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Abstract

Polymers can be modeled as open polygonal paths and their closure generates knots. Knotted proteins detection is
currently achieved via high-throughput methods based on a common framework insensitive to the handedness of knots.
Here we propose a topological framework for the computation of the HOMFLY polynomial, an handedness-sensitive
invariant. Our approach couples a multi-component reduction scheme with the polynomial computation. After validation
on tabulated knots and links the framework was applied to the entire Protein Data Bank along with a set of selected
topological checks that allowed to discard artificially entangled structures. This led to an up-to-date table of knotted
proteins that also includes two newly detected right-handed trefoil knots in recently deposited protein structures. The
application range of our framework is not limited to proteins and it can be extended to the topological analysis of biological
and synthetic polymers and more generally to arbitrary polygonal paths.
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Introduction

The topological study of biological polymers has led to

important insights into their structural properties and evolution

[1,2]. From a topological point of view polymers can be naturally

modeled as sequences of 3D points, i.e. open polygonal paths.

Their closure generates classical objects in topology called knots.

The simplest knot is the trefoil knot, illustrated in Figure 1A. The

characterization of knotted proteins, due to their close structure-

function relationship and reproducible entangled folding, is a

subject of increasing interest in both experimental and computa-

tional biology.

Knots investigation was initially fostered by the discovery of

knotted circular single-stranded DNA [3] and has been followed

by the study of the underlying enzymatic mechanisms [4,5] and

more recently by the description of the topological organization

and packing dynamics of bacteriophage P4 genome [6,7].

Despite those great advances in knotted DNA studies, we are

only beginning to go deeper into protein knots characterization

and the understanding of their biological role. After the pioneering

work of Mansfield [8] and the definition of topological descriptors

for the analysis of protein symmetries and proteins classification

[9–11], the detection of knots in proteins was boosted by Taylor’s

work [12]. The exponential growth of the total number of

structures deposited into the Protein Data Bank (PDB, http://

www.pdb.org) [13] requires dedicated computational high-

throughput methods able to deal with a large amount of data

[14]. These methods combine a structure reduction scheme of a

protein backbone model with the computation of a knot invariant,

the Alexander polynomial [9,15–17]. Hereinafter with the term

reduction we refer to a stepwise deletion of a certain number of

points from the original structure (endpoints excluded) that

preserves its ambient isotopy class.

The most affirmed reduction algorithm is the KMT reduction

scheme. KMT owes its name to the different algorithms proposed

by Koniaris and Muthukumar [18] and Taylor [12,19]. Since the

use of this acronym has engendered a little confusion on which

algorithm is precisely being used in literature we will explicitly

refer to them by authors’ names. Globally, these methods are

based on the concept of elementary deformation [20,21], which

consists in the replacement of two sides of a triangle with the third

provided that the triangle is empty. In particular while Koniaris

and Muthukumar’s algorithm essentially reproduces the ideas of

Alexander-Briggs and Reidemeister, in the Taylor’s algorithm

(which Taylor himself considers a smoothing algorithm) the

elementary deformation is done in steps that progressively smooth

the chain at the cost of introducing points not belonging to the

protein backbone; the edge replacement depends on some selected

conditions [19] chosen to prevent numerical problems.

Once the reduction has been accomplished knot type

identification can be performed. This can be done either by

visual inspection or by computing a polynomial invariant. Being

easy to compute the Alexander polynomial represents the current

default choice. This is also supported by the evidence that protein

knots detected to date are the simplest ones as illustrated in

Figure 2. Unfortunately, the Alexander polynomial does not

distinguish a knot from its mirror image. Thus, for instance left-

and right-handed trefoil knots share the same polynomial.

Instead, more powerful invariants are able to determine knots

chirality.
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Whereas to define the handedness of the simplest knot types is

straightforward, its extension to more complex knots requires

carefulness. However, for the purpose of this article, a knot is

chiral if its mirror image and the knot itself belong to two different

ambient isotopy classes and it is achiral otherwise. We define the

handedness of knots according to [22] adopting the conventional

values reported in the Atlas of Oriented Knots and Links (http://

at.yorku.ca/t/a/i/c/31.htm).

As far as proteins are concerned, the handedness of protein

knots was only partially addressed so far.

Taylor points out the existence of both right- and left-handed

trefoil knots, with a neat right-handed preference [2]. This

hypothesis was supported by the finding that all trefoil knotted

proteins belong to the SCOP [23] ba class, where an intrinsic

right-handed preference for bab unit connections exists. The only

left-handed trefoil knot was detected in the ubiquitin C-terminal

hydrolases (1 cmx) considered afterwards as an incomplete five

crossings knot. However, by considering individual fragments the

knot vanishes. A more recent work that removed sequence

redundancy, intriguingly highlights a global 5 to 3 balance

between right-handed and left-handed knots, not suggesting a bias

for one of the two hands [24].

In order to compute invariants able to cope with knots chirality,

here we propose a novel topological framework to compute

arbitrary skein polynomials. A skein polynomial P respects the

skein relation:

aLz{bL{~cL0 ð1Þ

which is an algebraic relation connecting the configurations in a

Conway skein triple [25] (see Figure 1B), namely it verifies

aP(Lz){bP(L{)~cP(L0)

where the coefficients a,b,c have to satisfy some relations. For

instance, the choice b~a{1, c~z leads to the HOMFLY

polynomial P(a,z) [26]. By further specializing a~t{1 and

z~t1=2{t{1=2 one obtains the Jones polynomial V (t) whereas

setting a~1 and z~t1=2{t{1=2 leads to the Alexander polyno-

mial D(t). As far as proteins are concerned, the handedness of

protein knots was previously addressed by King et al. [27] and

relies on the computation of the Jones polynomial.

Although this appears to be enough to define the chirality of the

currently detected knotted proteins, the HOMFLY polynomial is

Figure 1. A knot diagram and illustration of the Conway skein triple. (A) Three dimensional polygonal representation of the trefoil knot (in
red) and its planar diagram (in black). Two red spheres on the knot mark the 3D points X1 and X2 projecting down to x on the planar diagram along
the brown arrow. (B) The Conway skein triple is composed of three oriented diagrams that are the same outside a small region, where they look like
the illustrated Lz, L{ and L0 . To define the oriented sign of a crossing, approach it along the underpass in the direction of the orientation: if the
overpass orientation runs from left to right, the oriented sign is z1, {1 otherwise.
doi:10.1371/journal.pone.0018693.g001

Figure 2. Knots met in proteins. Illustration of the knots found in
proteins, labeled according to Rolfsen names. U: the simplest knot, the
unknot. 31 : the trefoil knot and its mirror image, denoted by the �, has
three crossings. 41 : the figure-eight knot is the only knot with four
crossings. 52 : the three-twist knot has five crossings. 61 : the Stevedore’s
knot, the most complex knot detected in proteins.
doi:10.1371/journal.pone.0018693.g002
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more powerful. For instance, whereas the Jones polynomial is the

same for knots 10-022 and 10-035 of the Rolfsen table, the

HOMFLY polynomial is able to discriminate them. In the realm

of our method, other choices bring to the Vassiliev knots invariants

[28,29] considered for instance by [30].

Generally, the skein relation does not preserve the multiplicity

of a link. For example if Lz is a knot, L0 will be a two components

link. The recursion of the skein relation together with the values of

the given polynomial on the unknot allows to reconstruct the

polynomial of any given link. Therefore, the complexity of the

polynomial computation grows exponentially with the number of

crossings to be processed. Our algorithm relies on the iteration of

the skein relation and explicitly constructs the Conway skein triple

associated to a given crossing by a stepwise insertion of auxiliary

points.

In order to deal with multi-component links and speed up

computations, the polynomial computation is preceded by the

application of a structure reduction scheme, which we call MSR

(Minimal Structure Reduction). The MSR algorithm exploits the

interplay between the 3D structure and the corresponding 2D

planar diagram of a polygonal path and basically relies on a 3D

operation, namely the Generalized Reidemeister Move (GRM).

While the Alexander-Briggs method intrinsically removes at most

one point at each step, a GRM does not necessarily operate

locally, usually leading to a dramatic reduction of the number of

points in few steps.

The effectiveness and robustness of the proposed framework

were initially evaluated on tabulated knots and links, leading to an

HOMFLY polynomial repository along with knots orientation

details. We then applied our methods to protein structures. By

screening the entire PDB (version of November 8, 2010), we

obtained an up-to date table of knotted structures that also

includes two newly detected right-handed trefoil knots.

Methods

Basic concepts and definitions
To make this article self-contained, herein we introduce and

briefly describe basic concepts and definitions.

N Polygonal paths A pair (P,S) where P~fP1, . . . ,PNg is a

collection of N points in R3 and S~fS0,S1, . . . ,SKg is an

ordered subset of ½0::N� (the integers in ½0,N�) with

S0~0,SK~N determines a collection of K polygonal paths

in R3 as follows: the k-th path (or component) is generated by

connecting the points indexed by (Sk{1::Sk�.
The edges of the polygonal paths are the oriented segments

PiPiz1 with i [E~½1::N{1�\S.

N A collection of polygonal paths (P,S) in R3 is simple if each

edge of the path intersects precisely the previous and the next

edge at the endpoints [31].

N Polygonal link A collection L~(P,S) of simple polygonal paths is

a polygonal link. The K~K(L) components of L are not

necessarily closed. For the sake of convenience, a subpath will

be defined by indexing L with square brackets.

N Regular Projection A projection p : R3?R2 of a polygonal link L
is regular if the following conditions are satisfied:

1. The image p(L) has at most a finite number of double

points (crossings).

2. No vertex is a double point.

A link diagram is a regular projection of the link whose

graphical representation adopts solid edges and gaps to

indicate overcrossings and undercrossings respectively (see

Figure 1A). With a slight abuse of language we will also call

under/over crossings the points in R3 that project to an

over/under crossing in R2.

N Intersection signs Given two sets of edges A and B we can

compute the intersection matrix I~I(A,B) by setting

(I(A,B))i,j~

0 if Ai and Bj do not intersect transversally

z1 if Ai lays over Bj

{1 if Ai lays under Bj

0
BBB@ ð2Þ

If A~B we get an antisymmetric square matrix and we can

simplify the notation to I(A). Intersection signs definition is

detailed in Text S1.

N Minimal structure A minimal structure for a polygonal link L is a

nested sequence of subsets of L

L6L16 . . .6LN

that cannot be extended. Each inclusion corresponds to a

Generalized Reidemeister Move, described below.

Structure reduction algorithm
Our reduction algorithm MSR iteratively exploits the subrou-

tine GRM, which performs a Generalized Reidemeister Move

according to the following scheme:

Step 1: Move candidate selection, namely a subpath M of L.

Step 2: Move contraction Lc, which is the provisional

replacement in L of M with the segment Mc connecting the

endpoints of M.

Step 3: Check that L and Lc belong to the same ambient

isotopy class. If so, the replacement described in Step2 becomes

effective.

While the first two steps are trivial, Step3 requires the study of

the intersections of the move candidate M with the remainder C
of L. M is characterized by its initial and final edge indices,

respectively bM and eM and belongs to a specified component, say

m of L.

The complement C can be splitted in Cout, the link components

different from m and Cin, the open link with at most two

components given by L½(Sm{1::bM)� and L½(eMz1::Sm)�. Let

sign(M) be the set of signs of I(M,C) and analogously sign(Mc)
be the set of signs of I(Mc,C).

The topological check in Step3 requires the evaluation of the

three following conditions:

(T ) M is ascending or descending (Triviality of M).

(S) sign(M) contains at most one element (Separability of M
from L).

(C) The set sign(M)|sign(Mc) contains at most one element

(Concordance of M and Mc with respect to L).

If TSC conditions hold, we call the replacement ofM withMc

(and vice versa) a Generalized Reidemeister Move. A GRM is an

equivalence relation for polygonal links. An example of an

admissible move is illustrated in Text S2.

Given a polygonal link L, its intersections matrix IL~I(L) and

the move initial index b, the GRM algorithm performs the

following operations:

Computing the HOMFLY Polynomial of Proteins
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Initialize :

Iout~IL

Lout~L

e~bz1

5: while e[Eð Þ do

M~L½½b::e��

Check Condition (T)

if (T) False then

Go to Exit

10: end if

Check Condition (S)

if (S) False then

Goto Exit

end if

15: Compute the vector r~I(Mc,L)

Construct ILc from IL and r

Check Condition (C)

if (C) False then

Goto Exit

20: end if

Iout~ILc

Lout~Lc

e~ez1

end while

25: Exit

L~Lout

IL~Iout

return L and IL

The key point of the algorithm is the construction of the

intersection matrix I
c

L from IL (line 16) simply by replacing the

rows and columns ½b::e� of IL with the vectors zr and {r

respectively. Notably, this procedure greatly reduces the compu-

tational cost with respect to an explicit matrix computation.

We are now ready to introduce MSR. Given a polygonal link L
and an iteration limit n (suitable to achieve a partial reduction)

MSR operates as follows:

Compute IL~I(L)

l : ~#L (Dynamic assignment)

i~1

while (iƒn) do

5: if l~2K where K is the multiplicity of Lð Þ then

Go to Exit

end if

p~#L

b~1

10: while (bvl{1) do

(L,IL)/GRM(L,IL,b)

b~bz1

end while

if p~l (reached minimal structure) then

15: Go to Exit

end if

i~iz1

end while

Exit

20: return L

Skein polynomials computation
In the following the interplay between three and two dimensions

plays a fundamental role and it is realized through the standard

projection pz. Since pz restricted to L is invertible up to a finite

number of double points, we denote with an uppercase letter

objects of L and with the corresponding lowercase letter their

projection. Counter images of double points are distinguished by

subscripts. Obviously, any subpath in the projection has a unique

lift to L and therefore in the following we adopt a two dimensional

description.

Given a polygonal oriented link, we consider two oriented edges

E1~P1P2 and E2~P3P4 such that their projections e1~p1p2

and e2~p3p4 cross at a point x. For the sake of convenience we

assume that E1 lays under E2 and we respectively denote by X1

and X2 their points projecting down to x. The edges e1 and e2 give

rise to a skein configuration of type z or {.

We implemented the Skein Relation on the 3D structure of L
by construction of the corresponding skein configurations Lsw and

L0. With Lsw we refer to the switching of the crossing under

consideration. Our algorithm performs the following steps

(illustrated in Figure 3):

Step 1: Construct an empty quadrilateral q containing x whose

vertices belong to e1 and e2.

Step 2: Rotate in 2D q to get r and provisionally change L
getting Lr (by means of the just introduced lift operation).

Step 3: Check that L and Lr are topologically equivalent.
Quadrilateral Construction. The edges e1 and e2 are

divided in two cut edges by the crossing x (see Figure 3A). We

construct a quadrilateral with vertices on the four cut edges such

that it contains no other edges of the polygonal link projection

(clean quadrilateral, see Figure 3B). We consider the four

parametric half lines ri with parameters ki, i [ ½1::4� leaving

from x along the four cut edges

ri(ki)~xzki(pi{x)

Computing the HOMFLY Polynomial of Proteins
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For a given value of the parameter vector k we get vertices of a

quadrilateral q~q(k). The vertices follow the order 1,3,2,4. To

construct a clean quadrilateral we proceed as follows:

1. Initialize k by setting each ki~0:8.

2. Construct the quadrilateral q(k) and compute the list of

distances d~fjjqi{xjjgi[½1::4�.

3. Check the cleanness of q via the Xclean algorithm (described

below).

4. If q is not clean, consider d and iteratively reduce by half the

parameter associated with the longest cut edge having

intersections (which we call emax).

Xclean algorithm: Given an oriented n-polygon and a polygonal

link we can construct a n|2 table S of status of the n vertices.

Each row of S is a pair summarizing the intersections of the side

entering and leaving the vertex as follows: we assign 0 if the

relevant side has no intersections with L and 1 otherwise.

Xclean needs a given quadrilateral q, a link projection, a 4|2
table S (the putative status list) and a set indexing the vertices

whose relevant sides have to be checked. The algorithm simply

recomputes the indexed rows of S and updates subsequently the

adjacent rows.

Quadrilateral Rotation. As a result of the previous algorithm

we end up with a clean quadrilateral q, whose vertices lie on e1 and

e2. By inserting in L the lift of these vertices as auxiliary points we

will run into technical problems due to parallel edges. To overcome

this problem we generate a new quadrilateral r by rotating q of a

suitable angle a around x (Figure 3C) via the the following steps:

1. Set h~h(e1,e2) equal to the minimum angle between the

vectors e1 and e2.

2. Initialize

a~Min
p

8
,(1{e)h

� �

where [~0:01 is chosen such that an edge (e.g. e1) does not

bridge the starting position of the other edge (e.g. e2).

3. Construct r.

4. Check the cleanness of r through the Xclean algorithm.

5. If not, iteratively reduce by half a until r become clean.

Given r we can construct Lr by considering the triangle pirix

(see Figure 3D) and replacing the original cut edges pix with

the path pirix (two-side replacement), with

Figure 3. Example of geometric construction of the skein configurations. (A) Figure-eight polygonal knot diagram. Knot orientation and the
crossing x between the edges e1 and e2 are shown. (B) A clean quadrilateral q around x is shown in red. (C) The rotated quadrilateral r (solid blue
lines) is obtained by rotating q (dashed red lines) along the z axis. (D) Triangles to be analyzed in the topological check are shaded in green. The
points q and r are reported respectively in red and blue. (E) The Lsw configuration, with the path P1R1XswR2P2 highlighted in black (F) The L0

configuration. Solid lines highlight new connections P1R1R4P4 (in red) and P3R3R2P2 (in blue).
doi:10.1371/journal.pone.0018693.g003
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i [ ½14�

Topological Check. The feasibility of the replacement of L
with Lr is not obvious and requires a careful check, which is

accomplished analyzing the newly introduced connections. The

triangle prx is subdivided in two triangles by the segment qr. The

absence of intersections in the segments qx and rx is guaranteed

by the cleanness of q and r.

We approve the two-side replacement if and only if:

1. The edge qr has no intersections.

2. The segments pq and pr intersect the same edges of L
preserving intersections order and signs.

Otherwise the rotation angle a is reduced by half and we loop

back to Step2.
Construction of the Skein Configurations. The constru-

ction of the skein configurations requires a distinction between Lsw

and L0.

To construct Lsw we initially take the specular image Xsw of the

undercross X1 with respect to the overcross X2. By replacing the

edge R1R2 with the path R1XswR2 we obtain a switched crossing

but the projection is not regular anymore. Thus, we slightly

perturb Xsw by attracting it toward R1 via the formula

Xsw/R1zksw(Xsw{R1) kswv1

The constraint on ksw guarantees that the projection of R1Xsw

has no intersections with L, while the projection XswR2 has one

intersection with e2 but it is not always an overpass. If not, we

reduce the perturbation via the iterative formula

ksw/(kswz1)=2

whose convergence to 1 guarantees that we will eventually obtain

an overpass. We set the initial value k0
sw to 0.9.

Given Xsw, to construct Lsw we replace in L the edge P1P2 with

the path P1R1XswR2P2 (see Figure 3E). Notice that the edge P3P4

is not affected by this construction.

Instead, the construction of L0 make a full use of R by

substituting in L the edges R1R2 and R3R4 with the connections

R1R4 and R3R2 (Figure 3F). Obviously, this determines a shift of

the separator indices S and of the numbering of the points

following P1. The case where e1 and e2 belong to the same

component of L is treated differently from the case where they

belong to different components. In the former, the number of

components of the link increases while in the latter it decreases.
Skein recursion. We will apply recursively the skein relation

(1) to reduce a given polygonal link L to a collection of trivial links,

systematically switching the undercrossings.

We adopt a greedy approach in which at each recursion we

switch the undercrossing leading to the Lsw structure with the

lowest number of points and we accordingly produce the relevant

L0 configuration.

In order to speed up computations, at each step the

configurations are reduced with MSR. The resulting structures

are stored as nodes in a skein tree, a binary ordered tree rooted at

the original link.

Our goal is to assign to every node n a pair of weights (s,P)
where s(n) is precisely the skein sign of the crossing of n to be

switched and P(n) is the link polynomial of n. Notice that while

s(n) is known, P(n) needs to be computed. We adopt a dynamic

bottom-up procedure in which starting from leaves we attach P(n)
to inner nodes.

Leaves are the simplest nodes since given a leaf l, P(l) is known

a priori being the polynomial of the K-components unlink and

there is no undercrossing left (s(l)~1). In the skein tree, every

inner node L has two children, say Lsw and L0, and P(L) can be

computed via the recursion formula

P(L)~
a{1b:P(Lsw)za{1c:P(L0) if s(L)~z1

b{1a:P(Lsw){b{1c:P(L0) if s(L)~{1

 

In this way, the polynomial is simply the weight P of the root.

Results and Discussion

Validation on tabulated knots and links
Initially, we validated our methods by computing the HOM-

FLY polynomial of both full structures and minimal stickies

representations of tabulated polygonal knots and links. We

compared our results with a polynomial repository constructed

as described in Text S1. Since standard repositories do not address

orientation and chirality, a single polynomial is associated to a

given structure and a computed polynomial could not directly

match repository entries. Thus, for each tabulated structure we

considered mirror images along with all possible orientations

(together referred to as flips) and computed the corresponding

polynomials. At least one of them matched the one reported in the

polynomial repository. Our complete repository of knots up to 10

crossings and oriented links up to 4 components could be browsed

at http://www.pharm.unipmn.it/rinaldi/knots/index.php.

As described above, our HOMFLY polynomial computation

associates a skein tree to every knot or link, by means of a greedy

selection of the crossing to be switched. To verify the goodness of

this choice we compared it with a fixed choice variant, which

systematically switches the first -1 crossing encountered. We

applied both algorithms to every knotted structure in the

repository (including flips), characterizing each tree with two

complexity indices, namely the level (corresponding to the number

of generations, n) and the number of tree nodes k. Figure 4 shows

the behavior of k as a function of n, with dashed curves

representing theoretical constraints. The growth curves of the

two algorithms obtained via ANCOVA after linearization are

significantly different, showing that the greedy algorithm performs

generally better than the fixed choice one. This result is also

supported by the evidence that the number of levels and

configurations required for polynomial computation is significantly

lower for the greedy choice (Wilcoxon test on the pairwise

differences, pv10{15). Notably, the shrinking of the tree well

compensates the extra computational time required by the greedy

choice and this particularly suggest the usage of this algorithm as

structure complexity increases. In general, it is possible to find a

time threshold such that by filtering computational times

accordingly, a significant difference emerges supporting greedy

choice. This suggested the adoption of the greedy algorithm for the

reduction of protein structures.

Application to protein structures
We applied our algorithms to all the protein structures

deposited in the PDB. Each entry was preprocessed as described

Computing the HOMFLY Polynomial of Proteins
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in Methods and the HOMFLY Polynomial was computed on the

MSR reduced structures.

Globally, we found 119 knotted proteins (226 parts) of the five

knot types shown in Figure 2, belonging to the ten previously well

defined classes of knotted foldings [14,24]. A summary table of

knots for each knot type along with the relevant HOMFLY

polynomial is reported in Table 1. For a complete list of knotted

proteins ID and part details see Table S1.

Although redundancies with previous studies [14,16,24] are

largely present, the number of knotted proteins is lower than what

previously reported. This is mainly due to topological checks and

distance controls (see also Text S1) that allowed to discard

nonstandard PDB formats and entries having large structural gaps

due to missing residues. These proteins are often detected as

knotted when gaps are connected by straight lines, inducing

artificial entanglement.

Among newly detected knotted proteins, two right-handed

trefoil knots were identified in two recently deposited structures.

The first one has been found in the human Carbonic Anhydrase

VII (CA7), isoform 1 (3 mdz) (see Figure 5A), whereas second one

has been detected in the uncharacterized ORF from Sulfolobus

Islandicus rudivirus 1 (2x4i) (Figure 5B), a virus of the extremely

thermophilic archaeon Sulfolobus. Notably, although the latter

protein still needs to be fully characterized to define its relevance,

it shares more than 50% of its primary sequence with protein B116

(2j85) of Sulfolobus turreted icosahedral virus, which King et al [27]

previously reported to contain a slip-knot. Thus, it is not surprising

that the structure of 2x4i also contains a slip-knot, as we confirmed

by visual inspection. Moreover, this protein presents a gap toward

its C-terminus. Since we treat gaps as chain terminators (see Text

S1) what we have detected is the knotted core of the slip-knot,

illustrated in Figure 5B. The trefoil knot in the CA7 belongs

instead to the well known right-handed trefoil knotted Carbonic

Anhydrase superfamily. Knotted core analysis, performed as

reported in [12,17], reveals that both knots have a quite shallow

nature. While a trimming of 28 and 5 residues from the N-

terminus and C-terminus respectively is sufficient to unknot the

Carbonic Anhydrase VII, the uncharacterized ORF becomes

unknotted after an even deletion of 5 residues. However, this is

sufficient to exclude an artifactual nature of these knots.

For what concerns recently reported trefoil knots, our results

confirm the presence of a right-handed trefoil knot in the alpha

subunit of human S-adenosylmethionine synthetase 2 (2p02) and

the artifactual origin of the one detected in the ribosomal 80S-

Figure 4. The Increase of the number of tree nodes as a function of tree levels. Trees of both greedy (white/black) and fixed choice (gray)
algorithms have been clustered according to the number of levels (n). For each cluster a box plot of the nodes number has been drawn with a width
proportional to the cluster size. Solid power curves fit the reported data. Dashed red and blue curves represent respectively lower and upper
estimates of node numbers. Curve expressions are shown in the legend.
doi:10.1371/journal.pone.0018693.g004

Table 1. Total knotted entries detected for each knot type.

knot
type

hand-
edness

#struc-
tures #parts

HOMFLY
polynomial

31 R 103 184 {l{4z2l{2zl{2m2

31 L 3 3 {l4z2l2zl2m2

41 - 10 31 {1zl{2zl2{m2

52 L 2 4 l2zl4{l6z(l2zl4)m2

61 R 1 4 l{4{l{2zl2{(1zl{2)m2

Entries show the number of knotted structures and relevant parts for each knot
type.
doi:10.1371/journal.pone.0018693.t001
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eEF2-sordarin complex of Saccharomyces cerevisiae (1s1h) first

reported in [24].

Interestingly, we detected three left-handed trefoil knots

respectively in the U2 snRNP Rds3p protein of S. Cerevisiae

(2k0a), VirC2 protein of Agrobacterium tumefaciens (2rh3) and in the

uncharacterized protein MJ0366 from Methanocaldococcus jannaschii

(2efv). A fourth knot detected in the human prothrombin

complexed with a peptidomimetic inhibitor (1jwt) was discarded

due to a long structural gap. The left-handed trefoil knot in the

Rds3p protein, which highlight a knotted zinc-finger motif, is the

deepest knot of this kind reported to date [32]. Indeed, its knotted

core is preserved after trimming of 19 and 18 residues from the C-

terminus and the N-terminus respectively. Since this protein does

not resemble protein belonging to the ba class, it shifts the left-

handed to right-handed balance to 4 to 5, thus enforcing the non

preferential handedness hypothesis.

Analysis of the MSR algorithm
As a secondary goal, we were interested in the characterization

of an intrinsic feature of the MSR algorithm, the move lengths.

Remarkably, differently from other proposed reduction schemes,

here the move length is not constrained a priori to one (this can be

easily seen in the animated reduction provided as Video S1). This

characteristic leads to a particularly interesting class of curves

which we call reduction curves, representing the time series of

residual points during the reduction process. For example, Figure 6

illustrates the reduction of the above mentioned U2 snRNP

Rds3p, the relevant reduction curve and move lengths.

To analyze these two features, 19316 protein structures were

randomly extracted from the PDB, further selecting only those

proteins of length comprised between the first (37 points) and the

ninth deciles (357) of protein lengths (15529 structures). Proteins

were processed with MSR and the number of residual points was

associated to the corresponding move length at each reduction step.

We first analyzed moves distribution. The observed distribution

of move lengths is shown in Figure 7A, showing that quite long

moves are rather frequent. In particular, move lengths quartiles

are 0,4,13, the mean is 8.61 and 27% of the moves have length 0.

We then tested if move length depends on protein length.

Proteins were sorted by length and the relevant move lengths were

grouped in 100 equal sized bins, so that for instance the first bin

contains moves corresponding to shortest proteins. As shown in

Figure 7B, the mean of each bin significantly decreases (Mann-

Kendall trend test, pv10{15) as a function of the protein length.

An effect of final moves has been excluded by considering only the

first 90% of the reduction process.

To assess if move length distribution changes during structure

reduction, we compared the move distributions of the first and

fourth quartile of the reduction process. To avoid overlaps, we

considered reduction sequences of length at least 4 (14346

sequences). A significant difference between the two quartiles

emerged (Wilcoxon test, pv10{15), as highlighted in Figure 7C.

Moves with length up to 6 (short moves) are more frequent toward

the end of the reduction process, while long moves occur

preferentially in the first reduction quartile. This behavior is also

confirmed by comparing the first and second half of the reduction

Figure 5. The two newly identified right-handed trefoil knots in recently deposited protein structures. (A) On the top, the secondary
structure and the accessible surface area (in transparency) of the human Carbonic Anhydrase VII, isoform 1 (3 mdz) is shown. On the bottom, a
sausage view cartoon of the same enzyme is shown. In this representation, the diameter of the sausage is proportional to the B-factor. The thicker the
backbone is, the more flexible it is. (B) The same representations as in (A) are shown for the knotted core of the uncharacterized ORF from Sulfolobus
Islandicus rudivirus 1 (2x4i), chain A. Colors change continuously from blue (first residue) to red (last residue). The last residue of the 2x4i protein is
colored in orange, since the structure presents a gap toward its true C-terminus end and results a slip-knot when the whole structure is considered, as
detailed in the text.
doi:10.1371/journal.pone.0018693.g005
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process. However, shorter final moves are in principle explained

by an increase of the edges mean length, as can be seen in Figure 6.

Finally, an interesting effect emerges when the frequencies of

move lengths were analyzed as a function of the residual protein

lengths at which they occur. By grouping move lengths in

quartiles, while moves below the median reach the minimum

frequency for a residual length around 60, the opposite behavior is

attained by moves above the median (Figure 7D). Interestingly, a

residual length around 60 is the optimum of the reduction process,

where the frequency of 0 moves reaches its minimum and

contextually the frequency of long moves is maximum.

Running time and complexity
The computation of the HOMFLY polynomial is known to be

NP-hard [9,33] and its running time exponentially increases with

the number of crossings in the projection. However, the application

of the MSR algorithm before the polynomial computation

dramatically reduces the number of crossings, leading to a feasible

computation of the HOMFLY polynomial for any structure

analyzed in the present work. Indeed, the MSR algorithm has

complexity O(N2) in the number of points (i.e. the number of

residues for a protein) and represents the dominant term in the total

computational time for the vast majority of the analyzed structures,

often independently from their knotted nature.

In practice, running times are reasonable for any analyzed PDB

entry on a 2.4 GHz Intel Core 2 Duo processor with 2 Gb of RAM.

On average, proteins of length 100, 200 and 300 take respectively 2,

10 and 20 seconds to be processed. The identification of the left-

handed trefoil knot in the Rds3p (2k0a) requires 2.8 seconds (2.5

seconds for the MSR algorithm + 0.3 seconds for the polynomial

computation), whereas the processing of the Stevedore’s knotted

protein (3bjx) takes 23.5 seconds (20 seconds + 3.5 seconds).

Implementation
All code for this work was written in Wolfram Mathematica 7

and executed on a Mac OSX platform. We developed the

Mathematica package HPKnots.m based on the code provided as

Text S3. HPKnots.m can be obtained upon request. The

validation code also required KnotTheory.m, a third-party

Mathematica package (http://katlas.org).

Conclusions
We have presented a novel topological framework for the

HOMFLY polynomial computation of polygonal paths based on

the geometric construction of Conway skein triples. Validation on

tabulated knots and links demonstrates the global method robustness

and the effectiveness of the greedy selection of the crossing to be

switched. These evidences have been further confirmed by the

polynomial computation of protein structures, also leading to an up-

to date table of knotted structures. Whereas the performed

topological checks allowed to discard artificially entangled proteins,

two new right-handed trefoil knots have been detected.

Remarkably, the application range of the presented framework

is not limited to proteins and it can be extended to the topological

analysis of biological and synthetic polymers. Particularly, the

study of knotted synthetic polymers like polyethylene has led to

Figure 6. MSR reduction curve of the U2 snRNP protein Rds3p. On the middle are illustrated the 13 reduction steps (b-n) for the Rds3p
protein (2k0a) (a). The last frame (n) represents the minimal structure of the protein, a left-handed trefoil knot. On the top, the residual points are
plotted for each frame a-n. The corresponding move lengths are shown on the right.
doi:10.1371/journal.pone.0018693.g006
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insights into the mechanical properties of such structures. The

presence of a knot strongly weakens the polymer that potentially

breaks at the entrance to the knot. Furthermore, knots frequency

depends on the solvent and is higher in the coil phase than the

globular phase with the knotted core size that increases as a

function of the number of monomers. These aspects have been

previously addressed with the computation of the Alexander

polynomial in numerical simulations based on a simplified model

of polyethylene [17]. Our framework can be successfully applied to

this model and possible refinements, contributing to extend the

knots spectrum so far considered and providing information about

the knots chirality. Another suitable field of application of our

method, in which generally more complex knots are investigated,

is the topological study of cyclized DNA [5–7].

Finally, the applicability of the presented method is not confined

to single component structures and can be applied to the

topological study of multicomponent polygonal paths, providing

a robust identification of knots or links when the frequency of

entangled structures has to be addressed.

Supporting Information

Text S1 Methods supporting information. This supple-

mentary file details the computation of the intersection matrix and

provides additional information on methods validation on tabulated

knots and links and their application to protein structures.

(PDF)

Text S2 Generalized Reidemeister Moves. This supple-

mentary file provides an illustrated description of a Generalized

Reidemeister Move.

(PDF)

Text S3 Mathematica code. Mathematica code for the

computation of the HOMFLY polynomial of a polygonal link.

An application example on the Rds3p protein (2k0a) is provided.

(PDF)

Table S1 Table of knotted PDB entries. This supplemen-

tary table provides PDB ID and part details for each database

entry that revealed a knotted structure. Entries are conveniently

grouped by knot type.

(PDF)

Video S1 Minimal Structure Reduction of the alpha
subunit of human S-adenosylmethionine synthetase 2.
This supplementary movie show the reduction process of the

human enzyme S-adenosylmethionine synthetase 2 (2p02),

revealing a right-handed trefoil knot.

(MOV)
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