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Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associ-

ated system (Cas) is widely used for mediating the knock-in of foreign DNA into the

genomes of various organisms. Here, we report a process of CRISPR/Cas-mediated knock-

in via non-homologous end joining by the direct injection of Cas9/gRNA ribonucleoproteins

(RNPs) in the crustacean Daphnia magna, which is a model organism for studies on toxicol-

ogy, ecology, and evolution. First, we confirmed the cleavage activity of Cas9 RNPs com-

prising purified Cas9 proteins and gRNAs in D. magna. We used a gRNA that targets exon

10 of the eyeless gene. Cas9 proteins were incubated with the gRNAs and the resulting

Cas9 RNPs were injected into D. magna eggs, which led to a typical phenotype of the eye-

less mutant, i.e., eye deformity. The somatic and heritable mutagenesis efficiencies were up

to 96% and 40%, respectively. Second, we tested the CRISPR/Cas-mediated knock-in of a

plasmid by the injection of Cas9 RNPs. The donor DNA plasmid harboring the fluorescent

reporter gene was designed to contain the gRNA recognition site. The co-injection of Cas9

RNPs together with the donor DNAs resulted in generation of one founder animal that pro-

duced fluorescent progenies. This transgenic Daphnia had donor DNA at the targeted geno-

mic site, which suggested the concurrent cleavage of the injected plasmid DNA and

genomic DNA. Owing to its simplicity and ease of experimental design, we suggest that the

CRISPR/Cas-mediated knock-in method represents a promising tool for studying functional

genomics in D. magna.

Introduction

Daphnia, a genus of water fleas, are small planktonic crustaceans found in freshwater habitats.

They have long been used as a model for studies on evolution and ecology [1,2], since they

occupy an important position in the aquatic food chain and show a high degree of phenotypic

plasticity. Daphnia also serve as a model for understanding reproductive strategies because

they produce parthenogenetic eggs under favorable environmental conditions, but produce
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sexual eggs, called resting eggs, under adverse environmental conditions [3–5]. Moreover,

Daphnia are suitable for laboratory experimentation because they are easy to culture and

observe, given their high fecundity and transparent body. Sequence databases including

expressed sequence tags and whole genomes are available for two Daphnia species (D. magna
[6,7] and D. pulex [8]), and their transcriptomes have also been sequenced [9,10]. These recent

advances in Daphnia genomics have additionally rendered them useful as model organisms

for studies on ecological and toxicological genomics. Several methods for the functional analy-

sis of genes, such as RNA interference [11], overexpression [12], and plasmid integration [13],

have been developed for Daphnia.

Artificial nucleases can induce site-specific double strand breaks (DSBs) in a genome, aid-

ing the knock-out and knock-in of target genes [14,15]. They can be classified into two groups:

i) Custom-designed artificial nucleases and ii) RNA-guided nucleases. The custom-designed

nucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucle-

ases (TALENs) consist of a customizable DNA-binding domain and a FokI nuclease domain

[16]. The dimerization of these domains is required for creating DSBs at the target site [17].

RNA-guided nucleases are based on a bacterial immune system called the clustered regularly

interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas), which

needs two components, namely custom single guide RNAs and Cas9 nucleases [18]. The single

guide RNAs direct the Cas9 nucleases to the target site to create DSBs. After the cleavage of

DNA, the break is repaired by either non-homologous end joining (NHEJ) or homologous

recombination (HR). In knock-out experiments, NHEJ repair incorporates random insertions

or deletions (indels) at the target site. In knock-in experiments, NHEJ allows a long exogenous

DNA fragment to be integrated into the cleaved site, although the junction between the inte-

grated DNA and the host genome often contains indels [19–21]. HR allows the precise integra-

tion of foreign genes into the host genome; however, in contrast to NHEJ-mediated knock-in,

the maximum possible length of the integrated sequence is limited. The experimental design of

CRISPR/Cas is simpler and rapid than that of ZFNs or TALENs [15]. Therefore, CRISPR/Cas

is more widely used for genome editing both in model and non-model organisms [22–24].

We previously established a CRISPR/Cas-mediated knock-out method in D. magna [25].

We utilized the eyeless (ey) gene as a marker gene for targeted mutagenesis because the

impairment of the D. magna eyeless (Dma-ey) gene results in a clearly discernible deformity of

the compound eye [25]. To target the homeobox region, we used two gRNAs, which were

designed to bind the sense strand from exon 8 and the anti-sense strand from exon 10, respec-

tively [25]. We co-injected the two gRNAs together with an in vitro-synthesized Cas9 mRNA

into parthenogenetic female eggs. This approach introduced indels in the target gene, thereby

deforming the compound eye. However, this method had two disadvantages: (1) Cas9 mRNA

preparation is laborious and time-consuming, and (2) the heritable mutagenesis efficiency of

8% was 2.5 times lower compared to the TALEN-based method, which cleaves exon 10 of

Dma-ey [26]. Thus, for knock-in experiments, we used the TALEN-based method to introduce

foreign DNA into the Dma-ey locus via HR and NHEJ [27,28].

Recently, several groups have reported that the direct injection of Cas9 ribonucleoproteins

(RNPs) comprising purified Cas9 proteins and gRNAs, rather than the co-injection of Cas9
mRNAs and gRNAs, increases the knock-out efficiency in various hosts including nematodes,

mice, and mammalian cells [29–31]. In addition, Cas9 RNPs are more efficient in integrating

exogenous DNA into the genomes of human cells and nematodes [32,33]. Therefore, we

hypothesized that Cas9 RNP injection may allow us to knock-in foreign DNA sequences into

the Daphnia genome. To test this hypothesis, we first confirmed the cleavage activity of the

Dma-ey-targeting Cas9 RNPs. Second, using these Cas9 RNPs, we successfully inserted plas-

mid DNA into the Dma-ey locus. Owing to its high efficiency, simplicity, and ease of design,

CRISPR/Cas-mediated knock-in via NHEJ in Daphnia magna
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the CRISPR/Cas mediated knock-in method can accelerate gene function analysis in D.

magna.

Results

Knock-out of the Dma-ey gene by the injection of Cas9 RNPs

We examined the target cleavage activity induced by the injection of Cas9 RNPs into eggs. The

Dma-ey gene was chosen as a target of Cas9 RNPs. For the preparation of the Dma-ey-targeting

Cas9 RNPs, we purified Cas9 proteins as described previously [34] and used two different

Dma-ey gRNAs named gRNA-1 and gRNA-2, which had been used previously in knock-out

experiments using Cas9 mRNAs (Fig 1) [25]. The gRNA-1 and gRNA-2 sequences target

exons 8 and 10 of the Dma-ey gene, respectively (Fig 1). The biallelic mutation of the Dma-ey
gene results in a deformation of the compound eye [25].

We first incubated 5 μM gRNA-1 with 2.5 μM Cas9 protein to generate Cas9 RNPs and

injected them into 74 parthenogenetic female eggs (Table 1). At the first instar juvenile stage,

70% of the injected embryos survived. Of these, 83% showed deformed eye phenotypes

(Table 1, Fig 2), suggesting that the injection of Cas9 RNPs led to somatic mutations. To calcu-

late the efficiency of inducing heritable mutations, we counted the number of founder G0 ani-

mals that produced G1 progenies with deformed eyes. Of the surviving adults, 15% were

founder G0 animals (Table 1). Second, we injected the same concentration of Cas9/gRNA-2

complex. The induction efficiencies of somatic and heritable mutations increased to 96% and

40%, which are two and five times higher than those achieved by the co-injection of Cas9
mRNA together with gRNA-1 and gRNA-2 [25]. However, at the adult stage, the survival rate

decreased to 30%. Therefore, we reduced the concentrations of gRNA and Cas9 protein by 2.5

times, which increased the survival rate to 57%. The heritable mutagenesis efficiency was

approximately half of that induced by the co-injection of 2.5 μM Cas9 protein together with

Fig 1. Design of gRNAs for the knock-out at the Dma-ey locus. This figure was drawn based on a previously published schematic illustration [25].

The arrowheads indicate the recognition sites of gRNA-1 and gRNA-2. An arrow indicates the target site of TALEN as previously reported [26].

https://doi.org/10.1371/journal.pone.0186112.g001

CRISPR/Cas-mediated knock-in via NHEJ in Daphnia magna
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5 μM gRNA-2, but it was still 1.4 times higher than that achieved by gRNA-1 injection

(Table 1). These results demonstrated that the injection of Cas9 RNPs can lead to the highly

efficient cleavage of a target site.

Germline transmission of the reporter plasmid by the injection of Cas9

RNPs

To test whether the injection of Cas9 RNPs can achieve the knock-in of plasmid DNA, we

used the same Dma-ey-targeting gRNA-2 that had been used in the knock-out experiment (Fig

1) because it led to a higher efficiency of heritable mutagenesis than gRNA-1 (Table 1). To con-

firm the genomic integration and germline transmission of foreign DNA, we constructed a

bicistronic fluorescent reporter plasmid encoding mCherry and a fusion protein comprising

histone 2B (H2B) connected to green fluorescent protein, which were both linked via the self-

cleaving 2A peptide from the Thosea asigna virus (T2A) (Fig 3). We used the D. magna ef1a1
promoter/enhancer, which drives expression ubiquitously [13]. We inserted the gRNA-2 rec-

ognition site upstream from the ef1a1 promoter/enhancer because the concurrent cleavage of

genomic and plasmid DNA is known to increase the efficiency of integrating donor plasmid

DNA into the genome [21].

We co-injected 50 ng/μL donor plasmid DNA (the same concentration as used in the

TALEN-mediated knock-in experiment [28]) together with Cas9 RNPs into D. magna eggs. To

increase the survival rate, we used 1 μM Cas9 and 2.5 μM gRNAs (Table 1). Ninety-one adults

survived out 203 injected eggs (45% survival, Table 2). Of these, 58 showed a deformed eye phe-

notype. One founder produced juveniles showing both red and green fluorescence, suggesting

the successful germline transmission of the reporter plasmid (Table 2, Fig 4). This line also

showed ubiquitous red and green fluorescence during the embryonic stages (Fig 4A–4C). How-

ever, in adults, both the red and green fluorescence became localized in the matured ovaries

(Fig 4D–4I). We cultured this potential transgenic line and performed a genotyping analysis.

NHEJ-mediated knock-in of the reporter plasmid

To confirm whether the donor plasmid DNA was inserted into the target site in the Dma-ey
locus in the potentially transgenic D. magna line, the 50 and 30 junctions between the transgene

and its surrounding genomic regions were amplified by polymerase chain reaction (PCR),

cloned, and subsequently sequenced (Fig 5A and 5B, fragments A and C, S1 Fig). The 30 junc-

tion was mapped to the target site in exon 10 and contained a 17-bp deletion and a 16-bp

insertion, suggesting that NHEJ repair occurred at this site (Fig 5A and 5C). The 50 junction

was located in exon 8 and containing a 20-bp deletion and a 20-bp insertion (Fig 5C). These

indels seemed to be larger than those introduced by TALEN-mediated knock-in [28]. The

cleaved genome was ligated to mCherry and the 30 untranslated region (UTR) sequences from

the donor plasmid at the 50 and 30 junctions, respectively. Finally, the center of the integrated

DNA was amplified by PCR and sequenced (Fig 5B, fragment B, S1 Fig). The sequences of the

three PCR fragments were assembled into one unique sequence (S1 Fig) and compared with

Table 1. Summary of knock-out experiments.

Concentration Embryos Juveniles Adults

gRNA Cas9 protein Injected Surviving Deformed eye Surviving Founder lines

#1 5 μM 2.5 μM 74 52/74 (70%) 43/52 (83%) 27/52 (52%) 4/27 (15%)

#2 5 μM 2.5 μM 82 45/82 (55%) 43/45 (96%) 25/82 (30%) 10/25 (40%)

2 μM 1 μM 67 40/67 (60%) 26/40 (65%) 38/67 (57%) 8/38 (21%)

https://doi.org/10.1371/journal.pone.0186112.t001

CRISPR/Cas-mediated knock-in via NHEJ in Daphnia magna

PLOS ONE | https://doi.org/10.1371/journal.pone.0186112 October 18, 2017 4 / 12

https://doi.org/10.1371/journal.pone.0186112.t001
https://doi.org/10.1371/journal.pone.0186112


the donor plasmid sequence (S2 Fig). This revealed that the total length of the integrated trans-

genes was 13968 bp and three donor plasmids were tandemly integrated in reverse orientation

at the target site. Except for the linearized plasmid in the center, the two plasmids at either end

were abruptly terminated, showing large deletions. The Cas9 target sites between the inte-

grated donor plasmids did not contain any mutation (S3 Fig). These results showed that the

injection of Cas9 RNPs could lead to the knock-in of a plasmid via NHEJ.

Discussion

We report that using the CRISPR/Cas system allowed us to knock-in a plasmid via NHEJ in D.

magna. We previously showed that the co-injection of Cas9 mRNA together with two eyeless-
targeting gRNAs (gRNA-1 and gRNA-2) led to the cleavage of a target locus and the introduc-

tion of indel mutations. Here, for the knock-in of a plasmid, the gRNA-2 that recognizes exon

10 of Dma-ey was mixed with Cas9 protein and the resulting Cas9 RNPs were co-injected

together with a reporter plasmid that contains the gRNA-2 recognition site. Using this

approach, we were able to successfully knock-in a reporter plasmid at the target site. Thus, we

demonstrated that the CRISPR/Cas system can be applied not only for the knock-out but also

for the knock-in of a gene of interest in D. magna.

In this study, we first tested the mutagenesis efficiency by the injection of Cas9 RNPs.

When we used the Dma-ey-targeting gRNA-2, the somatic and heritable mutagenesis efficien-

cies were up to 96% and 40%, which are two and five times higher than those achieved by the

co-injection of Cas9 mRNA together with gRNA-1 and gRNA-2 [25], even though a previous

report suggested that the co-injection of multiple gRNAs increased the mutation efficiency

[35]. This result suggests that the injection of Cas9 RNPs increases the genome-editing effi-

ciency. The lack of a requirement for translation and the increased stability of gRNA in RNPs

Fig 2. Phenotype of Dma-ey knock-out. The left image shows a normal compound eye (ce) in the wild type

(WT) strain. The right image shows the Dma-ey knock-out phenotype with a deformed compound eye. The

scale bar indicates 100 μm.

https://doi.org/10.1371/journal.pone.0186112.g002

Fig 3. Structure of a donor plasmid for the knock-in at the Dma-ey locus. The Thosea asigna virus 2A (T2A) peptide connected the mCherry marker

with a fusion protein comprising histone 2B (H2B) connected to green fluorescent protein. The ef1a1 promoter/enhancer was inserted upstream from the

T2A reporter cassette. The Cas9 target site (gRNA-2 recognition site) was derived from Dma-ey exon 10.

https://doi.org/10.1371/journal.pone.0186112.g003

CRISPR/Cas-mediated knock-in via NHEJ in Daphnia magna
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might enhance target cleavage [29–31,36]. Additionally, this method allows one to skip the

laborious and time-consuming steps of preparing capped and polyadenylated mRNAs. We

found that a higher concentration of Cas9 RNPs achieved a higher mutagenesis efficiency, but

it decreased the survival rate of the injected embryos, probably due to having an off-target

activity, and this phenomenon forced us to use a lower concentration of Cas9 RNPs for the

knock-in experiments. As was reported recently, the utilization of chemically synthesized

gRNAs could reduce the rate of off-target cleavage [37]. Given the high efficiency and simplic-

ity of genome editing with Cas9 protein, the use of this method can significantly advance

future studies on gene manipulation in D. magna.

In the knock-in experiment, the 30 junction of the transgene was located at the Cas9 target

site of the genome, which contained the protospacer adjacent motif sequence, demonstrating

that the injected Cas9 RNPs cleaved the genome and NHEJ repair occurred at the target site

(Fig 4). The 50 and 30 ends of the transgene lacked Cas9-target sites and contained a large dele-

tion of the donor plasmid. In contrast, in the TALEN-mediated knock-in of a donor plasmid

via NHEJ, we previously found that the 50 and 30 junctions had no indels or only small indels

in all of the three transgenic D. magna lines that we generated [28]. This suggests that TALEN

may achieve a more precise integration of the donor plasmid than CRISPR/Cas.

In the present study, the genotyping results indicated that the three plasmids were ligated at

the Cas9 target site and were tandemly integrated into the Dma-ey locus. These results suggest

that after the plasmid DNAs were injected into D. magna, they were cleaved by Cas9 at their target

site, concatemerized, and digested by endogenous endonucleases in a sequence-independent

manner, and the resulting concatemer was introduced into the Cas9 target site in the genome.

Concatemeric plasmid DNA insertion has previously been found in random integration [13] and

TALEN-mediated knock-in via NHEJ in Daphnia [28], suggesting that this type of plasmid inser-

tion may be a common feature of knock-in via NHEJ in this species as well as some other organ-

isms [21,28]. We also speculate that the concatemeric insertion might induce an unexpected effect

of silencing the transgene in adults as reported in Arabidopsis [38], Drosophila [39], and mice [40].

We succeeded in establishing one transgenic line by the Cas9 RNPs injection method. The

target site, which is located in exon 10 of the Dma-ey gene, was also used in the NHEJ-medi-

ated knock-in via TALEN. The efficiency of genomic integration by Cas9 was approximately

1%, although we need to increase the number of injected eggs to further evaluate this effi-

ciency. Still, this relatively low efficiency was consistent with that of TALEN-mediated knock-

in (around 2–3%) [27,28]. These low knock-in efficiencies are possibly due to the nature of the

Dma-ey gene, which is lethal to D. magna embryos when both alleles are mutated [25]. Given

their abilities to mediate genetic knock-out, Cas9 RNPs and TALEN mRNAs might simulta-

neously introduce indel mutations in one allele while integrating plasmid DNA into the other

allele, causing the death of the treated embryos. This suggests that we need to evaluate other

loci to determine whether they may be more suitable for gene knock-in in D. magna.

In summary, the injection of Cas9 RNPs into D. magna eggs allowed NHEJ-mediated

knock-in. This novel method, together with the technique of CRISPR/Cas-mediated knock-

Table 2. Summary of knock-in experiment.

Total number

Injected eggs 203

Adults 91/203 (45%)

Deformed eye 58/91 (64%)

Germline transmission 1 (1%)

https://doi.org/10.1371/journal.pone.0186112.t002
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out, will enable us to analyze the link between genetic information and phenotypes in the

model organism Daphnia.

Materials and methods

D. magna strain and culture conditions

The D. magna strain (NIES clone) was obtained from the National Institute for Environmental

Studies (NIES; Tsukuba, Japan) and cultured under laboratory conditions for multiple genera-

tions as described previously [41] using Aachener Daphnien culture medium [42].

Fig 4. Phenotype of transgenic D. magna. The top row shows embryos obtained from wild type (WT) and transgenic (TG) lines. The middle and bottom

rows show mature TG and WT D. magna, respectively. The images in each column were taken from the same individual under brightfield microscopy

(left), with an mCherry filter (middle), and with a GFP2 filter (right). The regions surrounded by the white dashed lines are ovaries. The TG D. magna

showed both red and green fluorescence. The mCherry fluorescence seen in the gut of the WT individuals is due to the autofluorescence of algae

(chlorophyll has a fluorescence spectrum similar to that of mCherry and the gut is full of ingested algae). Under the GFP2 filter, which is a long pass filter

with a peak transmission of 510 nm for emission, yellow autofluorescence could sometimes be detected, which was probably dependent on the gut

contents as observed in the WT animals.

https://doi.org/10.1371/journal.pone.0186112.g004

CRISPR/Cas-mediated knock-in via NHEJ in Daphnia magna
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Generation of donor plasmids

To generate the donor plasmid, we used the In-Fusion1 HD Cloning Kit (Clontech Laborato-

ries, Inc., CA, USA) to clone the mCherry fragment, which contained the T2A sequence (50-
GAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTGGAGGAAAATCCCGGGCCC-30) at the

30 end, upstream from the enhanced green fluorescent protein-fused D. magna H2B gene in

pCS-EF1α1::H2B-GFP [13]. We amplified the Cas9 target site using Daphnia genomic DNA as

template and inserted it upstream from the ef1a1 promoter/enhancer region. The primer

sequences for the amplification of the Cas9 target site were as follows: ey2 forward primer (50-
ACAGGTTTGGTTCAGTAACCG-30), ey2 reverse primer (50-CTGCTGCTGGGGATTGAC-30).

In vitro RNA synthesis

The gRNA expression vector pDR274-Dma-ey was generated as described previously [25]. To

synthesize gRNAs, pDR274-Dma-ey vectors were digested using DraI and purified by phenol/

chloroform extraction. The digested DNA fragments were used for in vitro transcription with

Fig 5. Characterization of the transgene structure. (a) Illustration of the endogenous locus where donor DNA was integrated. rev2, fwd, 1F, 3R,

10F, and mid_R indicate the positions of primers used for the amplification of the regions A, B, and C by polymerase chain reaction to determine the

structure of the integrated donor DNA. The pink, orange, green, grey, and blue boxes and the grey arrows indicate the mCherry coding region, T2A

region, H2B-GFP coding region, ef1a1 30 UTR, Cas9 target region, and ef1a1 promoter/enhancer region, respectively. (b) Polymerase chain

reaction to determine the transgene structure. The amplified genomic DNA fragments were resolved by agarose gel electrophoresis. (c) The

sequences of the junction regions between the transgene and the surrounding genome. The target sites for gRNA are indicated by blue letters and

insertions are indicated by red letters. The protospacer adjacent motif sequence is underlined with red.

https://doi.org/10.1371/journal.pone.0186112.g005

CRISPR/Cas-mediated knock-in via NHEJ in Daphnia magna
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the mMessage mMachine1 T7 kit (Life Technologies, Carlsbad, CA, USA). The synthesized

RNAs were purified using mini Quick Spin1 RNA columns (Roche Diagnostics GmbH,

Mannheim, Germany), phenol/chloroform extraction, and ethanol precipitation and were

finally dissolved in DNase/RNase-free water.

Microinjection

We mixed in vitro synthesized RNA with Cas9 protein to make gRNA-Cas9 complexes. Cas9

protein was prepared as described previously [34]. The gRNA-Cas9 complexes were incubated

for 5 min at 37˚C and injected into wild type D. magna eggs, as described previously [11]. The

donor plasmids were mixed with the gRNA-Cas9 complexes before microinjection. In brief,

we collected eggs from adult daphniids immediately after ovulation and stored them in ice-

chilled M4 medium containing 80 mM sucrose (M4-sucrose). The injection volume was

approximately 0.2 nL. We transferred the successfully injected eggs to fresh M4-sucrose and

cultured them in a 96-well plate for 3 days at 23˚C.

Genomic DNA extraction and genotyping

For genomic DNA extraction, we homogenized a single daphniid using a Micro Smash homog-

enizer (TOMY, Tokyo, Japan) at 3,000 rpm for 1.5 min in 500 μL of lysis buffer (1.2% sodium

dodecyl sulfate, 60 mM Tris-HCl, 24 mM ethylenediaminetetraacetic acid, and 1.2 M NaCl, pH

7.5). After homogenization, we added 7.5 μL of 10 mg/mL proteinase K solution (Nacalai Tes-

que, Kyoto, Japan) and 1 μL of salmon sperm DNA (10 mg/mL, Invitrogen, Carlsbad, CA,

USA), and incubated the solution at 50˚C overnight. We purified genomic DNA with phenol/

chloroform and precipitated it with isopropanol. The pellet was washed with 70% ethanol and

then dissolved in 50 μL TE buffer. We amplified the target region by PCR with PrimeSTAR1

GXL DNA polymerase (Takara Bio, Shiga, Japan). To amplify the plasmid-genomic DNA junc-

tions (50 and 30 regions), we used the following primers: rev2 forward 50-CTGCTGCTGGGGAT
TGAC-30, 1F reverse 50-GATTTAGAGCTTGACGGGGAAA-30; 3R forward 50-AACAAGGCG
ATAAAAGCAACG-30, 10F reverse 50-GGGCAATGGCTAAATCTTTCA-30;mid_R forward 50-
ACCTTGAAGCGCATGAACTCC-30, and fwd reverse 50-CACCAAATCCGTTCATTGA -30.

Supporting information

S1 Fig. Full sequence of the three tandemly integrated donor DNAs. Gray-shaded nucleo-

tides indicate the ef1a1 promoter/enhancer region. Purple, gray, pink, orange, green, and blue

letters indicate Dma-ey and the ef1a1 30 UTR, mCherry coding region, T2A region, H2B-GFP

coding region, and Cas9 target region, respectively. Primers are indicated by bold type. Under-
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