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Abstract 

For lung adenocarcinoma, arm aneuploidy landscape among primary and metastatic sites, and among different driver and frequently 
mutated gene groups have not been previously studied. We collected the largest cohort of LUAD patients (n = 3533) to date and 

analyzed the profiles of chromosome arm aneuploidy (CAA), and its association with different metastatic sites and mutated gene 
groups. Our results showed distant metastasis (bone, brain, liver) were characterized by high CAA burden and biased towards arm 

losses compared to regional metastasis (pleura, chest) and primary tumors. Moreover, EGFR, MET, PIK3CA, PKHD1 and RB1 

mutant groups were found to have high CAA burden, while those with BRAF, ERBB2 and KRAS mutations belonged to the low 

CAA burden group. Comparing EGFR L858R and EGFR 19del mutants, distinct CAA co-occurrences were observed. Network-based 

stratification with population based genomic evolution analysis revealed two distinct subtypes of LUAD with different CAA signatures 
and unique CAA order of acquisition. In summary, our study presented a comprehensive characterization of arm aneuploidy landscape 
and evolutionary trajectories in lung adenocarcinoma, which could provide basis for both biological and clinical investigations in the 
future. 
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Chromosome arm aneuploidy (CAA) is characterized by copy number 
ain or loss of chromosome arms [1] . CAA is the most prevalent type of
enomic alteration in solid tumors, occurring in 90% of cases [1] . Both
neuploidy burden as well as specific CAAs are associated with clinical 
utcome in a number of cancers. For example, high levels of aneuploidy 
s associated with lung cancer progression [2] , whereas 1p and 9p loss are
ssociated with favorable prognosis in glioma [3] . CAA have been shown to
utperform mutations and focal somatic CNAs in predicting drug response 
4] . Tumors with distinct histological subtypes can also be clustered using 
rm loss and gain patterns [5] . 
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Lung cancer is the most commonly diagnosed cancer worldwide [6] , with
lung adenocarcinoma (LUAD) accounting for 40% of all lung cancers [7] .
Early studies of CAA in lung cancer showed agreement for some arm gains
(1q, 3q, 5p and 8q) and losses (3p, 8p, 9p, 9q and 13q), but with inconsistent
prevalence, and disagreements for certain CAAs [8] . A larger cohort may
address these inconsistencies. Evidence suggest metastatic spread depend on
specific aneuploidies [9] . CAAs 6q-, 7p + , 9p- and 13q- were enriched in
metastatic versus primary non-small cell lung cancer [4] , however this study
did not investigate different sites of metastasis, such as lymph, pleura, liver
and brain. Certain mutant genes can be associated with specific CAAs. For
example, 3p- with mutant BAP1, PBRM1 and VHL and 5p + with mutant
PBRM1 and VHL in kidney cancer [10] . In addition, evidence suggest solid
tumors are characterized by initial arm gains, followed by numerous arm
losses [4] . These have not been studied in LUAD. 

A recent pan-cancer study analyzed CAA in 503 LUAD samples from
The Cancer Genome Atlas (TCGA) whole exome sequencing (WES) dataset
[5] . However, a larger cohort is required to reliably detect differences in
CAA characteristics across different metastatic sites and mutant gene groups.
Targeted panel sequencing data can often provide large cohorts, and have
been shown to be reliable in making large scale genomic alteration calls such
as arm aneuploidy. One study used a 110-gene kidney cancer panel and found
aneuploidy call concordance with shallow whole genome sequencing (sWGS)
data was 0.8723 [11] . Another study using a 100-gene colorectal cancer panel
had concordance of 0.82128 with sWGS [12] . 

We retrospectively examined a large dataset from a 425-cancer gene
targeted panel, with a large cohort of 3533 LUAD patients. This dataset
consisted of samples from primary tumor and metastasis to 6 different
sites, and well documented mutation status in driver and other frequently
mutated genes. We aimed to uncover the association between CAA and site
of metastasis, drivers and frequently mutated genes. And whether CAAs are
acquired in any specific order in LUAD. 

Materials and methods 

Patients and samples 

Custom 425-gene targeted sequencing panel data from 3533 patients with
primary or metastatic lung adenocarcinoma were retrospectively examined.
Written informed consent of sample usage for research was collected from
each patient according to ethical regulations of respective hospitals. Tissue
samples were FFPE. Paired normal samples were whole blood. All samples
passed in-house QC procedures, including FFPE damage, contamination and
matched normal control tests. An additional 20 LUAD samples underwent
both targeted panel sequencing and WES for CAA concordance analysis to
validate the use of the 425-gene targeted panel for making CAA calls. 

Nucleic acid isolation, library construction, targeted panel sequencing 
and WES 

Genomic DNAs from FFPE samples and the whole blood control samples
were extracted using Qiagen QIAamp DNA FFPE Tissue Kit and DNeasy
Blood and tissue kits (Qiagen, USA)), respectively, and quantified using
Qubit 3.0 with dsDNA HS Assay Kit (ThermoFisher Scientific, USA).
Sequencing library preparation was performed with KAPA Hyper Prep Kit
(KAPA Biosystems, USA). DNA libraries were pooled and captured with a
custom 425 cancer-gene panel. The capture reaction was performed with
Dynabeads M- 270 (Life Technologies, CA, USA) and xGen Lockdown
hybridization and wash kit (Integrated DNA Technologies) according to
manufacturers’ protocols. Captured libraries were PCR amplified with KAPA
HiFi HotStartReadyMix (KAPA Biosystems), followed by purification using
AgencourtAMPure XP beads. Libraries were quantified by qPCR using KAPA
Library Quantification kit (KAPA Biosystems). Library fragment size was
etermined by Bioanalyzer 2100 (Agilent Technologies). The target-enriched 
ibrary was then sequenced on HiSeq4000 NGS platforms (Illumina) to
 minimum coverage depth of 100X and 600X for blood and FFPE,
espectively. Exome capture was performed using the IDT xGen Exome
esearch Panel V1.0 (Integrated DNA Technologies) and sequenced using 
iSeq4000 to a mean coverage depth of ~60X for the normal control (white

lood cells samples) and ~150X for the tumor FFPE samples. 

equencing data processing 

FASTQ file quality control was performed using Trimmomatic [13] ,
here N bases and low quality (score < 20) bases were removed. Pair-

nd reads were aligned to the human reference genome (hg19) using
urrows-Wheeler Aligner (BWA), then) with default parameters, followed by 
CR deduplication with Picard V2.9.4 (Broad Institute, MA, USA). Local
ealignment around indels and base quality score recalibration was performed
ith the Genome Analysis Toolkit (GATK 3.4.0). Somatic single-nucleotide 
ariants (SNVs) were identified using MuTect2. Final list of mutations was
nnotated using vcf2maf (available on GitHub). Resulting mutation list was
ltered through an internally collected list of recurrent sequencing errors on
he same sequencing platform, summarized from the sequencing results of
500 normal samples. Mutations occurring within repeat masked regions 
ere also removed. For additional filtering, mutations were called when VAF

s above 1% with a minimum of 3 mutant reads for hotspot COSMIC
utations ( > 20 recurrences); or have VAF above 2% with a minimum of
 mutant reads for all other mutations. Gene fusions were identified using
ELLY [14] using default parameters and manually inspected using IGV. 

NV analysis and CAA call 

Sequenza v2.1.2 [15] was used to call somatic segment level copy number.
equenza file is compressed by default binning window size of 50. Tumor
ersus normal depth ratio was normalized against GC content, followed by
llele-specific segmentation. Tumor sample purity and ploidy was inferred 
rom B allele frequency and depth ratio of segments. Final purity and
loidy adjusted total copy number (CNt) was calculated for each segment.
 segment was neutral if CNt equals ploidy, loss if CNt was less than
loidy, and gain if CNt was more than sample ploidy. Similar to a previous
rm aneuploidy study, [11] arm gain or loss was called when > 50% of the
hromosome arm length have segment gain or loss, respectively. 

AA pattern, co-occurrence and evolution analysis 

An individual was defined as being a mutant for a driver or frequently
utated non-driver gene if he/she has at least one non-silent mutation in

hat gene. Frequently mutated non-driver genes are defined as genes with
on-silent mutation frequency > 5% of entire study cohort. CAA burden
as calculated as the total number of aneuploid arms in an individual. For
ain-loss difference, an individual is in the gain > loss category if total number
f arm gains in that individual was greater than the total number of arm losses,
ice versa for gain < loss category, and gain = loss if number of arm gains and
osses were equal. 

R package ‘cooccur’ [16] was used to study co-occurrence or exclusion of
AA pairs and CAA with mutant gene pairs. Cooccur compares the observed

ersus expected co-occurrence frequencies under a probabilistic model. For 
ach event pair, cooccur produces an FDR adjusted q-value as a measure
f significance, in addition to the magnitude of co-occurrence (positive) or
xclusivity (negative) (log2(O/E), centered on zero (neutral). Q-value < 0.1
as considered significant. 

CAA evolution graph was generated using TRONCO (TRanslational 
NCOlogy) [17] , which infers CAA acquisition using population level

ata from a cohort of patients. TRONCO input was a binary matrix with
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Fig. 1. CAA study overview. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Patient demographic and clinical 

information. 

Group Patients 

Total 3533 

Gender n % 

Male 1877 53.1 

Female 1551 43.9 

Gender Unknown 105 3 

Age group n % 

Age < = 60 1737 49.2 

Age > 60 1692 47.9 

Age Unknown 104 2.9 

Tumor status n % 

Primary 2735 77.4 

Metastatic 798 22.6 

Metastatic site n % 

Lymph 451 12.8 

Bone 96 2.7 

Liver 79 2.2 

Pleura 54 1.5 

Brain 48 1.4 

Chest 17 0.5 

Other 53 1.5 
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rows as samples and columns as CAAs. Results using both AIC and BIC
regularizations were displayed, and only connections with P < 0.05 were
displayed. Python implementation of Network-based stratification (NBS)
[18] was used for LUAD subtype clustering. NBS input was a binary matrix
with rows as samples and columns as CAAs. NBS is based on non-negative
matrix factorization (NNMF) algorithm, which decomposes a large matrix
into initial cluster membership and signatures with reduced dimensionality.
Patient co-clustering map is generated by hierarchical clustering of above-
mentioned signatures, producing clusters of patients of specific LUAD
subtypes. Clustering was performed with default parameters (network
propagation coefficient = 0.7, number of iterations = 100). Silhouette score
was calculated using the silhouette_score function from Scikit-learn python
package [19] . Silhouette score is a measure of both intra-cluster and inter-
cluster distance, and ranges from -1.0 (poor) to 1.0 (perfect separation of
clusters). NBS clustering with clusters ranging from 2 to 10 were performed,
and number of clusters with the highest overall silhouette score was chosen. 

Statistical analysis 

CAA call concordance between targeted panel sequencing and WES was
assessed using Cohen’s Kappa and Pearson’s R. Numerical differences between
categorical variables were assessed using Kruskal-Wallis test. A two-sided
p value of less than 0.05 was considered statistically significant. Pairwise
Wilcoxon rank sum test was used to test numerical differences between
ever y categor y pair. Pair wise Chi-square or Fisher’s exact test was used to
test proportional differences between every category pair. P -values were FDR
adjusted for multiple hypothesis testing correction, adjusted P -values (q-
values) of less than 0.1 was considered statistically significant. All statistical
analyses were performed in R (v.3.6.1). 

Results 

LUAD patients and CAA evaluation using panel sequencing 

Data from 3533 LUAD patient samples sequenced using a 425-cancer
gene panel were retrospectively examined in this study. This is the largest
genomic dataset assembled for LUAD to date, and offered us a unique
opportunity to assess the association of arm level aneuploidy with site of
metastasis and various driver as well as frequently mutated non-driver genes,
as well as probable order of CAA acquisition in this LUAD cohort ( Figure 1 ).
Patients in this study consisted of roughly equal proportions in terms of
gender and age group ( Table 1 ). 
Two previous aneuploidy studies demonstrated the validity of using panel 
equencing to evaluate CAA status in tumor samples [ 11 , 12 ]. We also
onducted our own concordance study using 20 samples sequenced with 425- 
ancer gene targeted panel and whole exome sequencing (WES). Comparison 
f CAA calls between panel and WES data showed high level of concordance
ith a Pearson’s r mean score of 0.85 (Figure S1A). 

Overall, the top 5 most frequent arm aneuploidies in the entire LUAD 

ohort (N = 3533) were 7p gain (61%), 5p gain (52%), 8q gain (51%), 1q
ain (47%) and 19p loss (46%) (Figure S2). Previous lung cancer aneuploidy 
tudies only assessed primary tumor samples. To facilitate comparisons, 
e also assessed frequent arm aneuploidies in primary samples. Among 
rimary samples (N = 2735), the top arm gains were in 1q (47%), 3q
28%), 5p (52%), 7p (59%) and 8q (50%) (Figure S3). Out of 14 previous
tudies surveyed [ 8 , 20 , 29 , 30 , 21–28 ], 1q, 3q, 5p and 8q gains were found
n 7 or more studies, while 7p gain was found in 4 previous studies.
hree other arm gains occurred in high proportion of primary samples: 7q 

34%), 14q (32%) and 20q (30%), which were only seen in 2– 3 previous
tudies (see supplementary data “LUAD_CAA_papers_compilation.xlsx” for 
etails). Top arm losses were 3p (31%), 8p (36%), 9p (33%), 9q (33%),
0q (39%), 13q (36%), 15q (39%), 17p (35%), 18q (32%), 19p (45%), 
9q (34%) and 22q (35%). Loss of 3p, 8p, 9p, 9q, 13q, 17p, 18q and
9p were seen in 5 or more previous studies (see supplementary data 
LUAD_CAA_papers_compilation.xlsx” for details). Most previous studies 
nly reported presence or absence of arm aneuploidy. Our results not only 
onfirmed prior findings, but also establishes here the prevalence of each arm 

neuploidy in LUAD. 

AA differences between primary and metastatic sites 

CAA associations with primary and metastatic sites were examined 
rom 3 perspectives: total CAA burden, arm gain-versus-loss and whether 
ndividual CAAs are enriched at any particular metastatic site. Sites of 

etastasis included pleura, chest, lymph, bone, brain, liver and other 
 Table 1 ). 

CAA burden was defined as the ‘sum of aneuploid arms’ in an individual, 
s previously described [5] . This method has been shown to be reliable
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Fig. 2. Distribution of CAA counts and proportion of arm gain and loss difference. 
(A) Distribution of CAA count across primary and metastatic sites. (B) Distribution of CAA count across different mutant gene groups. CAA counts are based 
on the sum of aneuploid arms in a patient. For pairwise Wilcoxon tests, please see Table S1 and S2. (C) Arm gain-loss difference categories across primary 
and metastatic sites. (D) Arm gain-loss difference categories across different mutant gene groups. A patient’s gain-loss difference category is based on whether 
a patient has more, less, or equal arm gains and arm losses. For pairwise Fisher’s exact tests, please see Table S3 and S4. For figure B and D, red x-axis label 
indicates driver mutants; black x-axis label indicates prevalent non-driver mutant genes. 
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since arm aneuploidy calls has been shown to not be biased by arm length.
Also, the ‘sum of aneuploid arms’ is closely correlated with aneuploidy at a
genome wide level [5] . Primary tumors had significantly lower CAA burden
compared to metastasis (14.06 vs 15.94, P -value = 2.35e-06). A detailed look
at each metastatic site showed pleura metastasis had the lowest CAA burden
(11.54), whereas liver had the highest at 18.86 ( Figure 2 A). CAA burden of
primary tumor was significantly different from lymph and liver metastasis
(q < 0.1). Pleura metastasis had significantly different CAA burden from all
other metastatic sites, and chest metastasis was significantly lower than liver
(q < 0.1) (for results of all pairwise tests, see Table S1). 

The next CAA metric we examined was patients’ bias towards CAA
gain or loss. This CAA gain or loss bias was found by a previous study
to distinguish solid tumor from haematological tumors [4] . We wanted to
assess whether this gain-loss difference varied among primary and metastatic
sites. Three gain-loss difference categories were defined: patients with more
arm gains than losses (gain > loss), equal number of arm gains and losses
(gain = loss), or more arm losses than gains (gain < loss). Primary and regional
metastasis had similar proportion of patients with more arm gains than loss
and more arm losses than gains ( Figure 2 C). Distant metastasis however,
ad far greater proportion of patients with more arm losses than gains
liver: gain < loss = 65%, gain > loss = 27%; brain: gain < loss = 75%,
ain > loss = 25%,). (For results of all pairwise tests, see Table S3). 

Tumor purity was not significantly different across primary and metastatic
roups (Figure S1D, Table S7), therefore was unlikely to have contributed to
ifferences in CAA burden. A previous study showed TP53 mutations to be
trongly correlated with amount of arm level aneuploidy [5] , which was also
een in our dataset. We performed stratified analysis based on TP53 mutation
tatus. Results showed only in TP53 wild type patients were CAA burden and
rm gain-versus-loss significantly different between primary and metastatic 
ites (Figure S4A and Figure S4C). CAA metrics was also not affected by
isease stage, as differences in CAA burden and arm gain-versus-loss patterns
emained in primary and metastatic samples of stage IV patients (Figure S5A
nd Figure S5C). 

At the individual CAA level, brain metastasis was enriched for specific arm
osses compared to other sites, including losses of 1p, 3p, 6q, 7q, 9p and 9q
Figure S6A). Distant metastasis (bone, brain and liver) when compared to
egional metastasis (pleura and chest), were enriched in gain of 1q and losses
f 8p, 9p, 9q, 10q and 13q (Figure S6B). 



874 Genomic landscape and evolution of arm aneuploidy in lung adenocarcinoma B. Gao et al. Neoplasia Vol. 23, No. xxx 2021 

Table 2 

Frequency of mutations in driver and frequently mutated non-driver genes. 

Driver genes Number Frequency Non-driver Number Frequency 

EGFR total 1953 0.55 RB1 214 0.061 

EGFR.19del 1005 0.28 PKHD1 192 0.054 

EGFR.L858R 838 0.24 ARID1A 184 0.052 

KRAS 421 0.12 SMARCA4 181 0.051 

PIK3CA 247 0.070 STK11 178 0.051 

ERBB2 198 0.056 

BRAF 137 0.039 

MET 73 0.021 

Fusion total 307 0.085 

ALK 189 0.053 

ROS1 85 0.024 

RET 33 0.0093 

TP53 1867 0.53 
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These results indicate for LUAD, primary and metastatic sites had varying
levels of CAA burden. Distant metastasis such as liver and brain were biased
towards arm losses. And specific arm aneuploidies were enriched in distant
metastasis, especially the brain. 

CAA differences between driver and frequently mutated non-driver gene 
groups 

Next, we examined whether CAA burden and arm gain-versus-loss was
associated with specific mutant driver genes or frequently mutated non-driver
gene groups. Several LUAD driver mutations were selected based on existing
literature [31] . These included BRAF, ERBB2, KRAS, EGFR L858R, EGFR
19del, MET and PIK3CA, as well as prevalent fusions including ALK, RET,
and ROS1 fusions. EGFR was the most frequently mutated driver gene in this
cohort of Chinese patients ( Table 2 ). Frequently mutated non-driver genes are
defined as genes with non-silent mutation frequency > 5%, which were RB1,
PKHD1, ARID1A, SMARCA4 and STK11 ( Table 2 ). Genes were considered
mutated if it carried one or more non-silent mutations. 

CAA burden was significantly different among mutant gene groups ( P -
value = 2.697e-28) ( Figure 2 B). BRAF mutant group had the lowest CAA
burden at 10.88, while EGFR 19del, MET, PIK3CA, PKHD1 and RB1 had
high CAA burden, at 16.73, 16.77, 16.79, 18.11 and 19.27 respectively.
(For results of all pairwise tests, see Table S2). In terms of arm gain-
versus-loss proportions, BRAF mutation group was the most biased towards
arm gain, with 56% of patients having more arm gains than losses, while
only 36% of patients had more arm losses than gains (8% of patients had
equal number of arm losses and gains). While RB1 mutation group was
the most biased towards arm losses, with 67% of patients having more
arm losses than gains ( Figure 2 D). (For results of all pairwise tests, see
Table S4). 

Tumor purity was significantly different across mutant gene groups.
However, mutant gene groups with high tumor purity such as BRAF mutants
had low CAA burden (Figure S1E, Table S8). Since normal cells are unlikely
to be aneuploid, it is unlikely that high tumor purity is driving low CAA
burden, and vice versa. Therefore, purity was unlikely a contributing factor
in CAA burden differences seen between mutant gene groups. In stratified
TP53 mutation analysis, difference in CAA burden between mutant gene
groups were much more pronounced in TP53 wild type patients compared to
TP53 mutant patients (Figure S4E and Figure S4F). For gain-versus-loss bias,
differences between mutant gene groups remained significant for TP53 wild
type (Figure S4G), while no longer significant among TP53 mutants (Figure
S4H). Disease stage did not affect CAA metrics, as differences in CAA burden
nd arm gain-versus-loss patterns remained significant between mutant gene 
roups in stage IV patients (Figure S5B and Figure S5D). 

These results show there are clear differences in total CAA burden and 
rm gain-versus-loss bias among mutant gene groups in LUAD, which are 
nfluenced by TP53 mutation status. BRAF, KRAS, ERBB2 and those with 
usions belong to a low CAA burden group with bias towards arm gain;
hereas EGFR 19del, MET, PIK3CA, PKHD1 and RB1 mutants belong 

o a high CAA burden group biased towards arm loss. 

AA pair and mutant genes co-occurrence and exclusivity 

Co-occurrence and exclusivity of specific CAA and mutant genes was 
ssessed using ‘cooccur’ R package (see Methods for details). KRAS mutant 
roup was most significantly in exclusion with gains of 1p, 7p 14q and 16p,
nd losses of 2q and 10q. Fusion group was significantly in exclusion with
osses of 4q, 5q and 11p ( Figure 3 A). Next, EGFR 19del and L858R mutant
roups were compared directly. We used stringent comparison criteria and 
ound several CAAs that significantly co-occurred/exclusive with one EGFR 

utation (q < 0.1), but was very non-significant (q > 0.5) with the other
GFR mutation group ( Figure 3 D). Nine CAAs were only co-occurring with
GFR 19del and not with EGFR L858R (losses: 4q, 5p, 5q, 17q, 22q; gains:
q, 9p, 16q, 17p). In terms of exclusions, 14q loss was in exclusion with
GFR 19del, but not EGFR L858R. 1p loss, 8p gain and 16p loss were in
xclusion with EGFR L858R only. In terms of similarities between EGFR 

858R and EGFR 19del mutation groups, we found both EGFR mutations 
ere significantly co-occurring with eleven CAAs (losses: 8p, 9q, 10q, 12q, 
5q, 19p; gains: 1p, 7p, 7q, 14q, 16p), and in exclusion with 7p loss (q <
.1) ( Figure 3 E). Lastly, among mutant gene groups with high CAA burden,
e found MET mutation co-occurred with 1q loss and PIK3CA mutation 

o-occurred with 2p gain (q < 0.1), while these were not found to be co-
ccurring with EGFR mutations (q > 0.5), which had much larger sample 
izes ( Figure 3 F). (For all CAA and mutant driver gene group co-occurrences
nd exclusions, see Figure S7). Here we successfully showed various CAAs 
o-occurred or were in exclusion with certain LUAD driver genes. We also 
ound distinct arm aneuploidy co-occurrence between two EGFR mutation 
roups. 

We also took the opportunity to examine which CAA pairs were 
ignificantly co-occurring or mutually exclusive. The top 10 most 
ignificantly co-occurring or exclusive CAA pairs are shown in Figure 3 A. 
verall, significant CAA co-occurrence was far more prevalent than exclusion 

 Figure 3 A). In this cohort of lung adenocarcinoma patients, we found that
rm gains tend to co-occur with other arm gains, while arm losses tend to
o-occur with other arm losses. Among the top 10 co-occurring or exclusive 
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Fig. 3. CAA and mutant gene group co-occurrence and exclusivity. 
(A) All CAA and mutant gene co-occurrence and exclusion events. FDR adjusted q −values < 0.1 was considered significant. Only the top 10 co-occurring 
and top 10 mutually exclusive CAA pairs and CAA mutation gene pairs were labeled. These were selected based firstly on pairs with the lowest q values, then 
those with the highest absolute value of log2 ratio between observed and expected co −occurrence. (B) CAA co-occurrence and exclusivity heatmap. Only 
top 10 co-occurring and exclusive arms are shown. (C) CAA co-occurrence and exclusivity network map. Only top 10 co-occurring and exclusive arms are 
shown. Node size represent CAA frequencies. Edge thickness represent inverse of q values. For (D, E and F), FDR adjusted q −values < 0.1 was considered 
significant. Log2 ratios were scaled to within -0.4 and 0.4. Circle sizes reflects -log10 of q-values. (D) EGFR mutations and CAA co-occurrence and exclusivity. 
Aneuploid arms significant in one EGFR mutation group but not the other are shown. Non-significant arms had q-value > 0.5. (E) EGFR mutations and 
CAA co-occurrence and exclusivity. Aneuploid arms significant in both EGFR mutation groups are shown. (F) CAA co-occurrence and exclusivity difference 
between PIK3CA and MET group and EGFR mutation groups. Non-significant arms had q-value > 0.5. 
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CAA pairs, three CAA triads co-occurred with the highest significance: 17p + ,
19q + , 22q + ; 17p + , 19p + , 22q + ; 16q + , 19p + , 22q + ( Figure 3 C). 

CAA order of acquisition 

A recent study showed solid tumors tend to gain chromosome arms
initially, but subsequently suffer many arm losses [4] . We assessed whether
this applies to LUAD. Probable order of CAA acquisition was inferred
from population level data using TRONCO (see Methods for details).
First, we observed our LUAD cohort could be separated into two subtypes
using arm aneuploidy and a network-based stratification clustering technique
( Figure 4 A). Subtype 2 appeared to share order of CAA acquisition observed
in solid tumors, with initial arm gains, followed by arm losses (8p, 17p,
18q and 19p) ( Figure 4 F). Subtype 1 however, showed a distinct order
of CAA acquisition. It shared an initial 7p gain with subtype 2, but is
followed by numerous arm losses, before resuming arm gains (1q, 5p, 7q
and 8p) ( Figure 4 E). Subtype 1 is dominated by patients with brain and liver
metastases ( Figure 4 C, for all pairwise tests, see Table S5), and those with
EGFR, PIK3CA, SMARCA4, PKHD1 and RB1 mutations ( Figure 4 D, for
all pairwise tests, see Table S6), while subtype 2 is had more patients with
metastases to chest and pleura ( Figure 4 C), and those with BRAF and KRAS
mutations and fusions ( Figure 4 D). These results show two LUAD subtypes
ith distinct CAA signatures and evolution trajectories, associated with sites
f metastasis and mutant gene groups. 

GFR mutation status stratified analysis 

High prevalence of EGFR mutation in this cohort allowed stratified
nalysis of CAA burden, gain-loss bias, CAA co-occurrence and CAA
volution under EGFR wild type and mutant conditions. 

EGFR wild type and mutant subgroups showed similar patterns of CAA
urden and gain-loss bias, with regional metastasis having lower CAA burden
nd bias toward arm gain compared to distant metastasis (Figure S8A, C,
 and J), and BRAF, KRAS and Fusion having low CAA burden with bias

owards arm gain, while PIK3CA, MET, ARID1A, PKHD1 and RB1 have
igh CAA burden with bias towards arm loss (Figure S8B, D, I, K). Therefore,
GFR mutation status did not have a modifying effect on CAA burden
nd gain-loss bias across primary and metastatic sites, or across mutant gene
roups. 

We also observed few similarities and many differences in CAA co-
ccurrence between EGFR wild type and mutant subgroups (Figure S8F, M).
he large amount of differences in CAA co-occurrence suggest modifying

ffect of EGFR mutation on CAA co-occurrence and exclusion. Lastly, we
bserved distinct order of CAA acquisition between EGFR wild type and
utant subgroups. EGFR wild type begins with 8q gain to 7p gain, whereas
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Fig. 4. CAA evolution. 
(A) NBS CAA clustering. (B) Silhouette scores of NBS clustering. (C) Clustered subtype proportion across primary and metastatic groups. For pairwise 
proportion tests, please see Table S5. (D) Clustered subtype proportion across mutant gene groups. Red x-axis label indicates driver mutants; black x-axis 
label indicates prevalent non-driver mutant genes.For pairwise proportion tests, please see Table S6. (E, F) CAA evolution models. Node size represent CAA 

frequencies. 
n = number of samples. m = number of arms displayed. Only top 20 arms with the highest CAA frequencies in each subtype are shown. 
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the reverse is seen in EGFR mutant – beginning with 7p gain to 8q gain
(Figure S9A and Figure S9B). EGFR wild type has 3q gain and EGFR mutant
has 14q gain early in their CAA evolution, whereas they are acquired much
later in EGFR mutant and wild type subgroups respectively (later than top
20 CAA acquisitions). 

Taken together, EGFR mutation does not interact with metastatic sites or
other mutant gene groups in modifying their CAA burden or gain-loss bias.
However, having mutations in EGFR affects CAA co-occurrence as well as
CAA evolution. 

Discussion 

In this study, we performed a comprehensive analysis of arm aneuploidy
landscape in a large LUAD cohort using target panel sequencing data.
CAA burden, gain-loss difference and individual CAAs were associated with
sites of metastasis and different mutant gene groups. Distinct orders of
CAA acquisition were found in two LUAD subtypes, also associated with
metastatic sites and mutant gene groups. 

In terms of metastatic sites, regional metastasis (pleura, chest) had
significantly lower CAA burden and biased towards arm gains compared to
distant metastasis (brain, liver). Regional metastasis such as the pleural space
can be readily invaded as it does not require metastatic seed to travel and
survive in the circulatory or lymphatic system [32] . Metastasis to distant sites
might require additional genomic alterations brought about not only by high
evels of CAA, but specific CAAs such as gain of 1q and losses of several
rms, including 8p, 9p, 9q, 10q and 13q. In terms of mutant gene groups,
ome are associated with a general increase in CAA burden. However, we also
bserved specific CAAs co-occurred with certain mutant genes far above what 
ould be expected by chance. Co-occurrence analysis showed EGFR L858R 

nd EGFR 19del mutant groups shared a number of CAA partners, but also
ad many distinct CAA associations. Questions still remain whether some 
rm aneuploidy events provide permissive environment for mutations, or if 
ertain mutations are driving specific arm aneuploidies. RB1 mutant group 
as shown to have the highest CAA burden, and also shown to co-occur with

pecific arm losses (10q, 12q and 16q). Studies have shown RB1 inactivation 
ndeed promotes aneuploidy, however the exact mechanism remains unclear 
33] . Certain pairs of CAAs also co-occurred or were in exclusion above
hance, suggesting that certain arm aneuploidies are not acquired at random. 
urthermore, our results show that CAAs not only preferentially co-occur, 
ut appear to be acquired in a sequential manner. A prior study demonstrated
ifferences in CAA order of acquisition between haematological cancers and 
olid tumors [4] . Whereas we showed that within a single cancer type, there
an be differing orders of CAA acquisition. In addition, EGFR wild type 
nd mutant stratified analysis showed distinct order of CAA acquisition. 
lthough mutant EGFR did not modify CAA burden or gain-loss bias, 

esults from CAA co-occurrence and evolution analysis showed presence 
f EGFR mutation has modifying effects on the emergence of specific 
AAs. 
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Several confounding factors were accounted for in this study, including
purity, TP53 mutation status and disease stage. In terms of purity, total copy
number estimated by Sequenza [15] are already purity adjusted. The eventual
copy number estimates reflect tumor portion of the sample. A sample’s tumor
purity should have negligible impact on analysis. Lastly, our results along
with other studies [ 11 , 12 ] have shown the reliability of using targeted panel
sequencing data to study large scale genomic alterations. Methods used here
can be applied in other disease settings. 

In conclusion, findings of distinct arm aneuploidy differences across
metastasis and mutant gene groups may hold biological insight for lung
adenocarcinoma. Future functional studies may help validate and provide
mechanistic explanation for these results. 
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