2 again outper-
formed cMonkey1 in both precision and recall for detection
of validated GRE sites in RegulonDB (Table 1 and Figure
S2; see Methods section). It also achieved greater recall than
all other assessed methods, although with relatively lower
precision than COALESCE. However, cMonkey2 surpassed
all methods in the combined precision-recall G (and F1)
measure. While DISTILLER achieved greater performance
than the original cMonkey1 in these measures on our E.
coli GRE detection benchmarks, primarily due to its greater
precision, our analysis reveals that the algorithm modifica-
tions in cMonkey2 have enabled it to outperform all meth-
ods.

Evaluation of cMonkey2 integration of motifs and networks
for E. coli. In order to evaluate whether the data inte-
gration scheme of cMonkey2 performed as expected, we in-
cluded results for runs of cMonkey2 in which motifs and/or
networks were not included as part of the training data.
Not surprisingly, using the full complement of data per-
forms significantly better than excluding motif informa-
tion. However, we found that excluding only the network
data (here, STRING (23) functional association links) did
not significantly handicap the algorithm; although exclud-
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Table 1. Summary of intrinsic and extrinsic measures of module construction performance on E. coli data set, for several algorithms, as described in
Methods and also shown in Figure S2

GRE Regulon Combi-Regulon(7)

Method k(1)
<E ≤ 1
>(2) <Ng >(3)

<resid
>(4)

〈
Ncl

Gene

〉
(5)

Gene
Cvg.(6) Recall Prec. G Recall Prec. G Recall Prec. G

cMonkey2 400 0.69 21.0 0.61 2.0 1.00 0.61 0.29 0.39 0.89 0.52 0.65 0.79 0.51 0.62
no motif 400 0.13 21.0 0.60 2.0 1.00 0.43 0.21 0.28 0.80 0.46 0.58 0.72 0.46 0.56
no net 400 0.75 21.0 0.61 2.0 1.00 0.63 0.31 0.42 0.82 0.47 0.60 0.73 0.49 0.59
no mot, net 400 0.11 21.0 0.60 2.0 1.00 0.43 0.21 0.28 0.60 0.30 0.40 0.49 0.28 0.35
set-enrich 400 0.71 21.0 0.61 2.0 1.00 0.60 0.28 0.38 0.94 0.55 0.69 0.79 0.59 0.68
cMonkey1 400 0.96 25.7 0.68 2.6 0.94 0.52 0.24 0.33 0.64 0.42 0.51 0.50 0.42 0.46
DISTILLER 150 0.09 19.1 0.64 1.2 0.57 0.38 0.43 0.40 0.41 0.55 0.47 0.27 0.31 0.28
LeMoNe(8) 64 0.34 60.0 0.70 1.0 0.92 0.17 0.34 0.23 0.26 0.34 0.29 0.23 0.38 0.28
LeMoNe(8) 373 0.27 60.5 0.63 6.9 0.78 0.42 0.23 0.30 0.66 0.53 0.59 0.62 0.54 0.58
COALESCE(9) 175 0.38 99.5 0.64 5.1 0.81 0.24 0.25 0.24 0.60 0.58 0.59 0.50 0.61 0.55
WGCNA 25 0.52 168.0 0.73 1.0 1.00 0.11 0.48 0.18 0.09 0.28 0.13 0.11 0.36 0.17
k-means 213 0.12 19.7 0.66 1.0 1.00 0.44 0.32 0.37 0.51 0.32 0.39 0.43 0.32 0.37

Notes: (1) Total number of clusters/modules detected. (2) Fraction of clusters containing a detected motif with MEME E-value ≤ 1. (3) Mean number of genes over all clusters. (4) Mean cluster mean squared
residue. (5) Mean number of clusters per gene. (6) Gene coverage: fraction of all genes included in at least one cluster. (7) ‘Combi-Regulon’ is short for combinatorial regulon (see Methods). (8) Default
LeMoNe parameters except minimum cluster size of 3. (9) COALESCE k-mer length of 7 (default) or 8.

ing both networks and motifs performed significantly worse
than only excluding either data type separately.

Enrichment for E. coli known regulons via new set-enrichment
row scoring module. We will now present the results of inte-
grating the two novel cMonkey2 scoring modules (described
in Methods section) in more detail and evaluate their util-
ity in improving the method’s performance in recapitulating
RegulonDB regulons and known GREs.

Table 1 and Figure S2 shows that this integration effec-
tively improved the cMonkey2 recapitulation of RegulonDB
regulons and combinatorial regulons (particularly, the pre-
cision of regulon detection), while not significantly imped-
ing its ability to meet the other default constraints of tight
conditional co-expression and significant GRE detection.
Clearly, the degree to which this module can improve these
measures (and by result decrease other measures) depends
upon adjustment of its weighting schedule. While we ac-
knowledge the circularity of this assessment, it proves that
the set enrichment row scoring module has the intended ef-
fect and could be effectively used to integrate ChIP, func-
tional annotations, or related data types into the cMonkey2
module detection process.

Evaluation of co-regulated modules detected for Mycobac-
terium tuberculosis

All assessments of cMonkey2 module predictions for M. tu-
berculosis are summarized in Table 2 and Supplementary
Figure S3.

Set-enrichment scoring function significantly increases recov-
ery of set-enriched modules. Recently we reported the con-
struction of a global gene regulatory network for Mycobac-
terium tuberculosis (Mtb) by applying cMonkey to 2,325
publicly available Mtb transcriptome profiles (18). We pre-
viously validated this predicted network using two separate
global data sets: (i) genome-wide binding locations for 143
TFs measured via ChIP-seq (47), and (ii) global transcrip-
tional consequences of overexpressing 206 TFs (TFOE)
(48). We hypothesized that training on these experimentally
determined TF-regulated genes from ChIP-seq or TFOE
would improve cMonkey2 gene regulatory module inference.

We tested this hypothesis by applying cMonkey2 analysis
to the same transcriptome profiles for Mtb as used previ-
ously (18), and varying the training inputs (MEME de novo cis-
regulatory motif detection; ChIP-seq set-enrichment; and
TFOE set-enrichment).

Importantly, we first found that integration of MEME mo-
tifs in cMonkey2 optimization significantly increased the
number of modules that were enriched for both ChIP-seq
(350 vs. 187 significantly enriched modules, Student’s t-test
p-value = 5.0 × 10−12, Table 2) and TFOE (346 vs. 249 sig-
nificantly enriched modules, p-value = 6.2 × 10−10, Table 2)
TF targets, in comparison runs in which motifs were ex-
cluded from training (i.e. co-expression alone). This result
demonstrates clearly that the cMonkey2 integration of se-
quence information from MEME de novo motif detection sig-
nificantly improves discovery of biclusters that are enriched
for Mtb TFs.

Using the set-enrichment scoring function to train on
ChIP-seq or TFOE (while excluding motif detection), also
significantly increased the number of enriched modules be-
yond what was discovered by co-expression training alone
(ChIP-seq p-value = 2.3 × 10−9, TFOE p-value = 2.5 ×
10−13, Table 2), or to the runs trained on MEMEmotifs (ChIP-
seq p-value =1.3 × 10−7; TFOE p-value = 5.8 × 10−7, Ta-
ble 2). Notably, this improvement was achieved with rel-
atively little decrease in bicluster co-expression (i.e. little
increase in residual, Table 2), suggesting that, by integrat-
ing this alternate form of prior cis-regulatory information,
cMonkey2 is effectively exploiting the complex, multifacto-
rial biclustering search space to result in modules with sim-
ilar co-expression ‘quality,’ but which are significantly more
enriched with the desired sets.

Due to the indirect nature of TFOE responses (vs. in-
herently direct interactions measured via ChIP), the condi-
tion sensitivity of the experiments, and the noise inherent to
ChIP-seq measurements, there is a small amount of overlap-
ping cis-regulatory information between the ChIP-seq and
TFOE data sets (18), which leads to little to no increase in
the number of TFOE set-enriched modules detected when
trained on ChIP-seq sets, and vice versa. The complemen-
tary nature of these data sets and the lack of a gold-standard
set of cis-regulatory predictions meant that we did not have
an independent validation that could be used to assess the
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Table 2. Summary of cMonkey2 module construction on M. tuberculosis expression data set, including varying combinations of additional prior data
(ChIP-seq and TFOE; see Methods) via the set-enrichment scoring function

Expression ChIP-Seq(a) TFOE(a) Both(a)

Motif No Motif Motif No Motif Motif No Motif Motif No Motif

mean residual 0.53 ± 0.01 0.49 ± 0.01 0.53 ± 0.01 0.49 ± 0.01 0.53 ± 0.01 0.50 ± 0.01 0.53 ± 0.01 0.50 ± 0.01
mean motif log10 p-val. -9.14 ± 0.07 – -9.21 ± 0.10 – -9.19 ± 0.08 – -9.31 ± 0.12 –
clusters w. motifE ≤ 1 564.8 ± 7.6 – 565.3 ± 7.2 – 563.0 ± 2.9 – 571.5 ± 3.4 –
ChIP-seq
clusters signif.(1) 349.5 ± 5.8 187.3 ± 7.7 397.5 ± 8.5 418.1 ± 30.4 349.9 ± 11.2 182.8 ± 9.9 395.3 ± 8.9 419.2 ± 11.9
TFs signif.(2) 142.0 ± 0.0 133.4 ± 3.5 142.0 ± 0.0 141.5 ± 1.0 142.0 ± 0.0 129.9 ± 4.8 142.0 ± 0.0 142.0 ± 0.0
unique clusters signif.(1) 95.7 ± 3.2 87.1 ± 3.9 97.6 ± 4.3 116.2 ± 2.5 93.0 ± 3.8 88.1 ± 4.0 98.3 ± 3.9 118.4 ± 4.3
unique TFs signif.(2) 135.6 ± 1.8 134.7 ± 2.9 137.0 ± 1.3 136.5 ± 1.5 136.3 ± 1.6 136.2 ± 1.2 136.5 ± 1.7 135.8 ± 3.3
TFOE
clusters signif.(1) 346.3 ± 7.8 249.1 ± 9.7 347.8 ± 12.5 255.2 ± 10.3 402.2 ± 11.3 485.5 ± 15.8 413.1 ± 14.9 491.1 ± 7.2
TFs signif.(3) 198.8 ± 1.8 179.0 ± 3.9 200.0 ± 1.9 181.4 ± 5.6 201.6 ± 1.7 199.5 ± 1.8 202.8 ± 1.0 199.8 ± 5.4
unique clusters signif.(1) 138.9 ± 3.8 136.2 ± 5.3 135.6 ± 2.4 137.2 ± 5.7 144.4 ± 3.5 174.9 ± 4.6 146.3 ± 8.2 171.9 ± 4.2
unique TFs signif.(3) 191.7 ± 2.7 189.2 ± 3.4 191.6 ± 2.6 188.4 ± 3.2 189.6 ± 2.9 190.8 ± 2.3 191.0 ± 5.0 190.7 ± 2.5

Shown are statistics regarding recapitulation of TF target gene sets in the ChIP-seq and TFOE measurements, for cMonkey2 runs on data with inclusion of varying prior information. The values in the table
rows labeled ‘clusters signif.’ (number of significant clusters) correspond to those in the bar chart of Figure S3. The rows labeled ‘Unique clusters/TFs signif.’ denote clusters/TFs with a single unique match
to a TF/cluster, respectively, and respectively represent precision and recall.
Notes: (a) All runs included expression data as well. (1) Out of a total of 600 clusters predicted. (2) Out of 142 TFs tested via ChIP-seq. (3) Out of 205 TFs tested via overexpression (TFOE).

strength of these predictions. We address this lack of exter-
nal validation in the following section on lung squamous
cell carcinoma where an external validation set is available.

Evaluation of module detection for human Lung Squamous
Cell Carcinoma (LUSC)

Increased recovery of LUSC-implicated miRNAs by train-
ing on Weeder motifs. Previously, we developed methods
to discover miRNA mediated regulation from gene co-
expression clustering by discovering 3’ UTR motifs using
Weeder post-facto on the 3’ UTR sequences of genes in
the clusters (53). The integration of Weeder into cMonkey2
allows us to train biclusters based simultaneously on co-
expression and Weeder 3’ UTR motifs thereby increas-
ing the potential for discovering meaningful miRNA co-
regulation. We tested this hypothesis by applying cMonkey2
to The Cancer Genome Atlas (TCGA) lung squamous cell
carcinoma (LUSC) patient tumors to discover miRNA me-
diated co-regulation. We observed significant increase in the
number of significant 3’ UTR motifs discovered in when
cMonkey2 is trained on Weeder motifs when compared with
runs not trained on any cis-regulatory inputs (p-value =1.5
× 10−3; Table 3). Training on Weeder 3’ UTR motifs also
led to a significant 2.5 fold increase in recovery of miR-
NAs implicated in lung cancer as compared to runs not
trained on any cis-regulatory inputs (p-value = 6.0 × 10−5;
Table 3). We have demonstrated that integration of train-
ing on Weeder 3’ UTR motifs into cMonkey2 has improved
the discovery of 3’ UTR motifs, which in turn leads to an
impressive increase in the discovery of disease implicated
miRNAs.

Increased recovery of LUSC-implicated miRNAs by set-
enrichment training. A faster alternative for training
cMonkey2 runs to discover miRNA mediated regulation in
mammalian species with large genomes is set-enrichment
with databases of pre-computed miRNA target gene pre-
dictions such as TargetScan (54). cMonkey2 was run on the
TCGA LUSC patient tumors (see above) and trained, us-
ing set-enrichment, on TargetScan miRNA target gene pre-
dictions. This analysis led to a significant 2.3-fold increase

in recovery of miRNAs implicated in lung cancer as com-
pared to runs not trained on any cis-regulatory inputs (p-
value = 1.8 × 10−6; Table 3). Importantly, there was not
a significant difference in the number of miRNAs recov-
ered between Weeder 3’ UTR motifs or TargetScan miRNA
target gene training approaches (p-value = 0.24); however
omitting the de novo motif detection resulted in a ∼3 ×
improvement in cMonkey2 run time in the TargetScan set-
enrichment runs (4.7 ± 0.08) hours, versus the Weeder 3’
UTR motif runs 14.3 ± 0.2 hours; p-value = 9.1 × 10−5).
These results demonstrate that if regulatory factor to target
gene databases exist that set-enrichment approaches can be
used in place of de novo motif detection and also lead to
significant performance improvements.

DISCUSSION

We have described cMonkey2, an updated and improved
framework for detecting co-regulated modules of genes via
automated data integration and optimization. We have de-
scribed our recent modifications to the algorithm, which
served to improve both its runtime performance, as well
as its ability to discover optimized and experimentally val-
idated gene regulatory modules. Based upon our tests on
E. coli, cMonkey2 proves to be a strong performer in this
crowded arena of regulatory network module detection and
data integration.

We have completely overhauled the cMonkey2 implemen-
tation, focusing on ease-of-use for the end user (with auto-
matic downloading and integration of many different data
sources for any sequenced and annotated microbe), and on
simplicity for the developer in integrating new data types
and scoring schemes into the procedure. We demonstrated
the utility of two new scoring mechanisms with use-cases
for three different organisms––E. coli, M. tuberculosis and
H. sapiens, and showed that a simple integration of a new
set-enrichment scoring procedure, as well as a new motif
detection algorithm (Weeder) improved upon the existing
capability of cMonkey2 to detect valid co-regulated gene
modules and cis-regulatory motifs. These tests moreover
demonstrated the importance of motif integration as part
of cMonkey, revealing that this constraint can significantly
improve module detection performance when additional
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Table 3. Summary of cMonkey2 module construction performance on H. sapiens lung squamous cell carcinoma data set, for several different training
schemes, including novel Weeder-based 3’ UTR motif detection, and pre-computed miRNA target gene predictions via novel set-enrichment scoring
function. See Methods for details.

Training Method
Number of Significant

Motifs Comparison p-value(1) miR2Disease miRNAs Comparison p-valuea

Expression only 9.3 ± 2.1 - 3.5 ± 0.84 -
Weeder motif training 16 ± 3.1 1.5 × 10−3 8.8 ± 1.5 6.0 × 10−5

Set-enrichment training 9.5 ± 2.3 9.0 × 10−2 8.0 ± 0.63 1.8 × 10−6

Notes: (1) All p-value comparisons are relative to ‘Expression only.’

data sets (other than expression data) are not available––as
would be the case, for instance, for newly-sequenced and
culturable microbes with no developed genetics capability.

Because various motif detection algorithms use differ-
ent statistical models and heuristics for learning them, they
have different, often complementary capabilities for detect-
ing different types of real signatures (55). For this reason,
a number of researchers (56,57) have taken to integrating
the predictions of several different motif detection algo-
rithms and have demonstrated resulting increased sensitiv-
ity and/or precision on prokaryotic genomes (56,58). Our
long-term goal is to integrate a number of motif detec-
tion algorithms into an ensemble learning procedure for
learning co-regulated modules with cMonkey2. This will in-
clude searching, in addition to annotated gene promot-
ers (the current default), their 5’ and 3’ UTRs for poten-
tial miRNA and post-transcriptional regulatory motifs. As
we have shown, cMonkey2 now provides a straightforward
framework for this type of integration, and we have identi-
fied excellent candidates (29) including BoBro (59), Spacer
(60) or dyad-analysis (61), and BioProspector (62), which
model DNA motifs in different ways, as additional targets
for integration.

In the future, in addition to integration of multiple motif
detection algorithms, we intend to use this new framework
to add additional constraints via phylogenetic genomic con-
servation (e.g. (63) and related), as well as other new data
types including genomic location constraints provided by
ChIP-seq (64), ATAC-seq (65) or DNase-seq (66) measure-
ments, which will provide significant additional constraints
on the bicluster (and in particular, motif) optimization.
Moreover, the framework provides the opportunity to in-
vestigate other measures of gene expression pattern simi-
larity (e.g. mutual information) to identify other potential
patterns of co-regulation.

Our desire is to see cMonkey2 become a focal point for
a community of users and developers, with additional data
types and scoring function modules being contributed by
the community. To this end, development of the framework
is openly hosted on Github (http://github.com/baliga-lab/
cmonkey2), with extensive documentation, wikis, and dis-
cussion groups. We will moreover provide a framework for
automatically testing modifications and improvements con-
tributed by the community via benchmarks similar to the
RegulonDB ones presented here.
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