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Abstract

A coarse-grained model is used to study the mechanical response of 35 virus capsids of symmetries T = 1, T = 2, T = 3,
pseudo T = 3, T = 4, and T = 7. The model is based on the native structure of the proteins that constitute the capsids and is
described in terms of the Ca atoms associated with each amino acid. The number of these atoms ranges between 8 460 (for
SPMV – satellite panicum mosaic virus) and 135 780 (for NBV – nudaureli virus). Nanoindentation by a broad AFM tip is
modeled as compression between two planes: either both flat or one flat and one curved. Plots of the compressive force
versus plate separation show a variety of behaviors, but in each case there is an elastic region which extends to a
characteristic force Fc. Crossing Fc results in a drop in the force and irreversible damage. Across the 35 capsids studied, both
Fc and the elastic stiffness are observed to vary by a factor of 20. The changes in mechanical properties do not correlate
simply with virus size or symmetry. There is a strong connection to the mean coordination number SzT, defined as the
mean number of interactions to neighboring amino acids. The Young’s modulus for thin shell capsids rises roughly
quadratically with SzT{6, where 6 is the minimum coordination for elastic stability in three dimensions.
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Introduction

Simple globular viruses protect their strands of RNA or DNA

with remarkable self-assembled proteinic shells known as capsids.

The chemical and thermal stability of capsids has been studied for

decades, but their mechanical properties are only beginning to be

determined using nanoindentation [1,2,3]. There is little basic

understanding of how mechanical strength varies between viruses,

how it affects function, and how it is related to virus structure. In

this paper we use a coarse-grained structure-based model to

explore the types of mechanical response that capsids may exhibit

and their relation to capsid geometry and protein bonds.

The capsids of simple globular viruses are typically of

icosahedral symmetry and they are assembled from one or several

kinds of proteins. The proteins cluster into n-meric capsomeres

that form morphological units of capsids (so the proteins act as

subunits). The structure of capsids has been explained by Caspar

and Klug [4] as resulting from a regular triangulation of a sphere

and is thus governed by the triangulation number T such that the

number of subunits is equal to 60T. A pseudo-T = 3 virus has the

symmetry of a T = 3 virus, but in which either the number of

subunits in a capsomere is larger than in the standard classifica-

tion, or the subunits are not sequentially identical. The size of

capsids tends to grow with T but the actual size also depends on

the size of the subunits. One question will be whether mechanical

properties depend on T or on the nature of connectivity in the

network of interactions between amino acids.

Capsids are thought to be sturdy mechanically [1,2], but the

elastic properties of fewer than ten different capsids have been

studied by nanoindentation [3]. For five of these capsids, the

native structure is known and is deposited in the VIPERdb

database [5] as derived from the subunit structures available in the

Protein Data Bank [6]. These are: MVM [7–9] (T = 1), CCMV

[10,11] (T = 3), NV [12] (T = 3), HBV [13,14] (T = 4), and HK97

[15] (T = 7), where the acronyms stand for parvovirus minute virus

of mice, cowpea chlorotic mottle virus, Norwalk virus, human

hepatitis B virus, and bacteriophage HK97 mature virus,

respectively.

The nanoindentation technique typically involves anchoring a

capsid on a substrate and then pushing on it with the tip of an

atomic force microscope [1–3]. The tip typically has a larger

radius than the virus and can be made nearly flat over the virus.

The force, F , initially grows linearly as the plate/tip separation

decreases. The slope corresponds to an effective spring constant, k.

When a characteristic force, Fc, is reached, the capsid undergoes a

sudden partial collapse. Beyond this point the deformation process

becomes irreversible and trajectory-dependent. The values of Fc

and k depend on whether the capsid is full or empty, i.e. if the

genetic content of the virus is removed. They also depend, to a

lesser extent, on the rate of squeezing. Among the five capsids

listed above, k varies between 0.09 N/m for HBV and 0.57 N/m
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for MVM when the capsids are empty. The characteristic forces

vary between 0.6 nN (CCMV) and 1.2 nN (MVM).

Here, we extend our previous theoretical studies [16] of

nanoindentation of CCMV and CPMV (cowpea mosaic virus) to

33 other capsids for which the native structure is known. The

capsids studied, together with their names and PDB codes, are

listed in Tables 1 and 2. Also shown are the number of amino

acids N, the mean radius �RR, the capsid width dR, defined as twice

the rms variation in radius, and the mechanical properties. Note

that the values of Fc and k vary by more than a factor of 20.

The model we use has been developed and tested in the context

of single protein manipulation [18–22]. The model is coarse-

grained, structure-based, and it comes with an implicit solvent.

These features allow for studies of much larger proteinic objects

than more detailed atomic models. We study capsids with up to

135 780 amino acids (NBV) and with radii up to 284 Å (HK97).

Despite these simplifications, our model is molecular in nature

which makes it distinct from the elastic shell model considered by

Gibbons and Klug [23,24]. While shell models with appropriate

constitutive laws can reproduce the initial portion of experimental

force curves, they give smoothly varying capsid deformations.

They do not capture the intrinsically heterogeneous nature of the

non-covalent bonds that dominate the mechanical response of

capsids or allow for breaking of these bonds. Coarse-grained

simulations of CCMV show deformation is localized at the

boundaries of capsomeres and that Fc is associated with breaking

of inter-protein bonds [16]. Moreover, the rate and temperature

dependence of Fc show that bond breaking is thermally activated.

Another striking prediction of the coarse-grained model is a

large difference in the mechanical properties of CCMV and

CPMV even though they have similar N, �RR and dR. Fc is about

three times bigger for CPMV than for CCMV whereas k is bigger

by an order of magnitude [16]. This would require very different

elastic properties to be used in an elastic shell model. We found

that the difference correlated with differences in the average

coordination number in the native state SzT, including connec-

tions along the backbone and to nearby amino acids. The average

coordination number is only 6.4 for CCMV and rises to 7.4 for

CPMV. Here, by examining a wider variety of capsids, we are able

to show that SzT is indeed an important factor in determining the

maximum stiffness of capsids of a given �RR and dR. The results for

k can be scaled to give an effective Young’s modulus E using the

Figure 1. Nanoindentation of model for CCMV. The figure contains four panels, each consisting of two subpanels. The lower subpanel shows
the variation of force with separation and the upper shows c – the fraction of unbroken native contacts for one simulation at the indicated
parameters. The top two panels show the temperature dependence of F (s) for flat plates, with numbers indicating the value of kBT=e. The left shows
three trajectories for kBT=e~0:3 from Ref. [16] and one for zero temperature that is uniformly higher. The right repeats one F (s) trajectory for
kBT=e~0:3 and shows two trajectories for each other temperature. The value of c is plotted for one case at the high and low temperatures. The two
lower panels show the role of curvature in one of the indenting surfaces. Here, kBT=e = 0.3 and numbers indicate the radius of the tip R in nm. The
lower left panel compares single trajectories obtained for three values of R to the flat results above. The lower right panel shows three trajectories for
R = 30 nm.
doi:10.1371/journal.pone.0063640.g001
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formula for thin shells. This local property shows a quadratic trend

with SzT{6, where 6 is the minimum coordination number for

mechanical stability in three dimensions.

In the following section we describe the model used for the

simulations. We then present results for CCMV to illustrate the

role of temperature and a finite radius, R, of the tip. A finite R has

little effect on k but reduces Fc. Next, results for five systems are

compared with existing experimental data. The model captures

quantitative trends and shows capsids can exhibit a variety of

qualitatively different force-distance curves. The next section

compares results for all 35 virus capsids and the final section

presents a summary and conclusions.

Methods

We start by presenting the pertinent aspects of the model. The

molecular dynamics [25] model we use is exactly the same as in

ref. [16]. In particular, native contacts between Ca atoms are

identified based on the overlap of the (slightly enlarged) van der

Waals spheres associated with the heavy atoms of the amino acids

[26]. Only capsids whose native state is available [27,5] are

considered. It should be noted that in most cases the positions of

some amino acids are not determined. These are not part of the

fixed capsid structure and do not scatter coherently. These

segments are believed to dangle inside the capsid in a disordered

configuration and may be important for encapsulating RNA or

DNA [28,29]. Since they do not stay in fixed positions, we assume

that they do not contribute to the mechanical stability of the

capsid.

The interaction for the native contact between atoms i and j at

distance rij is described by the Lennard-Jones potential

V (rij)~4 e
sij

rij

� �12

{
sij

rij

� �6
" #

, where sij is determined for each

pair ij so that the potential minimum coincides with the

experimentally determined native distance. A native contact is

considered broken if rij exceeds 1.5 sij . Interactions between

atoms that are not part of a native contact are purely repulsive and

are given by a Lennard-Jones potential with length s0 that is

truncated at the position of the energy minimum 21=6s0~4 Å.

Covalent couplings along the protein backbones are described

with a harmonic potential with spring constant 50 e=Å2. This

value is high enough that covalent bonds are effectively rigid

during capsid deformation but small enough that the equations of

motion can be integrated without reducing the time step

significantly.

Simulations are performed at a constant temperature using a

Langevin thermostat [30] that mimics the effect of the surrounding

solvent. The Langevin damping is large enough that the system is

Figure 2. Nanoindentation processes in models for four experimentally studied capsids MVM, NV, HBV, and HK97. As in Figure 1,
each panel consists of two subpanels. The lower subpanel shows several F (s) curves and the upper subpanel shows c for the highlighted trajectory.
For each capsid, two trajectories are shown for flat plates (solid lines) and for a tip with R~30 nm (dotted lines) at kBT=e~0:3 and one trajectory is
shown for flat plates at zero temperature (dashed line).
doi:10.1371/journal.pone.0063640.g002
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Table 1. Characteristics of the T = 1, T = 2, and T = 3 virus capsids that are studied in this paper.

Acronym PDB common name N Æzæ �RR [Å] dR [Å] k [e/Å2] Fc [e/Å] E [e/Å3]

T = 1

MVM 1mvm parvovirus minute virus of mice 32 940 6.76 110.54 25.51 0.217 8.7 0.037

STMV 1a34 satellite mosaic virus 8 820 7.10 73.07 13.71 0.124 7 0.048

FPV 1c8e feline panleukopenia virus 32 040 7.17 109.69 25.58 0.280 13 0.047

STNV 2buk satellite tobacco necrosis virus 11 040 7.58 77.87 19.19 0.156 8 0.033

IBDV 1wcd avian infectious bursal disease virus 25 260 7.23 90.46 36.24 0.087 1.8 0.006

SPMV 1stm satellite panicum mosaic virus 8 460 7.34 69.66 13.28 0.174 11 0.069

B19 1s58 B19 parvovirus 31 380 6.60 109.18 24.06 0.159 6.6 0.030

PhiX 2bpa bacteriophage PhiX-174 38 220 7.27 125.41 34.54 0.188 14 0.020

PPV 1k3v porcine parvovirus 32 520 7.14 109.40 25.14 0.291 10.5 0.050

BmDNV 3p0s bombyx mori densovirus 1 24 720 9.36 106.95 18.26 0.258 25 0.082

T = 2

PIC 2vf1 picobirnavirus 63 000 6.91 159.01 23.89 0.096 4 0.027

T = 3

CCMV 1cwp cowpeak chlorotic mottle virus 28 620 6.36 119.56 21.09 0.050 5.5 0.014

NV 1ihm Norwalk virus 89 700 6.78 159.62 41.74 0.190 12 0.017

RYMV 1f2n rice yellow mottle virus 35 400 7.29 130.16 18.72 0.240 13 0.089

CAL 2gh8 calicivirus 97 740 6.78 162.90 46.33 0.175 4.5 0.013

TYMV 1auy turnip yellow mosaic virus 32 460 7.24 129.35 19.89 0.224 8 0.073

BMV 1js9 brome mosaic virus 30 180 6.40 116.91 23.19 0.053 1.5 0.012

SBMV 4sbv southern bean mosaic virus 37 200 7.16 131.59 18.59 0.210 12 0.080

CMV 1f15 cucumber mosaic virus 32 280 6.48 126.27 25.06 0.056 1.6 0.011

The first three columns show the acronym used, the PDB structure code and the common name. The next four columns give geometrical parameters from the PDB
structure: the number of Ca atoms describing the model capsid, their average coordination number vzw and average radius �RR and the thickness of the capsid shell dR

(defined as twice the rms variation in the radial direction). The final three columns give mechanical properties from simulations at kBT~0:3e: the initial spring constant
k, the force at the onset of irreversibility Fc , and the effective elastic modulus E obtained using Equation 1.
doi:10.1371/journal.pone.0063640.t001

Table 2. Similar to Table 1 but for the pseudo T = 3, T = 4, and T = 7 virus capsids.

Acronym PDB common name N Æzæ �RR [Å] dR [Å] k [e/Å2] Fc [e/Å] E [e/Å3]

p. T = 3

CPMV 1ny7 cowpea mosaic virus 33 480 7.40 124.29 22.26 0.350 15 0.088

cHRV 1k5m human rhinovirus 16/HIV type 1V3 49 740 7.29 132.12 23.65 0.236 21 0.056

POLIO 1asj polio virus – type I Mahoney strain 51 060 7.52 131.64 23.70 0.500 27 0.117

TRSV 1a6c tobacco ringspot virus 30 780 7.19 126.86 20.870 0.188 9 0.055

SVDV 1mqt swine vesicular disease virus 49 860 7.33 131.70 23.14 0.474 19.5 0.117

HRV 1ayn human rhinovirus 16 48 240 7.51 131.60 23.50 0.443 32 0.106

RCMV Rcmv red clover mottle virus 33 000 7.32 124.23 22.02 0.242 11 0.062

MENGO 2mev mengo encephalomyocarditis virus 48 840 7.40 133.26 21.44 0.415 24 0.120

CPV 1b35 cricket paralysis virus 51 240 7.37 135.67 23.45 0.435 19 0.107

TME 1tme Theiler’s murine encephalomyelitis v. 46 080 7.43 133.83 20.58 0.302 24 0.096

CVBT 1cov coxsackievirus B3 49 860 7.63 131.66 22.76 0.543 25 0.138

FMDV 1bbt foot and mouth disease virus 39 720 7.32 131.40 17.84 0.250 21 0.103

T = 4

HBV 1qgt human hepatitis B virus 34 200 6.98 145.28 22.14 0.037 6 0.011

NBV 1ohf nudaurelia 135 780 7.49 167.66 43.60 0.438 14 0.039

T = 7

HK97 1ohg bacteriophage HK97 mature 117 600 6.76 284.03 23.18 0.08 7.5 0.042

SV40 1sva simian virus 40 123 420 6.95 214.40 32.34 0.058 13 0.012

cHRV denotes a chimeric human rhinovirus with a loop belonging to the (nonspeherical) HIV virus [17].
doi:10.1371/journal.pone.0063640.t002
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in the overdamped limit where inertia can be ignored. Based on

mapping simulations to experimental measurements of dynamic

quantities such as diffusion, the time unit t in our simulation

corresponds to *1ns [31,32]. Except as noted, simulations are at

temperature kBT~0:3 e, which was used in previous studies of

capsids [16] and many mechanical studies of proteins [22,18,19].

At this temperature, most of the proteins have good folding

properties within the coarse-grained model [18]. In comparing to

experiments we will use our most recent estimate of the binding

energy parameter e*110 pN/Å, which is based on comparison to

forces from experiments on protein stretching [22]. This energy

corresponds to about 800 K, which would imply room temper-

ature is closer to 0.35 e=kB than 0.3 e=kB. This difference is

comparable to the uncertainty in the estimate of e and we will

show that mechanical properties generally vary slowly with

temperature.

To model nanoindentation the capsid is placed between two

repulsive plates. The interaction with flat plates is described by a

repulsive potential that scales as z{10
0 [33], where z0 is the distance

between the plate and a Ca atom. A curved plate is described by

the truncated and shifted Lennard-Jones potential

VR(r)~4 e½ s0

r{R

� �12

{
s0

r{R

� �6

� for rvRz4 Å. A typical value

of R is 30 nm. Whenever we refer to the ‘‘curved’’ case of

nanoindentation, we mean a situation in which one plate is flat

and the other is curved. Flat plates are oriented normal to the z{
axis and capsids are oriented so that this axis coincides with the z-

axis in the structure file [27,5]. This is the 2-fold icosahedral axis.

We have considered two additional sqeezing directions for CCMV

and CPMV in ref. [16]. There was some change in force-

separation curves with capsid orientation, but the values of k and

Fc did not change significantly.

In the initial state, the plates are far enough apart that they do

not interact with the capsid. The plates are then brought together

by increasing the speed of both plates symmetrically to a value vp

over 2000 t. In most cases considered here, vp~0:0025 Å=t which

corresponds to a combined speed of 0.005 Å/t. This was found to

be slow enough to produce quasistatic results in studies of protein

stretching [20,21]. While this velocity (*500 mm/s) is higher than

experimental velocities (0.1 to 10 mm/s), it is slow enough to allow

stress to equilibrate across the capsid. This is monitored by

checking that the forces the capsid exerts on the two plates are

equal and opposite when averaged over a small range of

separations. The magnitudes of these forces are averaged to

obtain the total compressive force, F , that would be measured by

an AFM. This force is studied as a function of the separation s
between the plates. For the case of a curved surface the separation

is measured between the closest points.

Results

Mechanostability of CCMV – dependence on the
temperature and on the curvature of the plate

We now illustrate the type and magnitude of changes produced

by temperature and R by considering the CCMV capsid. Figure 1

shows examples of nanoindentation trajectories for this capsid

under various conditions. Note that experimental data are

typically plotted vs. the displacement of the tip towards the

substrate, which becomes more positive as s decreases. In addition,

raw AFM data needs to be corrected for the compliance of the

cantilever, while there is no compliance in our simulations.

In the top left panel there are three trajectories F (s) obtained at

kBT~0:3 e that are reproduced from ref. [16]. They, and

especially the central highlighted one, provide a reference for all

of the results presented here. The three trajectories nearly coincide

at the beginning of the sqeezing process. In particular, there is no

force for sw284 Å. The force then rises linearly with slope k to a

characteristic force Fc as s decreases to about 175 Å. This

corresponds to compression by about 35% from the force onset

which is comparable to what is observed in experiments on

CCMV [10,11]. The value of Fc is of order 5 e/Å, i.e. about 550

pN, which is also close to the experimental value of 600 pN

[10,11]. In the linear regime, the indentation process depends only

weakly on the squeezing speed and is reversible: reversing the

velocity of the plates results in approximate retracing of the F (s)
curves. When the separation is reduced beyond the linear regime,

there is a sudden drop in the force and then a steep rise at small

separations due to steric repulsion. Once the force has dropped,

the deformation is not reversible. If the plates are retracted, the

force falls rapidly to zero [16].

The onset of irreversibility in our simulations of CCMV at

kBT~0:3e is associated with rupture of native contacts [16],

rather than a buckling transition like that observed in elastic shell

models [24,10,23]. The top subpanel of the top left panel in

Figure 1 shows the fraction, c, of unbroken native contacts as a

function of s. In the initial stage of compression, the number of

unbroken contacts remains essentially equal to that in the native

structure, although thermal fluctuations are strong enough for a

few contacts to fluctuate between broken and unbroken states at

kBT~0:3 e. At the end of the linear regime, nearly 50% of the

Figure 3. Comparison of experimental and theoretical results
for k (the top panel) and Fc (the bottom panel) for the five
indicated capsids. The dotted line is obtained using the value
e=Å~110 pN obtained by fitting mechanical stretching of proteins [22].
Results for k are better fit if this quantity is doubled (solid line).
doi:10.1371/journal.pone.0063640.g003
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contacts rupture as the force drops rapidly. Most of these bonds

connect different proteins within the capsid, rather than different

parts of the same protein [16]. These bonds do not reform on the

time scale of our simulations, but may reform in experiments on

the time scale of many minutes [3].

Several aspects of the results show that the bond rupture at Fc is

thermally activated. The top right panel of Figure 1 shows the

temperature dependence of F (s). For all kBTw0, the value of Fc

depends on trajectory. While the stiffness decreases only weakly as

kBT increases, Fc drops significantly and is almost completely

suppressed at kBTw0:4 e for CCMV. These results are consistent

with thermal fluctuations being able to activate the transition at

lower F as kBT increases and to produce run-to-run variations in

F (s) trajectories. Our previous studies showed that reducing the

speed of compression, and thus reducing the time for activation,

raises Fc [16].

For all nonzero temperatures shown, we find a sharp drop in c
as the force drops below Fc. However at kBT~0 there is a drop in

F that is not associated with bond breaking and occurs at very

small separations. Since there are no thermal fluctuations, the

drop occurs at a well-defined separation. This case appears to

reflect a buckling instability of the capsid like that predicted for

elastic shell models [24,10,23].

We now consider the influence of tip curvature on capsid

response. The lower left panel of Figure 1 compares the

highlighted trajectory obtained for the case of flat walls to

examples of trajectories obtained when one of the pushing walls is

curved. Three values of R are considered: 40, 30, and 20 nm. The

lower right panel shows examples of three trajectories obtained for

R = 30 nm – a value which is typical for AFM-based nanoinden-

tation. We observe that the sharper the tip, the easier the

destruction of the capsid: both Fc and k get reduced because the

tip force is focused on a smaller number of proteins. Nevertheless,

the flat wall results remain good estimates of what would be

measured by employing, say, a 30 nm AFM tip.

Nanoindentation for capsids considered experimentally
As mentioned in the Introduction, nanoindentation measure-

ments have also been made for MVM, NV, HBV, and HK97.

Figure 2 shows F (s) traces for coarse-grained models of these

capsids at kBT=e~0:3 and 0 with flat and curved walls. All lines

show a rapid upward curvature in the first 5–10 Å after contact. In

this range the repulsive potentials from the confining walls are just

beginning to overlap with the outer atoms and it is not included in

fitting the spring constant k. At smaller separations the traces

illustrate the four types of behavior found for the full range of

capsids studied later. These are a single peak at Fc (MVM), a peak

with a shoulder (NV), a series of gradually rising peaks before Fc

(HBV), and a peak followed by a long plateau (HK97). Note that

curved walls do not change the type of force trace. As seen in the

previous section, there is just a slight reduction in k and Fc because

the compressive stress is focussed on a smaller region. The

magnitude of this shift is largest and most consistent between

different runs for HK97 and HBV.

The traces for MVM and NV are relatively simple. At

kBT~0:3e there is a single main peak followed by a sharp drop

where about half the native contacts break. The main difference is

that some traces for NV show a shoulder before Fc and others

Figure 4. Plots of F (s) at kBT~0:3e for six capsids of the T = 1 symmetry (or T = 1) studied in this paper. The solid lines are different
trajectories for two flat indenting planes. The dotted lines, if any, correspond to the case where one surface has radius of curvature 30 nm.
doi:10.1371/journal.pone.0063640.g004
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Figure 5. Similar to Figure 4 but for three remaining T = 1 capsids, one T = 2, and one T = 4.
doi:10.1371/journal.pone.0063640.g005

Figure 6. Similar to Figure 4 but for six T = 3 capsids listed in Table 1.
doi:10.1371/journal.pone.0063640.g006
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break at the same separation (*330Å). At kBT=e~0, the force

peak is replaced by an inflection point and no bonds break. This

indicates that the capsids are always mechanically stable against

small perturbations, but can fail through thermally activated bond

breaking at high enough temperatures and long enough times.

A series of peaks is superimposed on a steadily increasing force

in the case of HBV. This complicates the determination of Fc. For

kBT=e~0:3, the majority of bond breaking occurs after the final

peak at about 15 e=Å. A sufficient number break near s~180Å

and F(s)*6 e=Å, to hinder reversibility and we take this as Fc. In

analyzing experimental data, the first sharp peak at *225 Å and

F (s)*5 e= Å might be reported as Fc even if retraction would

have produced a relatively reproducible force trace. Thus there

are greater systematic uncertainties in Fc for capsids in Tables 1

and 2 that exhibit this type of force trace. The force trace at zero

temperature shows peaks at very similar s with no bond breaking.

This indicates that the capsid loses mechanical instability even in

the absence of thermally activated bond breaking and the nature

of these instabilities will be the focus of future studies.

Finally, in the case of HK97, there is a weakly articulated force

peak followed by a plateau. The plateau ends with a drop for

kBT=e~0:3 and flat walls, and extends to the onset of steric

repulsion for curved walls and at zero temperature. Significant

bond breaking does not occur till sv400 A which is far along the

plateau. In addition, the first peak occurs near s~450 Å for all

temperatures. Once again, this is indicative of a mechanical

instability like the buckling instability seen for thin shells. Note that

k is particularly difficult to determine for HK97. The initial slope

for forces up to about 2e=Å is used in the table. At lower

separations the flat wall results rise more steeply, while the tip

results do not. Results for HK97 may be more sensitive to tip size

than other capsids because it is the largest and has a radius that is

more than double most other capsids. As the force grows, the tip

may push through the capsid like a needle. A more extreme case

was considered in Ref. [34] where the effective tip radius was only

a few Å and it passed completely through the capsid shell.

Figure 3 compares theoretical results for Fc and k with

experimental findings. Note the clear linear correlation between

theoretical and experimental values. Indeed, using the value of e
determined from matching forces from the model to protein

stretching experiments [22] gives forces that are quantitatively

similar to capsid experiments (dotted lines). Note that a variety of

force curves are obtained for MVM. The highest and most

pronounced peak in Fig. 2c of ref. [9] is at 1.2 nN, which is

consistent with the trend shown in the lower panel of Figure 3.

Some capsids showed no instablities up to this load, while others

showed precursor peaks. These variations and observations of

capsid geometry. indicate that capsid orientation and thermal

activation of bond breaking are important and that failure is

localized between proteins making up different trimers. Failure of

interprotein bonds is consistent with our earlier results on CCMV

[16].

Experimental values of k are better fit by increasing the

correspondng theoretical values by a factor of 2 (solid line). As

explained in Ref. [16], the only length scale included in the coarse-

grained model is the separation between Ca atoms in native

contacts and this determines both the structure and the rate of

change of forces with separation. The actual rate of change of

Figure 7. Similar to Figure 4 but for six pseudo T = 3 capsids listed in Table 2.
doi:10.1371/journal.pone.0063640.g007
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forces will be determined by the shorter distances separating

individual atoms of the amino acids associated with each Ca. This

will increase k relative to the coarse-grained prediction as seen in

Fig. 3. We conclude that the coarse-grained model can be used to

predict trends in mechanostability for empty virus capsids and

provide quantitative estimates for Fc using e=Å = 110 pN while k

should be doubled for this normalization.

Nanoindentation processes in other virus capsids
We now present the F (s) curves for the remaining capsids listed

in Tables 1 and 2. Their selection was based entirely on

availability of structural information and they can be viewed as

an essentially random sample. Figures 4 and 5 present results for

capsids belonging to the T = 1, T = 2, and T = 4 structural classes.

Figure 6 corresponds to the T = 3 class, Figures 7 and 8 to the

pseudo T = 3 class, and Figure 9 to the T = 7 class. Most of the

results have been obtained with flat walls and are shown by solid

lines.

For some capsids, dotted lines show results for a tip with radius

of curvature R~30 nm. As in the previous section, the curved tip

does not change the type of force curve and produces a small

decrease in mechanical strength. In most cases there is little

change in k. The exception is HK97 (Fig. 2) where k drops about

15%. Changes in Fc tend to be larger than those in k, but the

largest change is a 25% drop for POLIO (polio virus – type I

Mahoney strain). Given the large number of viruses considered,

we expect that these results provide reasonable bounds for the

magnitude of changes in mechanical properties that would be

produced by changing the radius of an AFM tip from nearly flat to

a typical value of 30 nm.

In most cases, the F (s) curves show a well defined single force

peak that is not very sensitive to the choice of trajectory. Several

show a change in slope before the peak and in a few cases this

developes into a weak peak: STNV (T = 1), SPMV (T = 1),

BmDNV (T = 1), and SBMV (T = 3). More and larger peaks are

seen for PhiX (T = 1), PIC (T = 2), TYMV (T = 3), and TRSV

(pseudo T = 3). A few force curves show a weak peak followed by a

Figure 8. Continuation of Figure 7 for the six remaining pseudo T = 3 capsids listed in Table 2.
doi:10.1371/journal.pone.0063640.g008

Figure 9. Plots of F (s) for two capsids of the T = 7 symmetry
studied in this paper. The indentation is implementd by flat walls.
The solid lines are for SV40. The dashed lines are for HK97 – these lines
are taken from Figure 2 to make a comparison.
doi:10.1371/journal.pone.0063640.g009
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low plateau: IBDV (T = 1), CAL (T = 3), BMV (T = 3) and CMV

(T = 3). The different types of behavior are not uniquely associated

with specific values of T, but weak plateaus are more common for

T = 3 capsids and all but one pseudo T = 3 capsid exhibits a single

sharp peak. There is also no clear correlation with capsid size.

Capsids with weak peaks and plateaus tend to have larger values of

dR=�RR than other capsids in the same structure class, but NV has a

sharp peak and a thick capsid.

The structure in F(s) and variability between trajectories leads

to systematic uncertainties in determining Fc. When there is a

single major peak or clear plateau, we take the average height over

trajectories, including some that are not shown in the figures.

When there is a shoulder where some trajectories show sharp force

drops, we use the shoulder height. The choice is less clear for cases

with multiple peaks and leads to significant uncertainty for HBV

(T = 4), TYMV (T = 3), and TSRV (pseudo T = 3). The quoted

values correspond to the height of the lowest significant peak,

while later peaks are a factor of two higher. The highest value is

for HRV with Fc~32 e=Å corresponding to about 4 nN. The

smallest values for BMV, CMV and IBDV are about 20 times

smaller.

We now ask: what do the values of k and Fc depend on? A

natural attribute of the capsids to consider is their size as

characterized by �RR. The size dependence of k and Fc is shown in

Figures 10 and 11, respectively. There is clearly no simple relation

of mechanical properties to �RR. The largest capsid, HK97, has half

the stiffness of the smallest capsid, SPMV, but bigger variations in

k are found between capsids with the same radius. The vertical

dashed lines indicate values of �RR where there are many viruses of

nearly the same size. Twelve of the T = 3 and pseudo T = 3 capsids

have radii within 4 Å of 132 Å and four more are less than 8 Å

smaller. Despite their similar size, this group contains the largest

and smallest values of k, with values varying by a factor of 16 from

0.034 to 0.543 e=Å2. Values of Fc vary by a factor of 20. The

cluster of five T = 1 viruses within 2Å of �RR~ 108 Å (B19, MVM,

FPV, PPV, BmDNV) also shows wide variability.

Another important factor might be the structural classification.

The pseudo T = 3 capsids tend to be strongest. The weakest are

T = 2, T = 7 and some of the T = 3 capsids. T = 4 capsids span the

full range of strength, while T = 1 and T = 3 span intermediate

values. These observations indicate that there is some correlation

to structure, but not a strong one.

In our previous study of CCMV and CPMV we noted that

while most of their geometrical properties were very similar they

had very different average coordination numbers SzT. When

counting non-bonding contacts and the two covalently bound

Figure 10. Simulation values for the effective spring constant plotted against the average radius of the corresponding capsid. The
top panel is for capsids of symmetry T = 3 and pseudo T = 3 and the bottom panel for the remaining capsids. The vertical dotted line in the top panel
indicates �RR of 132 Å. In the bottom panel, the two similar lines correspond to �RR of 73.0 and 109.4 Å.
doi:10.1371/journal.pone.0063640.g010
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neighbors along the backbone, SzT is 6.36 and 7.40 for CCMV

and CPMV, respectively. The minimum number of neighbors

required for stability in 3 dimensions is 6 if, as here, there are no

frictional or bond angle forces. Studies of rigidity percolation

indicate that the elastic modulus is a strong function of SzT near

the onset of rigidity [35–38]. We argued that this could explain

why increasing the number of native contacts per atom by only

45% (and total bonds per atom by 30%) could lead to an order of

magnitude increase in stiffness for CPMV relative to CCMV.

To explore the effect of coordination number, the results for k

and Fc are replotted against SzT in Figures 12 and 13, respectively.

For the T = 3 and pseudo T = 3 capsids there is a clear tendency

for k and Fc to grow with increasing SzT. There is no clear trend

for the other capsids when viewed as a group. However, they have

a much larger range of sizes than T = 3 and pseudo T = 3. The

dotted lines in the lower panel show that there is a clear trend for

mechanical strength to grow with SzT if capsids with similar radii

are considered separately.

To try to separate the effect of capsid dimensions from the local

modulus describing the mechanical properties within the shell, we

follow a dimensional analysis motivated by the elastic shell models

of Gibbons and Klug [23]. In the thin shell limit, the stiffness is

proportional to the Young’s modulus E and the square of the shell

thickness and inversely proportional to the radius. Up to a

numerical prefactor that would depend on how thickness is

defined, one can use this scaling to define an effective modulus.

E : k �RR=dR2 ð1Þ

that characterizes the local response in the shell (Tables 1 and

2).

Figure 14 shows how E varies with SzT for all capsids studied.

There is a much clearer correlation between these quantities than

found in the previous plots. The majority of the capsids show a

roughly parabolic dependence on the excess above the minimum

coordination number for rigidity.

E ~ E0 (SzT { 6)2 ð2Þ

where E0& 0.05 [e/Å3]. This correlation is quite good given that

there is no correction for the fact that SzT will be lower for the

significant fraction of Ca that lie on the outer and inner surfaces of

the capsid, and that the distribution of bonds may be nonuniform.

For example, reduced local coordination along the boundaries

between capsomers could greatly lower the global stiffness k and

explain why bond breaking may localize there [16]. It is also

Figure 11. Similar to Figure 10 but for the values of Fc.
doi:10.1371/journal.pone.0063640.g011
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interesting to note that the greatest outliers (IBDV, PhiX, NBV

and STNV) are those that are farthest from the thin shell limit,

having dR=�RR greater than 0.24. The thin shell formula is

questionable in this limit and the loss of coordination number

due to surfaces would be smaller than for other capsids.

Studies of randomly linked systems have also found a power law

relation between modulus and the excess coordination. Square

and Kagome lattices are marginally stable when only nearest-

neighbors interact. Their shear modulus grows as the square of the

number of next-nearest-neighbor bonds [37], which is consistent

with Fig. 14. A different linear scaling is found for completely

random networks near the jamming transition [38]. Capsids may

be closer to the orderly structure of lattices because of the

backbone connectivity and repeated structure, but it is not clear

that they should fit into either class.

It should be noted that the coordination number for a given

capsid is sensitive to the details of the determination of the contact

map. Changing the details would alter the number of native

contacts and thus SzT. However, we expect that the trend for local

elastic properties to rise rapidly with SzT{6 would remain. The

overlap criterion used is based on previous studies of protein

folding and stretching, where it has been shown to provide

reasonable results [20,22].

Discussion

A coarse-grained molecular model was used to study the

mechanical response of 35 virus capsids. The full force-separation

curves have a variety of shapes, but in general share two common

features. In particular, there is a linear elastic response character-

ized by a spring constant k at small deformations and a sharp drop

or plateau at a characteristic force Fc that signals an irreversible

instability. As found previously for CCMV [16], Fc is usually

associated with bond breaking at finite temperature. Because

bond-breaking is thermally activated, there are run-to-run

fluctuations in Fc, and Fc decreases with increasing temperature

and increases with increasing indentation rate. Similar effects have

been seen in previous simulations of mechanical unfolding of

proteins where our model captures the breaking of bonds during

experiments on unfolding. There is rarely any bond-breaking in

capsids at zero temperature, indicating that the bonds are always

metastable. Some capsids show sharp instabilities without bond

breaking at zero temperature and large forces that is indicative of a

buckling instability like that seen in elastic shell models [23,24].

The elastic response and onset of irreversibility have also been

considered by Arkhipov et al. [39,40] using an even more coarse-

grained model based on capsid geometry where a single bead

Figure 12. Effective spring constant plotted against the average coordination number of the corresponding capsid. The top panel is
for capsids of symmetry T = 3 and pseudo T = 3 and the bottom panel for the remaining capsids. Lines in the top panel show trends for T = 3 (dotted
line) and pseudo T = 3 (dashed line). In the lower panel, the two lines link capsids with �RR close to 73.0 and 109.4 Å respectively.
doi:10.1371/journal.pone.0063640.g012
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represents 150 protein atoms, on average. Bonds are defined based

on proximity of these larger beads and bond-angle terms are

introduced to include the effect on rigidity of the many additional

atoms that have been removed. All interactions are then fit to

atomistic simulations of capsids. No bond-breaking is possible in

this model because the bonds are strictly harmonic, but capsids

undergo instabilities like those seen here at zero temperature. The

model has been used to study the native state stability of several

T = 1 and T = 3 capsids (STMV, SPMV, STNV, BMV) [39] and

to get the pre-collapse behavior of the force-indentation curves for

the T = 4 capsid HBV [40]. It is interesting that even with the

greater coarse-graining, their results for HBV show a sinuous

character that is similar to our results.

For the capsids studied in this paper, the values of k and Fc vary

by about a factor of 20. These variations are not correlated with

virus symmetry (T) or size. Indeed, nearly the full range of values is

sampled by T = 3 and pseudo T = 3 capsids with radii between

130 and 134Å. The greatest correlation was found with the

coordination number SzT that describes the number of bonds

constraining motion. To isolate the effective local elasticity from

geometrical effects, we determined an effective Young’s modulus

E for regions within the capsid shell using the thin elastic shell

formula for stiffness (Eq. 1). On average there is a trend for E to

rise quadratically with SzT{6, where 6 is the minimum

coordination for stability in three dimensions. The largest

deviations are for the thickest capsids and lie below the trend.

This may reflect deviations from the thin shell scaling or local

fluctuations in the coordination number that produce weak spots

that dominate the response. Even the largest values of E are an

order of magnitude smaller than an fcc lattice with SzT~12 and

the same interactions. It is interesting to ask whether the greater

flexibility of all capsids and the variations in E for specific capsids

are important to function. This is outside the scope of the current

paper, but one may speculate that viruses may be more rigid if

they do not need to reform during their life cycle or are exposed to

more extreme environments.

Experimental values of k and Fc are only available for 5, viruses

[3]. Our calculations reproduce the trends in these quantities and

good quantitative agreement with experiments is obtained if the

interaction strength is set to the value obtained from fits to protein

stretching e=Å~110 pN. Calculated values of k are consistently

about a factor of 2 too small with this interaction strength. As

discussed, the current coarse-grained model assumes that the

separation between Ca bonds determines the rate of change of

forces. Better quantitative agreement could be obtained if the

variation in force was related to the smaller separation between

amino acids.

The variability in elastic properties of virus capsids has also been

observed by Tama and Brooks [41]. They also considered only Ca

atoms and assigned Hookean springs between nearest-neighbors.

Figure 13. Similar to Figure 12 but for the characteristic force.
doi:10.1371/journal.pone.0063640.g013
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They then analyzed the normal modes of the system and

correlated them to structural changes of swelling rather than

nanoindentation. It would be interesting to determine the

frequency of normal modes that correspond most closely to

indentation using this method. This would also enable rapid

studies of the effect of capsid orientation on k, which has been

found to be small in previous studies [16,39,40].

The studies presented here have focused on the experimentally

accessible macroscopic response of capsids. Future studies should

assess the variability in local response within capsids. Variations in

local deformation may be correlated with changes in local

coordination number and/or with the boundaries of proteins as

in our earlier simulations and recent experiments on MVM [9]. It

may also be possible to relate them to local magnitude variations of

the eigenmodes obtained by normal mode analysis [41]. These

studies could help explain the variations in E at a given SzT and

will be a useful stepping stone towards modeling still larger

biological systems.
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