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Abstract: There is limited evidence on the association between blood mercury (Hg) concentration
and the risk of borderline dyslipidemia in adolescents. Here, we investigated the association between
blood Hg concentration and the prevalence of borderline dyslipidemia among Korean adolescents. A
total of 1559 participants (806 boys and 753 girls) aged 10–18 years who cross-sectionally enrolled
in the Korea National Health and Nutrition Examination Survey (KNHANES) 2010–2013 and 2016
were included in this study. Hg concentrations (µg/L) in whole blood samples were measured.
The geometric mean (GM) of the blood Hg concentration was 1.88 µg/L. It showed a 63% higher
prevalence of borderline hypercholesterolemia (total cholesterol (TC) 170–199 mg/dL) per unit of
natural log-transformed blood Hg concentration in boys (95% CI = 1.10–2.41), but not in girls. When
a categorical model was applied, the positive association with the prevalence of borderline hyperc-
holesterolemia was also persistant in boys (OR (95% CI) for 2nd and 3rd tertiles (Hg concentration
1.532–11.761 µg/L) vs. 1st tertile (Hg concentration 0.192–1.531 µg/L): 1.92 (1.19–3.10)), but not
in girls. This finding suggests that blood Hg concentration might result in a higher prevalence of
borderline hypercholesterolemia among adolescents and more stringent public health actions should
be taken for the reduction of Hg exposure to prevent dyslipidemia from early-childhood, despite the
need of further study to evaluate a causal relationship between blood Hg concentration and the risk
of dyslipidemia.

Keywords: mercury (Hg); dyslipidemia; hypercholesterolemia; hyper-LDL cholesterolemia; adolescents

1. Introduction

Mercury (Hg) is a heavy metal ubiquitously distributed in nature, i.e., air, ocean, and
soil. Environmental exposure to Hg occurs in daily life, such as with the consumption of
foods grown in contaminated oceans (e.g., fish, shellfish, etc.), in air pollution, dental amal-
gams, and in the use of industrial products (e.g., batteries, lamps, etc.). Hg exposure has
been a growing concern as it may be related to several adverse effects on health, including
neurodegenerative diseases [1], cardiovascular disease (CVD) [2], kidney diseases [3], type
2 diabetes mellitus (T2DM) [4], and all-cause mortality [5,6].

Worldwide, dyslipidemia is one of the established risk factors for CVD, the top cause of
death in adults [7]. According to the results from the NCD Risk Factor Collaboration (NCD-
RisC) database, plasma total cholesterol (TC) and non-high-density lipoprotein (HDL)
cholesterol levels have globally decreased from 1980 to 2018 in both men and women [8,9].
During the past three decades, the age-standardized mean plasma lipid levels reduced
by approximately 0.21 mmol/L (8.1 mg/dL) for TC levels, and 0.04 mmol/L (1.5 mg/dL)

Toxics 2021, 9, 242. https://doi.org/10.3390/toxics9100242 https://www.mdpi.com/journal/toxics

https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0001-8621-9190
https://doi.org/10.3390/toxics9100242
https://doi.org/10.3390/toxics9100242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxics9100242
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics9100242?type=check_update&version=2


Toxics 2021, 9, 242 2 of 14

for non-HDL cholesterol levels in men, and 0.16 mmol/L (6.2 mg/dL) for TC levels and
0.09 mmol/L (3.5 mg/dL) for non-HDL cholesterol levels in women. The decreases in
plasma lipid levels mainly occurred in America and Europe, whereas increasing trends
of these levels have been observed in the Western Pacific region, especially in East Asia.
Particularly, the prevalence of dyslipidemia in Korea has increased from 8.0% in 2005 to
22.3% in 2019 among adults over 30 years of age [10,11].

Previous epidemiologic studies have demonstrated that the development and progres-
sion of CVD may begin in early life, although it usually occurs in adults [12,13]. Hence, it
is important to screen blood lipid levels from early-childhood, in order to reduce the long-
term disease burden. Several studies investigated the association between Hg exposure and
the risk of dyslipidemia in adolescents [14–16]. A cross-sectional study including 6–19-year-
old children and adolescents enrolled in the US National Health and Nutrition Examination
Survey (NHANES) 2011–2014 suggested that the prevalence of hypercholesterolemia was
significantly higher among individuals in the highest quartile of serum Hg concentration
compared with those in the lowest quartile [14]. However, there was no significant asso-
ciation between blood Hg concentration and the prevalence of hypertriglyceridemia or
hyper-low-density lipoprotein (LDL) cholesterolemia.

The 2011 US National Heart, Lung, and Blood Institute guidelines for cardiovascular
health and risk reduction in children and adolescents suggested that, TC, triglyceride (TG),
and LDL-cholesterol levels should be classified as acceptable, borderline high, and high,
whereas HDL-cholesterol levels should be grouped into acceptable, borderline low, and low
among adolescents [17]. Briefly, borderline dyslipidemia was defined as a borderline high
level of TC, TG, or LDL-cholesterol, or borderline low level of HDL-cholesterol. Overt dys-
lipidemia was ascertained if an adolescent had a high level of TC, TG, or LDL-cholesterol,
or a low level of HDL-cholesterol. To our knowledge, there was no epidemiologic study
identifying the associations between Hg exposure and risk of borderline dyslipidemia or
overt dyslipidemia in adolescents.

Here, we hypothesized that environmental exposure to Hg results in borderline
dyslipidemia, as well as overt dyslipidemia in adolescents. Therefore, in this study, we
conducted a cross-sectional study to evaluate the association between blood Hg concentra-
tion and the prevalence of borderline dyslipidemia among adolescents aged 10–18 years
in Korea.

2. Materials and Methods
2.1. Study Participants

This study is based on the data acquired from the Korea National Health and Nutrition
Examination Survey (KNHANES), which is an ongoing national survey to assess health
and nutritional status, conducted by the Korea Disease Control and Prevention Agency
(KDCA). Details of the KNHANES have been described previously [18].

A total of 41,702 participants (18,926 males and 22,776 females) with blood Hg mea-
sured in the KNHANES 2010–2013 and 2016 were initially included. We excluded partic-
ipants who were adults (n = 32,094) or children (n = 4955); those who did not complete
blood Hg measurements (n = 2874); those with missing (n = 182) or implausible levels of
total energy intake (±3 standard deviations [SDs] from the natural log-transformed mean)
(n = 11); and those who did not provide information on the covariates, including smoking
status (n = 12), household income level (n = 10), physical activity (n = 3) or menstruation in
girls (n = 1). Furthermore, one participant with a minus value of LDL-cholesterol level was
excluded. As a result, a total of 1559 participants (806 boys and 753 girls) aged 10–18 years
were included in the final analysis. A flow diagram of the study participants is shown in
Figure 1. All the participants have provided informed consent.

The study protocol was approved by the Institutional Review Board (IRB) of the
KDCA (2010-02CON-21-C, 2011-02CON-06-C, 2012-01EXP-01-2C, 2013-07CON-03-4C).
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Figure 1. Flow diagram of the study participants.

2.2. Laboratory Analysis

Blood samples were collected after fasting for at least 8 h. The Hg concentration
(µg/L) in whole blood samples was measured by the gold-amalgam collection method
using DMA-80 (Milestone, Bergamo, Italy). The limit of detection (LOD) for the blood
Hg was 0.158 µg/L. There was no participant with an Hg concentration below the LOD.
Further information on internal quality assurance and control can be found elsewhere [19].
The Hitachi Automatic Analyzer 7600-210 (Hitachi, Tokyo, Japan) was used to assess serum
TC (mg/dL) and TG (mg/dL) levels by enzymatic method and HDL-cholesterol (mg/dL)
levels by homogeneous enzymatic colorimetric method.

2.3. Ascertainment of Cases

Serum LDL-cholesterol levels were calculated using the Friedewald formula [20].
According to the 2011 US National Heart, Lung, and Blood Institute guideline [17],
values of lipid and lipoprotein were categorized into 3 groups: acceptable, borderline
high, and high groups for TC, TG, and LDL-cholesterol levels and acceptable, border-
line low, and low groups for HDL-cholesterol levels (Table S1). For TC, TG, and LDL-
cholesterol levels, the borderline high group was defined as follows: TC 170–199 mg/dL
(4.3–5.1 mmol/L); TG 90–129 mg/dL (1.0–1.5 mmol/L); LDL-cholesterol 110–129 mg/dL
(2.8–3.3 mmol/L). Meanwhile, the high group was ascertained with values of lipid and
lipoprotein as follows: TC ≥ 200 mg/dL (5.1 mmol/L); TG ≥ 130 mg/dL (1.4 mmol/L);
LDL-cholesterol ≥ 130 mg/dL (3.4 mmol/L). For HDL-cholesterol levels, the borderline
low and low groups were defined as 40–45 mg/dL (1.0–1.2 mmol/L) and <40 mg/dL
(1.0 mmol/L), respectively. On the other hand, borderline dyslipidemia was defined if
participants classified into any one of the borderline high (for TC, TG, and LDL-cholesterol
levels) or borderline low (for HDL-cholesterol levels) groups, whereas those who classi-
fied into any one of the high (for TC, TG, and LDL-cholesterol levels) or low (for HDL-
cholesterol level) groups were defined as overt dyslipidemia. Furthermore, dyslipidemia
was defined as borderline dyslipidemia and overt dyslipidemia combined.

2.4. Covariates

Body mass index (BMI, kg/m2) was calculated as body weight (kg) divided by the
square of height (m). Total energy intake (kcal/day) for each participant was estimated
using a 24 h dietary recall. Household income level was categorized in quintiles accord-
ing to sample household income levels in the KNHANES. We calculated the metabolic
equivalent (MET)-min/week by multiplying the total minutes spent in each activity per
week by the metabolic cost in METs. Participants were grouped into inactive, minimally
active, and active groups according to the International Physical Activity Questionnaire
(IPAQ) and Global Physical Activity Questionnaire (GPAQ) scoring protocols [21,22]. The
KNHANES did not assess smoking status, alcohol consumption or physical activity, etc.,
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for participants aged 10–11 years. Thus, they were categorized into never smokers and
physically inactive groups because the prevalence of ever smoking experience was 4.8%
among adolescents before the age of 12 in Korea [23], and the large majority of them were
physically inactive [24].

2.5. Statistical Analysis

Blood concentrations of Hg was natural log-transformed due to the skewed distri-
bution. Socio-demographic, anthropometric, lifestyle, and clinical characteristics were
presented as mean ± standard error (SE) and frequency (percentage) for continuous and
categorical variables, respectively. Differences in baseline characteristics between without,
borderline, and overt dyslipidemia were estimated using ANOVA tests and Rao-Scott
Chi-Square tests for continuous and categorical variables, respectively [25]. Additionally,
comparisons of characteristics according to sex were performed using independent t-tests
for continuous variables and Rao-Scott Chi-Square tests for categorical variables.

The geometric mean (GM) and 95% confidence interval (CI) of blood Hg concentration
were calculated using PROC SURVEYMEANS [26].

Odds ratios (ORs) and 95% CIs were calculated using PROC SURVEYLOGISTIC [27].
We examined the linear associations between blood Hg concentration and prevalence of bor-
derline hypercholesterolemia and borderline hyper-LDL cholesterolemia. In addition, we
also estimated the associations for hypercholesterolemia and hyper-LDL cholesterolemia
or overt hypercholesterolemia and overt hyper-LDL cholesterolemia (Tables S4 and S5).
Since there was no significant difference in blood Hg concentration according to hyper-
triglyceridemia and hypo-HDL cholesterolemia (Table S2), we did not conduct the further
analyses. Categorical models were applied to compare the prevalence between participants
in the 2nd and 3rd tertiles of blood Hg concentration and those in the 1st tertile. Groups
with blood Hg concentrations in the 1st tertile were regarded as the reference group. We
performed univariate analysis (model 1) and multivariate analysis (model 2) adjusted
for age (year, continuous), sex (for boys and girls combined), BMI (kg/m2, continuous),
survey year (2010, 2011, 2012, 2013, and 2016), total energy intake (kcal/day, continuous),
smoking status (never smokers and smokers), household income level (quintile 1, 2, 3, 4,
and 5), physical activity (inactive, minimally active, and active), and menstruation (for girls,
premenarcheal and post-menarcheal). All the analyses were adjusted for sampling weights.
All statistical analyses were conducted using SAS version 9.4 (SAS Institute Inc., Cary, NC,
USA), and a p-value < 0.05 in two-sided tests was considered as a significant difference.

3. Results
3.1. Baseline Characteristics

Of the 1559 participants, 395 (25.3%) and 130 (8.3%) were classified into borderline and
overt hypercholesterolemia, respectively. In addition, 224 (14.4%) and 93 (6.0%) adolescents
were identified as borderline and overt hyper-LDL cholesterolemia, respectively.

Table 1 shows the baseline characteristics of the study participants according to TC
and LDL-cholesterol levels. The mean age and BMI were 14.2 years and 20.9 kg/m2,
respectively. Participants with overt hypercholesterolemia were more likely to be younger,
girls, obese, never smokers, and physically active, and had a higher total energy intake.
Additionally, overt hypercholesterolemia was more frequent in the premenarcheal girls.
On the other hand, participants with overt hyper-LDL cholesterolemia were more likely to
be girls and obese, and had higher household income levels and total energy intake than
those with normal range of LDL-cholesterol levels. Blood Hg concentrations in both the
participants with overt hypercholesterolemia and overt hyper-LDL cholesterolemia were
higher than those with a normal range of TC and LDL-cholesterol levels. Characteristics
according to TG and HDL-cholesterol levels were shown in Table S2. There was no
significant difference in blood Hg concentration according to hypertriglyceridemia or
hypo-HDL cholesterolemia.
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Table 1. Baseline characteristics of the study participants according to TC and LDL-cholesterol levels.

Overall
(n = 1559)

TC LDL-Cholesterol

Acceptable
(n = 1034)

Borderline High
(n = 395)

High
(n = 130) pa Acceptable

(n = 1242)
Borderline High

(n = 224)
High

(n = 93) pa

Age, mean ± SE, years 14.2 ± 0.1 14.3 ± 0.1 13.8 ± 0.1 13.6 ± 0.3 <0.0001 14.2 ± 0.1 13.8 ± 0.2 14.1 ± 0.3 0.031
10–12 years, n (%) 524 (33.6) 316 (30.6) 152 (38.5) 56 (43.1) 0.003 402 (32.4) 87 (38.8) 35 (37.6) 0.208
13–15 years, n (%) 568 (36.4) 399 (38.6) 134 (33.9) 35 (26.9) 467 (37.6) 71 (31.7) 30 (32.3)
16–18 years, n (%) 467 (30.0) 319 (30.9) 109 (27.6) 39 (30.0) 373 (30.0) 66 (29.5) 28 (30.1)
Sex
Boys, n (%) 806 (51.7) 582 (56.3) 171 (43.3) 53 (40.8) <0.0001 658 (53.0) 109 (48.7) 39 (41.9) 0.006
Girls, n (%) 753 (48.3) 452 (43.7) 224 (56.7) 77 (59.2) 584 (47.0) 115 (51.3) 54 (58.1)
BMI, mean ± SE, kg/m2 20.9 ± 0.1 20.7 ± 0.1 21.0 ± 0.2 21.7 ± 0.5 0.005 20.6 ± 0.1 21.6 ± 0.3 22.2 ± 0.6 <0.0001
Normal weight, n (%) 1229 (78.8) 843 (81.5) 297 (75.2) 89 (68.5) 0.005 1009 (81.2) 161 (71.9) 59 (63.4) <0.0001
Overweight and obesity, n (%) 330 (21.2) 191 (18.5) 98 (24.8) 41 (31.5) 233 (18.8) 63 (28.1) 34 (36.6)
Smoking status
Never smokers, n (%) 1388 (89.0) 910 (88.0) 355 (89.9) 123 (94.6) 0.006 1098 (88.4) 204 (91.1) 86 (92.5) 0.138
Smokers, n (%) 171 (11.0) 124 (12.0) 40 (10.1) 7 (5.4) 144 (11.6) 20 (8.9) 7 (7.5)
Household income level
Quintile 1, n (%) 216 (13.9) 138 (13.3) 62 (15.7) 16 (12.3) 0.362 169 (13.6) 38 (17.0) 9 (9.7) 0.043
Quintile 2, n (%) 322 (20.7) 212 (20.5) 83 (21.0) 27 (20.8) 259 (20.9) 46 (20.5) 17 (18.3)
Quintile 3, n (%) 343 (22.0) 223 (21.6) 94 (23.8) 26 (20.0) 267 (21.5) 58 (25.9) 18 (19.4)
Quintile 4, n (%) 322 (20.7) 223 (21.6) 75 (19.0) 24 (18.5) 265 (21.3) 39 (17.4) 18 (19.4)
Quintile 5, n (%) 356 (22.8) 238 (23.0) 81 (20.5) 37 (28.5) 282 (22.7) 43 (19.2) 31 (33.3)
Physical activity
Inactive, n (%) 703 (45.1) 421 (40.7) 219 (55.4) 63 (48.5) 0.001 547 (44.0) 113 (50.4) 43 (46.2) 0.180
Minimally active, n (%) 484 (31.0) 353 (34.1) 97 (24.6) 34 (26.2) 405 (32.6) 53 (23.7) 26 (28.0)
Active, n (%) 372 (23.9) 260 (25.1) 79 (20.0) 33 (25.4) 290 (23.3) 58 (25.9) 24 (25.8)
Menstruation (for girls)
Premenarcheal, n (%) 169 (22.4) 90 (19.9) 62 (27.7) 17 (22.1) 0.012 129 (22.1) 27 (23.5) 13 (24.1) 0.540
Postmenarcheal, n (%) 584 (77.6) 362 (80.1) 162 (72.3) 60 (77.9) 455 (77.9) 88 (76.5) 41 (75.9)
Total energy intake, mean ± SE,
kcal/day 2188.9 ± 26.4 2267.5 ± 31.8 2036.3 ± 47.7 2016.1 ± 95.5 <0.0001 2237.1 ± 29.2 2006.6 ± 60.7 2032.2 ± 118.9 <0.0001

Survey year
2010, n (%) 323 (20.7) 208 (20.1) 90 (22.8) 25 (19.2) 0.354 251 (20.2) 54 (24.1) 18 (19.4) 0.805
2011, n (%) 334 (21.4) 239 (23.1) 70 (17.7) 25 (19.2) 273 (22.0) 42 (18.8) 19 (20.4)
2012, n (%) 318 (20.4) 217 (21.0) 71 (18.0) 30 (23.1) 259 (20.9) 38 (17.0) 21 (22.6)
2013, n (%) 318 (20.4) 208 (20.1) 86 (21.8) 24 (18.5) 253 (20.4) 50 (22.3) 15 (16.1)
2016, n (%) 266 (17.1) 162 (15.7) 78 (19.7) 26 (20.0) 206 (16.6) 40 (17.9) 20 (21.5)
Blood Hg concentration, mean ±
SE, µg/L 2.1 ± 0 2.1 ± 0 2.2 ± 0.1 2.2 ± 0.1 0.005 2.1 ± 0 2.2 ± 0.1 2.5 ± 0.2 0.002

Abbreviations: TC, total cholesterol; LDL, low-density lipoprotein; SE, standard error; BMI, body mass index; Hg, mercury. a p-value was calculated using ANOVA test for continuous variable and Rao-Scott
Chi-Square test for categorical variable.



Toxics 2021, 9, 242 6 of 14

3.2. Distribution of Blood Hg Concentration and Differences in Baseline Characteristics

The GM of blood Hg concentration was 1.88 µg/L (95% CI = 1.82–1.94) (Table 2).
Notably, boys had higher blood Hg concentrations than girls. Differences in covariates
according to blood Hg distribution were examined (Table S3). Compared with participants
in the lowest tertile of blood Hg, those in the highest tertile were more likely to be obese
and had a higher total energy intake. Moreover, there were more postmenarcheal girls in
the lowest tertile of blood Hg than in the highest tertile.

Table 2. Distribution of blood Hg concentration (µg/L) according to sex.

n (%) GM (95% CI) Min 10% 25th Median 75th 90% Max

Overall 1559 1.88 (1.82, 1.94) 0.19 1.05 1.39 1.84 2.54 3.36 11.76
Boys 806 (51.7) 1.91 (1.83, 2.00) 0.19 1.03 1.40 1.87 2.59 3.48 11.76
Girls 753 (48.3) 1.84 (1.77, 1.91) 0.42 1.08 1.37 1.77 2.49 3.24 8.82

Abbreviations: GM, geometric mean; CI, confidence interval; Min, minimum; Max, Maximum.

3.3. Baseline Characteristics According to Sex

Socio-demographic, anthropometric, lifestyle, and clinical characteristics according
to sex are shown in Table 3. Compared with girls, boys were more likely to be obese and
physically active. Girls had higher TC, LDL-cholesterol, TG, and HDL-cholesterol levels
than boys.

Table 3. Baseline characteristics of the study participants according to sex.

Boys
(n = 806)

Girls
(n = 753) p a

Age, mean ± SE, years 14.2 ± 0.1 14.1 ± 0.1 0.481
10–12 years, n (%) 277 (34.4) 247 (32.8) 0.896
13–15 years, n (%) 294 (36.5) 274 (36.4)
16–18 years, n (%) 235 (29.2) 232 (30.8)

BMI, mean ± SE, kg/m2 21.1 ± 0.2 20.6 ± 0.2 0.003
Normal weight, n (%) 629 (78.0) 600 (79.7) 0.677

Overweight and obesity, n (%) 177 (22.0) 153 (20.3)
Smoking status

Never smokers, n (%) 691 (85.7) 697 (92.6) 0.001
Smokers, n (%) 115 (14.3) 56 (7.4)

Household income level
Quintile 1, n (%) 109 (13.5) 107 (14.2) 0.484
Quintile 2, n (%) 160 (19.9) 162 (21.5)
Quintile 3, n (%) 173 (21.5) 170 (22.6)
Quintile 4, n (%) 179 (22.2) 143 (19.0)
Quintile 5, n (%) 185 (23.0) 171 (22.7)
Physical activity
Inactive, n (%) 310 (38.5) 393 (52.2) <0.0001

Minimally active, n (%) 229 (28.4) 255 (33.9)
Active, n (%) 267 (33.1) 105 (13.9)

Menstruation (for girls)
Premenarcheal, n (%) - 169 (22.4) -
Postmenarcheal, n (%) - 584 (77.6)

Total energy intake, mean ± SE, kcal/day 2435.3 ± 39.6 1911.1 ± 30.5 <0.0001
Survey year
2010, n (%) 164 (20.3) 159 (21.1) 0.895
2011, n (%) 172 (21.3) 162 (21.5)
2012, n (%) 164 (20.3) 154 (20.5)
2013, n (%) 160 (19.9) 158 (21.0)
2016, n (%) 146 (18.1) 120 (15.9)

Blood Hg concentration, mean ± SE, µg/L 2.2 ± 0.1 2.0 ± 0 0.110
TC, mean ± SE, mg/dL 154.4 ± 1.2 166.0 ± 1.3 <0.0001
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Table 3. Cont.

Boys
(n = 806)

Girls
(n = 753) p a

Acceptable, n (%) 582 (72.2) 452 (60.0) <0.0001
Borderline high, n (%) 171 (21.2) 224 (29.7)

High, n (%) 53 (6.6) 77 (10.2)
LDL-cholesterol, mean ± SE, mg/dL 88.5 ± 1.0 95.6 ± 1.2 <0.0001

Acceptable, n (%) 658 (81.6) 584 (77.6) 0.006
Borderline high, n (%) 109 (13.5) 115 (15.3)

High, n (%) 39 (4.8) 54 (7.2)
TG, mean ± SE, mg/dL 81.6 ± 2.0 86.3 ± 2.2 0.013

Acceptable, n (%) 546 (67.7) 479 (63.6) 0.734
Borderline high, n (%) 169 (21.0) 178 (23.6)

High, n (%) 91 (11.3) 96 (12.7)
HDL-cholesterol, mean ± SE, mg/dL 49.5 ± 0.4 53.1 ± 0.5 <0.0001

Acceptable, n (%) 550 (68.2) 583 (77.4) 0.002
Borderline low, n (%) 136 (16.9) 104 (13.8)

Low, n (%) 120 (14.9) 66 (8.8)
Abbreviations: SE, standard error; BMI, body mass index; Hg, mercury; TC, total cholesterol; LDL, low-density
lipoprotein; TG, triglyceride; HDL, high-density lipoprotein. a p-value was calculated using independent t-test
for continuous variable and Rao-Scott Chi-Square test for categorical variable.

3.4. Associations between Blood Hg Concentration and Prevalence of Borderline and
Overt Hypercholesterolemia

Associations between blood Hg concentration and the prevalence of hypercholes-
terolemia are presented in Table S4. It showed a significant higher prevalence of hyperc-
holesterolemia in boys (OR (95% CI) per unit of natural log-transformed blood Hg concen-
tration: 1.74 (1.23–2.46)). When separated with borderline and overt hypercholesterolemia,
the positive associations persisted in boys (Table 4 and Table S5). With the increment of
per unit of natural log-transformed blood Hg concentration, boys had a 63% higher preva-
lence of borderline hypercholesterolemia (95% CI = 1.10–2.41). A significant association
between blood Hg concentration and the prevalence of overt hypercholesterolemia was
also observed (OR = 2.04; 95% CI = 1.15–3.64). In categorical models, compared with boys
in the 1st tertile of blood Hg concentration, those in the 2nd and 3rd tertiles had a higher
prevalence of hypercholesterolemia (OR = 2.02; 95% CI = 1.30–3.14), furthermore, border-
line hypercholesterolemia (OR = 1.92; 95% CI = 1.19–3.10), and overt hypercholesterolemia
(OR = 2.36; 95% CI = 1.00–5.54). However, no significant association was observed between
blood Hg concentration and the prevalence of borderline or overt hypercholesterolemia
in girls.

3.5. Associations between Blood Hg Concentration and Prevalence of Borderline and Overt
Hyper-LDL Cholesterolemia

Blood Hg concentration was also positively associated with the prevalence of hyper-
LDL cholesterolemia in boys (OR (95% CI) per unit of natural log-transformed blood Hg
concentration = 1.65 (1.06–2.57)) (Table S4). Likewise, boys in the 2nd and 3rd tertiles had an
88% higher prevalence of hyper-LDL cholesterolemia compared with those in the 1st tertile
(OR = 1.88; 95% CI = 1.10–3.20). However, there was no significant association between
blood Hg concentration and the prevalence of borderline hyper-LDL cholesterolemia, in
neither the continuous model nor the categorical model (Table 4). When separated with sex,
a positive association between blood Hg concentration and prevalence of overt hyper-LDL
cholesterolemia was observed in boys, but not in girls (Table S5). Boys had a 3.20-fold
higher prevalence of overt hyper-LDL cholesterolemia per unit of natural log-transformed
blood Hg concentration (95% CI = 1.55–6.62). When a categorical model was applied, the
OR (95% CI) for 2nd and 3rd tertiles vs. 1st tertile was 2.64 (0.94–7.36).
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Table 4. Associations between blood Hg concentration and prevalence of borderline hypercholesterolemia and hyper-LDL cholesterolemia according to sex.

Concentration
Range (µg/L)

Overall Boys Girls

Case/Total OR (95% CI) a OR (95% CI) b Case/Total OR (95% CI) a OR (95% CI) b Case/Total OR (95% CI) a OR (95% CI) b

Borderline hypercholesterolemia
Continuous 395/1429 1.36 (1.02, 1.80) 1.48 (1.10, 2.00) 171/753 1.50 (1.03, 2.18) 1.63 (1.10, 2.41) 224/676 1.31 (0.85, 2.00) 1.23 (0.77, 1.96)
Tertile 1 0.192–1.531 120/482 1.00 (Reference) 1.00 (Reference) 42/240 1.00 (Reference) 1.00 (Reference) 78/242 1.00 (Reference) 1.00 (Reference)
Tertiles 2 and 3 1.532–11.761 275/947 1.27 (0.94, 1.72) 1.36 (0.99, 1.86) 129/513 1.70 (1.07, 2.71) 1.92 (1.19, 3.10) 146/434 1.04 (0.69, 1.58) 0.93 (0.59, 1.46)
Borderline hyper-LDL cholesterolemia
Continuous 224/1466 1.28 (0.90, 1.83) 1.19 (0.81, 1.75) 109/767 1.33 (0.86, 2.05) 1.21 (0.74, 1.97) 115/699 1.28 (0.74, 2.22) 1.15 (0.62, 2.10)
Tertile 1 0.192–1.531 70/495 1.00 (Reference) 1.00 (Reference) 26/245 1.00 (Reference) 1.00 (Reference) 44/250 1.00 (Reference) 1.00 (Reference)
Tertiles 2 and 3 1.532–11.761 154/971 1.19 (0.79, 1.80) 1.10 (0.72, 1.69) 83/522 1.69 (0.95, 3.00) 1.63 (0.88, 3.04) 71/449 0.93 (0.55, 1.55) 0.79 (0.45, 1.38)

Abbreviations: LDL, low-density lipoprotein; OR, odds ratio; CI, confidence interval. a OR (95% CI) was calculated using univariate logistic regression. b OR (95% CI) was calculated using multivariate logistic
regression adjusted for age (years, continuous), sex (for boys and girls combined), BMI (kg/m2, continuous), survey year (2010, 2011, 2012, 2013, and 2016), total energy intake (kcal/day, continuous), smoking
status (never smokers and smokers), household income level (quintile 1, 2, 3, 4, and 5), physical activity (inactive, minimally active, and active), and menstruation (for girls, premenarcheal and postmenarcheal).
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4. Discussion

In this study, we found that blood Hg concentration was associated with the prevalence
of borderline hypercholesterolemia in adolescents, and the positive associations were
prominent in boys. To the best of our knowledge, the present study is the first evaluation of
the associations between environmental exposure to Hg and the prevalence of borderline
dyslipidemia in adolescents. These meaningful findings suggest that the reduction of
Hg exposure might be important on a public health perspective for the prevention of
dyslipidemia in adolescents.

As with adults, the increase in plasma lipid levels among adolescents has been con-
sistently observed in the Western Pacific region, mainly in East Asia [8,9]. In Korea, a
significant increase in the prevalence of overt dyslipidemia from 2007 to 2018 was observed
in adolescents aged 10–18 years [28]. For example, the prevalence of overt hypercholes-
terolemia increased from 6.29% to 8.45% in boys, and from 7.80% to 12.43% in girls during
the decades. Likewise, the prevalence of overt dyslipidemia increased from 18.8% in 2004 to
28.9% in 2014 among adolescents aged 10–18 years in China [29]. Additionally, in Japanese
children and adolescents, a substantial increase in overt hyper-non-HDL cholesterolemia
from 2007 to 2017 was observed in both boys (6.1% and 3.1% at age 10 and 13, respec-
tively) and girls (3.8% and 4.6% at age 10 and 13, respectively) [30]. These increases in
the prevalence of dyslipidemia enforce the need for public health interventions for lipid
management in children and adolescents.

In recent studies, strict management from the pre-stage of chronic disease is being
emphasized in disease prevention. For example, a meta-analysis of 17 cohort studies found
that individuals with prehypertension (120–139 mmHg for systolic blood pressure (SBP) or
80–89 mmHg for diastolic blood pressure (DBP)) had a 43% higher risk of CVD compared
with those with an optimal blood pressure [16]. On the other hand, the 2011 US National
Heart, Lung, and Blood Institute guideline pointed out that it is important to screen lipid
levels in children and adolescents since even normal to mild elevations in lipid levels
are related to the risk of chronic disease, such as obesity and metabolic syndrome [17].
However, to date, evidence for borderline dyslipidemia risk factors was still limited. In
this study, we are the first to demonstrate that environmental Hg exposure may result in
borderline hypercholesterolemia among adolescents.

Only a few studies reported the association between Hg exposure and the risk of
overt hypercholesterolemia in children and adolescents. In line with our results, a Ko-
rean study which used data from the KNHANES 2010–2013 and 2016, also observed a
similar positive association between whole-blood Hg concentration and the prevalence of
overt hypercholesterolemia [31]. Boys, but not girls, aged 10–19 years had a significant
higher prevalence of overt hypercholesterolemia (TC ≥ 200 mg/dL) with the increment
of blood Hg concentration (OR (95% CI) for 4th quartile vs. 1st quartile: 3.72 (1.03–13.4)).
Although the data we used was the same as that in the Korean study, as emphasized
above, we paid more attention to the prevalence of borderline hypercholesterolemia (TC
170–199 mg/dL) resulted by environmental Hg exposure in adolescents. Further investi-
gation is needed to clarify the Hg toxicity on the risk of borderline dyslipidemia among
children and adolescents.

For the association between Hg exposure and the risk of overt hyper-LDL choles-
terolemia in adolescents, there existed inconsistent results between the current and previous
studies. Two cross-sectional studies based on the US NHANES data have investigated
the association in children and adolescents aged 6–19 years and 12–19 years, respec-
tively [14,15]. Both studies reported a null association between Hg exposure and the
prevalence of overt hyper-LDL cholesterolemia, although a strong positive association
among boys was found in this study. Findings on the association between environmental
Hg exposure and the risk of overt hyper-LDL cholesterolemia need to be replicated in
further prospective cohort studies.

The adverse effects of Hg on lipid and lipoprotein levels might be linked to several
mechanisms. A well-established hypothesis of Hg toxicity is oxidative stress (OS) induc-
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tion, which is implicated in CVD [32]. Paraoxonase 1 (PON1), an enzyme exclusively
located on HDL-cholesterol, acts as an antioxidant agent [33]. A US cohort study with
at least 3 years of follow-up reported that serum PON1 was inversely related to total
plasma oxidized fatty acid levels, and was associated with a lower incident risk of major
adverse cardiovascular events (MACE), including nonfatal and fatal myocardial infarction,
nonfatal and fatal stroke, and all-cause mortality, suggesting an atheroprotective effect of
PON1 [34]. Evidence from experimental and epidemiologic studies has suggested that Hg
exposure may inactivate PON1 and lead to lipid peroxidation [35,36]. In a cross-sectional
study, a total of 896 Inuit adults, who are highly exposed to methyl mercury (MeHg) from
a seafood-based diet, were enrolled from Nunavik, Canada [37]. After being adjusted
for potential confounders, an inverse association between whole-blood Hg concentration
and plasma PON1 activity was observed. Additionally, chronic Hg exposure may also
inhibit glutathione peroxidase activity, another antioxidant enzyme, and increase oxidative
damage [38]. Another possible mechanism is adipogenesis dysregulation [36]. Peroxisome
proliferator-activated receptors (PPARs), including PPARα, PPARδ, and PPARγ, are a
subgroup of nuclear hormone receptors which play an important role in lipid metabolism
and inflammation [39]. For example, PPARα regulates the expression of genes involved
in lipoprotein metabolism enhancing the clearance of lipids through the liver [40]. Hg
exposure may affect lipid metabolism through the down-regulation of the mRNA expres-
sion of PPARs in adipocytes. In an in vivo study, a significant decrease in PPARα and
PPARγ mRNA expression levels in adipose tissue was observed after 10 days of exposure
to mercuric chloride (HgCl2) in high-fat diet-induced obesity in mice [41]. In this study,
we observed positive associations between blood Hg concentration and the prevalence of
hypercholesterolemia and hyper-LDL cholesterolemia in boys, but not in girls. The sex
differences of Hg exposure on dyslipidemia could be attributed to the protective effect
of estrogen. Previous studies have reported that estrogen acts as a scavenger of reactive
oxygen species (ROS) [42]. Therefore, males may be more sensitive to oxidative stress
than females, especially premenopausal females, which further results in an impaired lipid
metabolism [43]. Furthermore, the sex differences may also link to PPARs. An in vivo
study reported that male rats have higher levels of hepatic PPARα mRNA and protein than
female rats [44]. Additionally, estrogen may have a reverse effect on PPARα target gene
expression to maintain hepatic PPARα levels [45]. Further studies are needed to elucidate
the mechanism of Hg on the development of dyslipidemia.

To our best knowledge, this study is the first study to identify the association between
environmental Hg exposure and the prevalence of borderline dyslipidemia in adolescents.
Moreover, the nationally representative data from the KNHANES give strength to the
external validity of our results. However, there are several limitations to this study. First,
findings from the cross-sectional study may be limited to interpret a causal relationship
between blood Hg concentration and the risk of dyslipidemia in adolescents. Second, we
could not adjust for daily Hg exposure from dental amalgam status [46]. Furthermore,
dietary intake of fish and shellfish, another main routine of Hg exposure [47], may remain
as a residual confounder, since a food frequency questionnaire (FFQ) was not carried out
among adolescents in the KNHANES 2012–2013 and 2016. Third, we could not distinguish
the specific species of Hg exposure, such as MeHg. However, a previous study has shown
a similar effect of MeHg exposure on the risk of dyslipidemia [15]. Fourth, the subgroup
analysis by BMI, physical activity, or other factors was not performed due to the small
sample size. Hence, findings in this study need to be replicated in a larger study.

The findings in this study show that blood Hg concentration in adolescents are as-
sociated with borderline dyslipidemia. The GM of blood Hg concentration from 2010
to 2016 decreased among Korean adolescents (i.e., from 2.22 µg/L to 1.75 µg/L) [48–52].
However, blood Hg concentrations in this study (1.84 µg/L (median)) were still higher than
those reported in other countries (e.g., US adolescents aged 12–19 years: 0.68 µg/L [arith-
metic mean], Swedish adolescents aged 12, 15, and 18 years: 0.72 µg/L (median)) [53,54],
although it was much lower than 5.00 µg/L, the reference level of whole-blood Hg concen-
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trations for adolescents derived by the German Human Biomonitoring Commission [55].
Such a situation on Hg exposure does not only apply to Korea, but also to China (1.10 µg/L
(GM)) and Japan (4.55 µg/L (GM)), etc. [56,57]. In other words, environmental Hg exposure
may partly explain the increased prevalence of dyslipidemia among adolescents in East
Asia. Recently, for a reduction of the risk of CVD, it has been emphasized that borderline
dyslipidemia should be managed more strictly from early-childhood [58]. In this perspec-
tive, the current study suggests that Hg exposure should be more tightly controlled and the
reference level of blood Hg concentrations should probably be lower than the previously
recommended value [55].

5. Conclusions

In conclusion, blood Hg concentration is associated with the prevalence of borderline
hypercholesterolemia among adolescents aged 10–18 years in Korea. This finding indicates
that public health actions should be taken to reduce exposure to Hg for the prevention of
dyslipidemia from early-childhood.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxics9100242/s1, Table S1: Classification of lipid and lipoprotein levels (mg/dL) in adoles-
cents, Table S2: Baseline characteristics of the study participants according to TG and HDL-cholesterol
levels, Table S3: Covariates according to blood Hg distribution, Table S4: Associations between blood
Hg concentration and prevalence of hypercholesterolemia and hyper-LDL cholesterolemia according
to sex, Table S5: Associations between blood Hg concentration and prevalence of overt hypercholes-
terolemia and hyper-LDL cholesterolemia according to sex.
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