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Abstract

The addicted phenotype is characterized as a long-lasting, chronically relapsing disorder that persists following long periods
of abstinence, suggesting that the underlying molecular changes are stable and endure for long periods even in the
absence of drug. Here, we investigated Transforming Growth Factor-Beta Type I receptor (TGF-b R1) expression in the
nucleus accumbens (NAc) following periods of withdrawal from cocaine self-administration (SA) and a sensitizing regimen
of non-contingent cocaine. Rats were exposed to either (i) repeated systemic injections (cocaine or saline), or (ii) self-
administration (cocaine or saline) and underwent a period of forced abstinence (either 1 or 7 days of drug cessation).
Withdrawal from cocaine self-administration resulted in an increase in TGF-b R1 protein expression in the NAc compared to
saline controls. This increase was specific for volitional cocaine intake as no change in expression was observed following a
sensitizing regimen of experimenter-administered cocaine. These findings implicate TGF-b signaling as a novel potential
therapeutic target for treating drug addiction.
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Introduction

Drug addiction is a chronic disorder represented by persistent

drug-seeking and reoccurring episodes of relapse [1]. Psychomotor

stimulant abuse and addiction leads to large economic and societal

burdens, yet to date, there is no effective intervention. While

recent reports have shed a great deal of insight into the

neurobiology of addiction, a more complete understanding of

how drug abuse leads to long-term behavioral, cellular, and

morphological plasticity is desperately needed in order to establish

a treatment for this disabling disease [1–6]. The neuroadaptions

that are initiated following drug exposure and that remain stable

over periods of drug abstinence are of particular interest, as these

changes occur in the absence of the drug itself, and may confer a

neurobiological mechanism that leads to long-term behavioral

changes such as craving and relapse [7].

Time-dependent adaptations in synaptic connectivity, glutama-

tergic and dopaminergic receptor expression and signaling, and

neurotrophic levels have been reported following cessation of

cocaine treatment [8–17]. Transforming Growth Factor Beta

(TGF-b) is a signaling cascade that may be a prospective facilitator

of these long-term changes in drug-induced plasticity. TGF-b
signaling cascades are widely distributed throughout the central

nervous system and have a variety of cellular functions in the adult

organism, including apoptosis, cellular homeostasis and tissue

repair [18]. The binding of TGF-b to the TGF-b Type I Receptor

(TGF-b R1) initiates signal propagation through two mechanisms:

a canonical mechanism via SMAD proteins, and a non-canonical

SMAD-independent mechanism via activation of extracellular

signal-related kinases (ERKs), and signaling cascades associated

with actin dynamics such as GTPases [18].

TGF-b R1 and downstream signaling cascades have been

implicated in numerous psychiatric disorders, including diseases

that are largely comorbid with addiction, such as depression and

anxiety [19–22]. Moreover, TGF-b has been shown to have a role

in mediating adult neurogenesis, a neural mechanism shown to be

involved in mediating drug-taking and relapse [23–25]. The

involvement of TGF-b signaling in mediating neural plasticity

marks this pathway as a potential regulator of cellular changes in

response to drug taking. To this end, we have investigated changes

in TGF-b signaling using two models of drug exposure over

varying periods of drug abstinence.

Methods

Subjects
Sprague Dawley rats weighing between 300–400 g at the time

of testing were used in the experiments. All rats were undisturbed

for two days upon arrival to the colony room to allow for

habituation, and housed on a 12 hr light-dark cycle with ad libitum

access to food and water. Rats were housed two per cage for the

experimenter-administered cocaine experiments. For the self-
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administration (SA) experiments, rats were singly housed following

surgery and for the duration of the experiment in order to protect

the catheter/harness assembly. Testing took place seven days/

week during the rats’ dark phase of the light-dark cycle. This study

was conducted in accordance with the guidelines set up by the

Institutional Animal Care and Use Committee of the State

University of New York at Buffalo.

Locomotor Apparatus
Locomotor activity was recorded by an infrared motion-sensor

system (AccuScan Instruments) fitted outside plastic cages

(40640630 cm) containing a thin layer of corncob bedding that

were cleaned between each test session. The Fusion activity-

monitoring system software monitors infrared beam breaks at a

frequency of 0.01 sec. The interruption of any beam not

interrupted during the previous sample was interpreted as an

activity score.

Self-administration Test Chambers
Sixteen standard experimental test chambers (MED Associates,

Inc.) equipped with two snout-poke holes located on one wall of

the test chamber monitored with infrared detectors were used for

SA experiments. Two stimulus lights were mounted above the

snout-poke holes, and a houselight was mounted in the middle of

the back wall of the test chamber. All test chambers were housed

in sound attenuating chambers, which mitigate all external light

sources and sounds, including sounds from the syringe infusion

pumps. Test chambers were computer controlled through a MED

Associates interface with MED-PC with a temporal resolution of

0.01 sec.

Drug
(2)-Cocaine hydrochloride (gifted by NIDA) was dissolved in

sterile 0.9% saline. For the experimenter-administered cocaine

experiment, a constant injection volume of 1.0 ml/kg was used.

Saline or 10.0 mg/kg cocaine was injected intraperitoneally (i.p.)

immediately prior to the start of each session in the home cage or

in locomotor chamber. For SA experiments, cocaine solutions

(4.5 mg/ml) made on a weekly basis were delivered via a syringe

pump. Pump durations were adjusted according to body weight on

a daily basis in order to deliver the correct dose of drug (1.0 mg/

kg/infusion cocaine).

Jugular Catheterization and Patency Test
Rats were implanted with chronic indwelling jugular catheters

and allowed 7 days to recover following surgery as previously

described [26,27]. Catheters were flushed daily with 0.2 ml

solution of enrofloxacin (4 mg/ml) mixed in a heparinized saline

solution (50 IU/ml in 0.9% sterile saline) to preserve catheter

patency. At the end of behavioral testing, each animal received an

intravenous (IV) infusion of ketamine hydrochloride (0.5 mg/kg in

0.05 ml saline) and the behavioral response was observed to verify

catheter patency. Loss of muscle tone and righting reflexes served

as behavioral indicators of patency. Only rats with patent catheters

were used in data analysis.

Self-administration
One week after jugular catheter surgery, the rats were assigned

to self-administer either 1.0 mg/kg/inf cocaine or saline. Rats

were tested for SA over 10 test sessions, during which responses to

the active snout-poke resulted in IV injections of cocaine (or saline)

according to a Fixed Ratio 1 (FR1) schedule of reinforcement

followed by a 30 sec time-out period. Infusions were accompanied

by a 5 sec illumination of the stimulus light above the active snout-

poke hole and the houselight was extinguished for the duration of

the time-out period. Snout-poke responses to the inactive

alternative resulted in no programmed consequences. Session

durations were terminated after either a 2-hr duration or 20

infusions had been earned (cumulative dose 20 mg/kg), whichever

occurred first. Following testing, catheters were flushed and rats

were returned to the colony room. The criterion for acquisition of

cocaine SA was an average of 10 infusions per day during the 10-

session cocaine test phase.

Withdrawal
Following SA, rats were counterbalanced according to SA

performance and assigned to one of two withdrawal time points (1

or 7 days). In the 1-day withdrawal group (cocaine, n = 7; saline,

n = 6), brains were harvested 24 hrs after the last day of SA testing.

Rats were sacrificed by rapid decapitation, brains were removed

and sliced into 1 mm thick sections using a brain matrix (Braintree

Scientific), and 2 mm diameter tissue punches from the nucleus

accumbens (NAc) were collected and rapidly frozen on dry ice. In

the 7-day withdrawal group (cocaine, n = 8; saline, n = 7), rats

were returned to their home cages in the colony room and left

undisturbed for one week, following which brains were removed

and NAc tissue punches were collected in an identical manner.

Locomotor Response to Experimenter-administered
Cocaine

In order to control for any basal differences in motor responses,

rats were tested for locomotor response to novelty (1 hr duration

using the Accuscan Monitoring system). Rats were then counter-

balanced according to the locomotor scores (data not shown) and

were assigned to receive seven daily i.p. injections of either 10 mg/

kg cocaine or saline. Injections occurred in the test room on days

1, 3, 5 & 7 and animals were placed in the locomotor chambers for

1 hr. Injections on days 2, 4 & 6 occurred in the home cage

[28,29]. Following the last day of injections, rats were returned to

the colony room and remained undisturbed in their home cages.

In the 1-day withdrawal group (cocaine, n = 7; saline, n = 8),

brains were removed and NAc tissue punches collected 24 hrs

after the last injection using the same procedures as described for

the SA experiments. In the 7-day withdrawal group (cocaine,

n = 10; saline, n = 10), rats were left undisturbed in the colony

room for one week, following which brains were removed and

NAc tissue punches were collected in an identical manner.

Western Blot Quantification of TGF-b R1
Protein expression levels of TGF-b R1 were analyzed by

Western blotting as previously described [30,31]. Briefly, frozen

NAc tissue punches from each rat were homogenized in 30 ml of

homogenization buffer containing 320 mM sucrose, 5 mM

HEPES buffer, 1% SDS, phosphatase inhibitor cocktails I and II

(Sigma), and protease inhibitors (Roche). Protein concentrations

were determined, and a total of 30 mg of protein was loaded onto

10% Tris-SDS polyacrylamide gels for electrophoresis fraction-

ation. Proteins were transferred to nitrocellulose membranes,

blocked with 5% non-fat milk, and incubated overnight at 4uC
with primary antibodies (anti-rabbit TGF-b Receptor I, Cell

Signaling, 1:500; anti-mouse b-actin, Cell Signaling, 1:10,000) in

Odyssey blocking buffer. After thorough washing with 0.1%

Tween-20 in phosphate-buffered saline, membranes were incu-

bated with IRDye secondary antibodies (1:5000; Li-Cor) dissolved

in Odyssey blocking buffer for 1 hr at room temperature. The

blots were imaged with the Odyssey Infrared Imaging system (Li-
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Cor) and quantified by densitometry using NIH Image J. The

amount of protein blotted onto each lane was normalized to levels

of b-actin.

Data Analysis
Locomotor activity during the experimenter-administered

cocaine experiment, and performance during SA were analyzed

using a two-factor within-subject Analyses of Variance (ANOVAs)

with the between-session variable as drug group (cocaine/saline)

and the within-subject variable as time (day of injections or

sessions, respectively). The primary dependent measure of

locomotor activity used for statistical analysis was the total number

of beam breaks, and the primary dependent measure for SA

acquisition was the number of infusions. Western blot data was

compared using two-tailed Student’s t-tests. Statistical significance

was set at p,0.05 using SPSS statistical software. All data are

represented as the mean 6 SEM.

Results

Analysis of the results for the SA experiments showed that there

was a main effect of drug (cocaine/saline) [F(1,250) = 617.6;

p,0.0001] and a significant interaction between cocaine and

saline SA across the 10 days of testing [F(9,250) = 9.297; p,0.001].

Follow-up post hoc (Tukey’s) tests revealed that rats responding for

infusions of cocaine had a significantly greater number of infusions

than animals responding for saline on sessions 2–10, indicating

that rats acquired cocaine self-administration (Figure 1).

To examine if TGF-b receptor expression is regulated following

cocaine SA, protein levels of TGF-b R1 from whole cell lysates of

NAc tissue punches from rats with a history of cocaine and

following a period of 1 or 7 days of withdrawal were analyzed.

TGF-b R1 expression was unchanged following 1 day of

withdrawal from cocaine SA compared to the saline group

(Figure 2). In comparison, there was a significant increase in

TGF-b R1 expression in the NAc of animals with a history of

cocaine SA following a 7-day withdrawal period compared to

saline controls [t(13) = 3.269; p,0.001], indicating that TGF-b R1

expression is up-regulated following a period of drug cessation in a

time-dependent manner (Figure 2).

We next asked if this increase in TGF-b R1 expression occurred

following all cocaine regimens, and thus simply a result of drug

exposure. To this end, we used a regimen of cocaine known to

induce behavioral sensitization, which thought to have, at least in

part, common neural substrates that underlie addiction [32]. As

shown in Figure 3, animals receiving repeated systemic injections

of cocaine exhibited an increase in locomotor activity over time,

suggesting the development of behavioral sensitization. There was

a significant interaction between group (cocaine/saline) and day

[F(4,120) = 7.718; p,0.01], and a main effect of drug group

(cocaine/saline) [F(1,30) = 19.01; p,0.001]. Post-hoc tests showed

that rats in the cocaine group had significantly greater locomotor

activity on days 2–4 of injections compared to day 1 and

compared to saline (all p’s ,0.05), whereas no differences in

locomotor activity were observed across time in animals injected

with saline. Furthermore, post-hoc tests showed that animals

injected with cocaine exhibited significantly more locomotor

activity compared to rats receiving injections of saline at Days

2–4 of testing.

Levels of TGF-b R1 expression were examined following

experimenter-administered cocaine, and surprisingly, we found a

different expression pattern to that observed following SA.

Twenty-four hours following experimenter administered cocaine,

we found no change in TGF-b receptor protein expression

compared to saline treated [t(18) = 0.9140, p.0.05], which

remained unchanged after a 7-day withdrawal period

[t(13) = 0.2850, p.0.05] (Figure 4). Taken together, these data

indicate TGF-b R1 signaling is regulated only following

withdrawal from cocaine SA, but not experimenter-administered

cocaine.

Discussion

The results of this study identify the TGF-b receptor as a

previously unknown molecular adaption following periods of

cocaine cessation. The time-dependent regulation of TGF-b R1

occurred following active but not passive cocaine exposure, as the

increase in protein expression was observed only after withdrawal

from cocaine SA, and not after withdrawal from a sensitizing

regimen of cocaine.

Figure 1. Self-administration of cocaine or saline. This plot shows
the number of infusions earned across ten days of self-administration of
cocaine (1.0 mg/kg/inf) or saline. Closed circles represent animals self-
administering cocaine, open squares indicate animals receiving
infusions of saline. Data are expressed as the average number of
infusions (6 SEM) over the ten days of cocaine/saline self-administra-
tion; *p,0.05.
doi:10.1371/journal.pone.0083834.g001

Figure 2. TGF-b R1 expression following active cocaine
exposure. Relative TGF-b R1 protein expression in the NAC of rats
following 1 or 7 days of withdrawal from cocaine (1.0 mg/kg/inf; 10
days) or saline self-administration; *p,0.05 compared to saline.
doi:10.1371/journal.pone.0083834.g002
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It is intriguing to speculate about the involvement of the TGF-b
receptor-signaling cascade following a history of cocaine self-

administration. TGF-b signaling pathways may potentially regu-

late actin cycling directly to alter structural changes in the NAc.

Repeated exposure to psychomotor stimulants, such as cocaine,

results in morphological changes to NAc medium spiny neurons

(MSNs) including increases in dendritic spine density [30,33–35].

One mechanism that directly links TGF-b signaling to cocaine-

induced morphological plasticity is through a documented ability

of TGF-b to alter the actin cytoarchitecture through Rho GTPase

signaling, which has previously been linked to cocaine-induced

structural plasticity [30,36–39]. Moreover, drug-induced structural

plasticity of dendritic spine morphology exists along a continuum

that appears to be a function of time from cessation of drug

exposure, method of intake, drug paradigm and re-exposure to

cues previously associated with drug availability [2,40–44].

Further studies are needed to identify the exact role of TGF-b
receptor signaling in mediating cocaine-induced structural chang-

es, and how such alterations may impact relapse behaviors.

Our findings demonstrate that TGF-b receptor expression is

increased only in the NAc of animals that self-administer cocaine

and not following experimenter-administered drug. There are

numerous examples of neurobiological changes that occur

differentially following active versus passive drug exposure [45–

51] and these changes may underlie distinct behavioral changes

such as drug sensitivity [52,53]. It is important to note that several

procedural differences between the SA and experimenter-admin-

istered cocaine protocols, such as dosing regimens and pharma-

cokinetics, may have a role in the selective increase in TGF-b R1

expression following SA and future studies are needed to examine

the contributions of these factors.

It is worth noting that our findings differ from those of Maze

et al. [54], in which the authors report an increase in TGF-b R1

following experimenter-administered cocaine. However, there are

significant procedural differences between the Maze et al. study

and the current experiments that may account for such

paradoxical results: (i) Maze et al. tested mice, rather than rats as

used in the current experiments; (ii) mRNA were measured in the

Maze study, whereas we report protein expression.

While future studies are needed to develop a more complete

temporal profile of TGF-b receptor expression following cocaine

SA and withdrawal (i.e., prolonged periods of forced abstinence),

our results demonstrate that the TGF-b Type I receptor is a

potential target for intervention towards an effective pharmaco-

therapy in treating addiction. Further studies will determine how

cocaine mediates down-stream signaling of TGF-b and how such

cascades result in long-term cellular, morphological, and behav-

ioral plasticity.
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