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ABSTRACT
KCNV2-associated retinopathy or “cone dystrophy with supernormal rod responses” is an autosomal
recessive cone-rod dystrophy with pathognomonic ERG findings. This gene encodes Kv8.2, a voltage-
gated potassium channel subunit that acts as a modulator by shifting the activation range of the K+

channels in photoreceptor inner segments. Currently, no treatment is available for the condition.
However, there is a lack of prospective long-term data in large molecularly confirmed cohorts, which
is a prerequisite for accurate patient counselling/prognostication, to identify an optimal window for
intervention and outcome measures, and ultimately to design future therapy trials. Herein we provide
a detailed review of the clinical features, retinal imaging, electrophysiology and psychophysical studies,
molecular genetics, and briefly discuss future prospects for therapy trials.
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Introduction

KCNV2-associated retinopathy (OMIM #610356) is an unusual,
autosomal recessive cone-rod dystrophy with pathognomonic
electroretinogram (ERG) findings (1–4). It was first described by
Gouras et al in 1983 as a cone dystrophy with nyctalopia and
supernormal rod responses (5). In the USA, it has an estimated
frequency of 1/865,000 inhabitants and an incidence of 5 new
cases per year (6). Wu et al. linked “cone dystrophy with super-
normal rod responses” (CDSRR) to a 1.5 Mb region on chromo-
some 9p24, and subsequently identified disease-causing
sequence variants in the KCNV2 gene (7,8). KCNV2 encodes
a voltage-gated potassium channel, which sets vertebrate photo-
receptor resting potential and voltage response (9).

This article aims to provide a detailed overview of the
current clinical literature regarding KCNV2 retinopathy,
review our current understanding of the molecular genetics,
and discuss potential novel treatments.

Clinical presentation

Patients often present in the first or second decades of life with
central scotoma, poor visual acuity, variable photophobia, and
red-green axis dyschromatopsia with relative tritan sparing
(3,4,10,11). Younger children may display an abnormal head
posture, head shaking, and/or nystagmus, which can improve
over time (12). Nyctalopia may also be reported at presentation,
and patients often have mild to moderate myopia (13).
A significant proportion of patients report both notable night
blindness and photophobia, a combination of symptoms that is
unusual in the early stages of a cone-rod dystrophy.

Retinal imaging

Fundus examination often reveals a relatively normal retinal
periphery and a range of macular abnormalities, which vary
from discrete accentuation of the foveal reflex to more pro-
nounced macular retinal pigment epithelial (RPE) atrophy
(10,13). Fundus autofluorescence (FAF) imaging reveals
a wide range of findings including ring-like or bull’s-eye
changes, increased foveal AF, and reduced central signal in
keeping with atrophy, have all been reported (Figure 1).
A parafoveal ring of increased AF is a common finding in
younger patients, which may initially involve a broader area
or multiple foci forming a concentric pattern in the second
decade of life, and ultimately evolves into concentric areas of
decreased signal indicative of RPE/photoreceptor dysfunction/
loss (3,4,13).

Optical coherence tomography (OCT) identifies variable
outer retinal integrity, from mild discontinuous reflectivity to
more extensive loss of the ellipsoid zone (EZ), including a central
hyporeflective zone (HRZ) in some patients (Figure 1) (4,14).
Although foveal EZ changes are evident even in the earliest
stages of the disease, there appears to be a relatively wide tem-
poral window before significant atrophy is evident (14).

Adaptive optics scanning light ophthalmoscopy (AOSLO)
is a non-invasive imaging modality that enables the visualiza-
tion of photoreceptors at a microscopic level by correcting for
ocular aberrations (15). AOSLO in KCNV2 retinopathy
reveals cone photoreceptor mosaic disruption with patches
of absent and non-waveguiding cones and overall reduced
cone density, but significant residual photoreceptors that
could be therapeutically targeted (4).
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Electrophysiology, pupillometry and psychophysics

KCNV2-retinopathy has a pathognomonic ERG signature
(Figure 2) (13,16). International Society for Clinical
Electrophysiology of Vision (ISCEV) – standard (17) light-
adapted (LA) ERGs are reduced and delayed, and photopic

On-Off ERGs (18) typically show abnormalities of both
cone-mediated On- and Off- systems (13). Under dark-
adapted (DA) conditions, the rod-mediated dim flash
(DA0.01) ERG is severely delayed and typically of subnormal
amplitude; whereas to a strong flash the (DA10.0) ERG
a-wave has a characteristic flattened trough of normal or

Figure 1. Retinal Imaging in KCNV2-Retinopathy. (a-d) Fundus autofluorescence (FAF) imaging with corresponding horizontal trans-foveal optical coherence
tomography (OCT) scans of four patients with disease-causing KCNV2 variants (a, b, c and d; 49, 25, 28 and 71 years of age respectively). A wide range of FAF
patterns is observed: increased foveal signal (a), bull’s-eye maculopathy (b), perifoveal ring of increased signal with central atrophy (c and d). Corresponding OCT
images show: small discontinuities and attenuation of the foveal ellipsoid zone (EZ) (a), a hyporeflective zone (b), and more extensive loss of the EZ and retinal
pigment epithelial atrophy (c-d).
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near-normal amplitude with a late negative component, and
the b-wave is of relatively high amplitude (and may be super-
normal). Although not needed for diagnosis, a stimulus-
response series reveals no detectable response to a very dim
white flash (e.g. 0.002 cd.sm−2; detectable in healthy sub-
jects), but there is a disproportionate increase in the ERG
b-wave with increasing intermediate flash strengths. Pattern
ERG P50 (19) is invariably undetectable, irrespective of age
or fundus appearance, in keeping with severe macular dys-
function (13). In the largest cross-sectional study to date
(n = 24), the ERG findings did not correlate with age,
which suggests that the progressive structural macular
degeneration can occur in the presence of relatively stable
peripheral retinal function (13).

In 2019, Collison et al. performed pupillometry in two
unrelated patients with molecularly confirmed KCNV2-
retinopathy. They detected pupillary responses to moderate
to high-luminance stimuli, including responses to high-
luminance short-wavelength stimuli that were within normal

limits. The normal sustained pupillary responses suggest an
outer retinal locus and are consistent with ERG evidence of
relatively preserved inner retinal function (20).

A detailed psychophysical investigation of 5 patients with
KCNV2-retinopathy, concluded that the defect in the voltage-
gated potassium channel produces a nonlinear distortion of
the photoreceptor response after otherwise normal photo-
transduction (21). The authors thereby suggested that the
previous name of the disorder (cone dystrophy with ‘super-
normal’ rod ERG) to be potentially misleading, given their
identification of comparable loss of both cone and rod photo-
receptor function; also consistent with the mildly reduced
DA10.0 ERG a-waves seen in most cases (13).

The combination of clinical, imaging, and ERG findings
that characterize the phenotype of KCNV2-retinopathy are
highly suggestive of the disease. Nevertheless, it remains pos-
sible that the condition is underdiagnosed due to a lack of
clinical awareness of this particular phenotype, limited access
to specialist ERG testing or failure to recognize the

Figure 2. Electroretinography in KCNV2-Retinopathy. Full-field ERGs and PERG recorded from a patient with KCNV2-retinopathy (right eye; RE), compared with
representative control recordings from an unaffected subject (N). Dark-adapted (DA) responses are shown for flash strengths of between 0.002 and 10.0 cd.s.m−2 (DA
0.002 – DA 10.0). In the case of KCNV2-retinopathy the DA 0.002 ERG is undetectable; DA 0.01 ERG is delayed and subnormal; the DA 10.0 ERG a-wave trough has
a relatively broad shape of mildly subnormal amplitude with a late negative component; the DA 10 ERG b-wave is of relatively high amplitude. Light-adapted (LA)
ERGs are shown for a flash strength 3.0 cd.s.m−2 (LA 30 Hz and 2 Hz); responses are reduced and delayed. Photopic On-Off ERGs show delay and reduction affecting
both On and Off responses and S-cone ERGs are subnormal. The PERG P50 component is undetectable. Recordings were symmetrical and are shown for the right eye
only. Abnormal traces are superimposed to demonstrate reproducibility with exception of DA 0.14 (single trace recorded). Broken lines replace blink artefacts that
occur after the b-waves.
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pathognomonic ERG features, which are not always associated
with a DA strong flash ERG b-wave of abnormally high
amplitude, and also a lack of genetic testing (13,16,22,23).

Molecular genetics

KCNV2 is a 2-exon gene, encoding a 545 amino acid protein,
that was first cloned in 2002 (8). It is predominantly expressed in
the heart and retina (24). When first described, the protein
product was named Kv11.1, rather than Kv8.2, as it is known
now; with the nomenclature change being that Kv11.1 was reas-
signed to a pore-forming subunit of a rapidly activating-delayed
rectifier K+ channel, a product of the KCNH2 gene (OMIM
#152427). Kv8.2 is a regulatory subunit, which is known to be
an electrically “silent” K+ channel subunit when expressed as
a homotetramer. Initially, Ottschytsch et al. suggested that it
combines with other proteins in heterotetrameric complexes.
Indeed, Kv2.1 was found to generate current and promote traf-
ficking of Kv6.3, Kv10.1 and Kv8.2, which supported his hypoth-
esis (8). Through obligatory heteromerization with Kv2.1, Kv8.2
affects cellular excitability potential and alters the K+ current.

Four years later (2006), Wu et al. linked CDSRR to a 1.5 Mb
region on chromosome 9p24 in a large multiply consangui-
neous family from UAE, and identified a homozygous non-
sense variant in KCNV2. In situ hybridization using a KCNV2
antisense riboprobe demonstrated its expression in the inner
segments of human rod and cone photoreceptors (PR) (7). The
importance of this gene in the visual cycle was further sup-
ported by Czirják et al., when it was suggested that the Kv2.1/
Kv8.2 complex contributed to photoreception, which further
explains why variants in KCNV2 lead to a visual disorder (24).
More recently, it has been proposed that the presence of Kv8.2
in the heteromeric complex regulates the function of the Kv2.1/
Kv8.2 complex by shifting the activation range of the K+

channels in photoreceptor inner segments. Otherwise, as in
the case of a dysfunctional KCNV2 gene, the absence/reduced
function of the subunit Kv8.2 in the potassium channels, would
shift and depolarize the resting potential of the cells, which
might account for the pathognomonic ERG findings in
KCNV2-retinopathy (9).

In preparations of micro-dissected retinal neurons, the
transcript levels of Kv8.2 and Kv2.1 were found to display
daily rhythms, with elevated values during the night. It has
been proposed that the transcriptional regulation of Kv8.2
and Kv2.1 is a mechanism by which the ‘retinal clock’ drives
visual function according to different environmental lighting
conditions (25).

Using chromatin immunoprecipitation and bioinformatic
prediction analysis, two cone-rod homeobox (CRX) binding
sites and one NRL binding site have been identified in the
KCNV2 promoter. Interestingly, shRNA-mediated knock-
down of CRX binding sites in mouse models, resulted in
reduced KCNV2 promoter activity and low endogenous
KCNV2 mRNA expression in the retina, suggesting that
retina-specific expression of KCNV2 is controlled by the tran-
scription factor CRX (26). These findings may be helpful in
designing future gene therapy for KCNV2-retinopathy.

Protein structure

Voltage-dependent K+ channels are composed of alpha-subunits,
which determine the structure of the channel, and beta-subunits
whichmodulate its properties (27). KCNV2 encodes Kv8.2, which
is an alpha-subunit (8). Each channel subunit consists of: (i) an
N-terminus with a highly conserved tetramerization domain
known as N-terminal A and B box (NAB or T1) that facilitates
interaction between compatible alpha-subunits; (ii) 6 transmem-
brane domains (S1-S6) with a positively-charged S4 that forms the
voltage sensor domain (VSD); (iii) extracellular and intracellular
loop segments; and (iv) an ultra-conserved potassium selective
motif (Gly-Tyr-Gly) in the pore forming loop between S5-S6 (P
loop), which forms the selective filter (28–33). A graphical repre-
sentation of the protein and its domains is presented in Figure 3.
Variants located in the intracellular amino-terminal region (T1) of
Kv8.2 are very likely to be pathogenic as this domain lends stability
to the channel structure. Variants in this region have produced
elevated levels of non-functional monomers in a yeast model that
were thendegraded (34).However, using a different yeastmodel, it
has been shown that sequence variants in T1 do not result in
misfolding or fast degradation of the protein, but robustly prevent
and disrupt interaction between the T1 domains of Kv8.2 and
Kv2.1 (35).

Reported sequence variants

More than 100 patients and 95 different variants have been
reported across 22 studies (4,7,10–14,20-23,36–46).
Supplementary table summarizes the previously described var-
iants, including conservation, in silico prediction and frequency
assessment. Of these, 46 are missense variants (two of which are
located in the last codon and generate an extension of 61 amino
acids), 21 nonsense variants, 14 intragenic deletions (13 causing
a frameshift), 3 out-of-frame insertions (with subsequent frame-
shift), 4 duplications (2 causing frameshift), 6 gross deletions of an
entire exon or the whole gene, and 1 complex rearrangement
(c.19_1356 + 9571 delinsCATTTG; p.Arg7HisfsX57).
Approximately two thirds of these variants are located in the
amino-terminal region (N-terminus and NAB domains).

The most frequently reported variant is c.1381 G > A (p.
Gly461Arg), located in the third residue of the ultra-conserved
GYG-tripeptide motif (47). It has been reported as a disease-
causing variant in 35 patients, either in the homozygous or
compound heterozygous state (4,10,14,23,36–40). Moreover, it
accounts for approximately 83% of all disease-causing variants
reported in the P loop domain. Based on its frequency, p.
Gly461Arg may represent a mutational hotspot (Figure 3).
Another possible mutational hotspot is located in the amino-
terminal A and B box (NAB), c.427 G > T (p.Glu143X). This
nonsense variant causes premature protein termination and is
predicted to cause loss of function. It has been reported in 31
patients (7,12,14) and accounts for approximately 41% of all
disease-causing variants in the highly conserved NAB domain.

Directions for therapy

There is currently no approved treatment for KCNV2-
retinopathy, apart from symptomatic supportive measures
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including tinted spectacles/contact lenses and access to low
visual aids/assistive technologies.

Gene supplementation therapy offers the possibility to
improve the outcomes of several forms of monogenic inher-
ited retinal disorders (IRD). It aims to deliver a “normal” copy
of a defective gene that is no longer able to produce viable
protein. Data from long-term follow-up studies of the pivotal
gene therapy trials for RPE65-related retinal dystrophy
(RPE65-RD) (OMIM #204100) are promising (48–50) and
have resulted in the first FDA/EMA approved gene therapy
for an ocular condition. One of the main factors that
prompted interest in using gene therapy for RPE65 was that
despite the profound visual loss in animal models and
humans, there was a wide window of structural photoreceptor
preservation for therapeutic intervention (51).

KCNV2-retinopathy may also be a suitable target for gene
therapy. Firstly, KCNV2 is a small gene that can readily be
packaged within the viral vector of choice, AAV. Secondly,
there is a mouse model that recapitulates human disease very
closely (including the ERGphenotype) and so can be targeted for

therapeutic intervention (52). Thirdly, there are favourable func-
tional and structural phenotypic features. In 1984, Alexander
and Fishman reported three cases, of which two had the ‘typical’
supernormal rod ERGs but without nyctalopia, suggestive of
good rod function despite abnormal scotopic ERG (53).
Further functional studies have suggested that inner-retinal
function and the phototransduction cascade are relatively nor-
mal in KCNV2-retinopathy (16,20). Structurally, although mor-
phological changes at the fovea are evident on OCT in early
stages of the disease, there appears to be a broad window of
opportunity for therapeutic intervention before advanced struc-
tural changes and marked photoreceptor cell loss have occurred
(13). This is supported by findings in the KCNV2 knock-out
mouse, where approximately 80% of cones are still intact by six
months of age as compared to wild type, which if similar to
humans, may allow for relatively late photoreceptor-directed
treatment (52). However, further clinical and pre-clinical
research, including prospective natural history studies, are
needed to establish the optimal window for intervention, appro-
priate structural and functional (both retinal and visual) end-

Figure 3. KCNV2 Protein Structure. (a) Graphical representation of the alpha-subunit of the potassium channel (Kv8.2) encoded by KCNV2. The subunit consists of: (i)
a highly conserved tetramerization domain; N-terminal A and B box (NAB) that facilitates interaction between compatible alpha-subunits; (ii) 6 transmembrane
domains (S1-S6); (iii) extracellular and intracellular loop segments; and (iv) an ultra-conserved potassium selective motif in the pore-forming loop between S5-S6 (P
loop). (b) The two most frequently reported variants in patients with KCNV2-retinopathy are c.1381 G > A (p.Gly461Arg) and c.427 G > T (p.Glu143X), and may
thereby represent mutational hotspots (MH); both locations are represented with a lozenge-shaped site in the gene annotation.
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points to monitor both safety and efficacy, and identify partici-
pants most likely to benefit.

There are three main routes being explored to deliver
a gene therapy product to the retina: via (i) intravitreal, (ii)
subretinal or (iii) suprachoroidal injection. Although intravi-
treal injections are less invasive than subretinal injections and
may be readily delivered by non-specialist surgeons, most
currently available AAVs are unable to efficiently and repro-
ducibly reach the outer retina – mainly due to the inner
limiting membrane (ILM) acting as a physical barrier, thereby
limiting transduction to the inner retinal layers (54). Modified
AAVs – particularly serotype 2 – are proposed to be more
effective in penetrating the ILM and allow broader transduc-
tion (55–59). However, in the case of KCNV2-retinopathy,
which primarily affects photoreceptors, subretinal delivery of
a gene therapy product is currently likely to be the most
effective approach.

Pharmacological approaches with potassium channel mod-
ulators may provide a promising option for the treatment of
several conditions, including cardiac arrhythmias, epilepsy,
depression, autoimmune diseases and many others (60–63).
Chemical agents that affect potassium channel functions may
either activate or block current flow or alter channel gating
(61). In theory, certain patients with KCNV2-retinopathy
(depending on the effect of specific sequence variants on
protein/channel structure/function) may also benefit from
potassium channel modulators. How these might be safely
delivered long term would also need to be addressed.

Conclusions and future directions

Evidence from animal models and clinical studies identify
KCNV2-retinopathy as a severe early onset retinal dystrophy
with slowly progressive maculopathy, that might be amenable
to future treatments. Phenotypic studies suggest that there is
indeed relative structural preservation of retinal architecture
and intact phototransduction (16,20,21,52). Multiple gene
therapy trials for IRDs are ongoing (48,64–67), with the first
approved gene therapy for RPE65-RD now available
(NCT00999609). Further pre-clinical work in animal models
and iPSC-derived models is needed to explore safety, efficacy
and dosing of potential gene or drug therapy to facilitate
translation to human clinical trials.

In the UK, KCNV2 retinopathy accounts for 0.7% of the
pedigrees with IRDs (68). Prospective data in large molecularly
confirmed cohorts are the cornerstone for understanding the
natural history of the disease. This is a prerequisite for the best-
informed design of future therapy trials, as well as for patient
counselling and advice on prognosis. Detailed phenotyping of
patients with KCNV2-retinopathy will facilitate the identification
of an optimal window for intervention, provide specific para-
meters to quantify treatment effects and define clinical endpoints,
and help identify suitable patients for therapeutic intervention.
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