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Abstract

Background

Prognostic models based on individual patient characteristics can improve treatment deci-

sions and outcome in the future. In many (radiomic) studies, small size and heterogeneity of

datasets is a challenge that often limits performance and potential clinical applicability of

these models. The current study is example of a retrospective multi-centric study with chal-

lenges and caveats. To highlight common issues and emphasize potential pitfalls, we aimed

for an extensive analysis of these multi-center pre-treatment datasets, with an additional
18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/

CT) scan acquired during treatment.

Methods

The dataset consisted of 138 stage II-IV non-small cell lung cancer (NSCLC) patients from

four different cohorts acquired from three different institutes. The differences between the

cohorts were compared in terms of clinical characteristics and using the so-called ‘cohort
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differences model’ approach. Moreover, the potential prognostic performances for overall

survival of radiomic features extracted from CT or FDG-PET, or relative or absolute differ-

ences between the scans at the two time points, were assessed using the LASSO regres-

sion method. Furthermore, the performances of five different classifiers were evaluated for

all image sets.

Results

The individual cohorts substantially differed in terms of patient characteristics. Moreover,

the cohort differences model indicated statistically significant differences between the

cohorts. Neither LASSO nor any of the tested classifiers resulted in a clinical relevant prog-

nostic model that could be validated on the available datasets.

Conclusion

The results imply that the study might have been influenced by a limited sample size, hetero-

geneous patient characteristics, and inconsistent imaging parameters. No prognostic per-

formance of FDG-PET or CT based radiomics models can be reported. This study highlights

the necessity of extensive evaluations of cohorts and of validation datasets, especially in ret-

rospective multi-centric datasets.

Introduction

Prognostic models based on individual patient derived factors are essential to better estimate

patient’s outcome prior to or during treatment. These models help to improve individualized

treatment decisions (personalized medicine) that may lead to better patient outcomes [1, 2].

Medical images are an example of an information source, which could be used to derive

important patient-specific prognostic information. Large amounts of quantitative features can

be calculated from medical images acquired during a patient’s course of treatment, e.g. posi-

tron emission tomography (PET) or computed tomography (CT). This principle of extracting

imaging features is called ‘radiomics’, which is a rapidly evolving field of interest [3–5]. Multi-

ple studies have shown radiomics’ potential to derive prognostic information for patient out-

comes. Despite the promising results, radiomics faces multiple challenges [6]. An important

challenge is the collection and acquisition of (large amounts of) suitable imaging data, which is

difficult due to evolving technology, lack of standardization protocols and differences in

cohorts and protocols between institutes.

Imaging data collected from a single institution often results in a more homogeneous data-

set, e.g. the images are acquired using the same settings (with the institute’s acquisition and

reconstruction protocols) on the same scanner. Also, with regard to clinical characteristics the

patient population is usually more homogeneous. However, a prognostic model developed

based on these data might fail when applied to validation data from an external institute, due

to the lack of transferability of the model (i.e. the model is specific for a population) [7, 8].

Therefore, one might argue for using more heterogeneous datasets to train the model to

broaden the clinical applicability. In practice, it appears difficult to find these datasets and to

validate such a model. Besides the variability in imaging and/or clinical characteristics within a

dataset, the dimensionality of the data is often an issue, e.g. having over 1000 radiomic features

with often only a limited number of patients. A review published in 2015 has shown that many
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published (radiomics) studies contain models based on a limited number of patients without

validation on an independent dataset, resulting in high probabilities of false positive results

[9].

In this study, PET and CT images were collected from non-small cell lung cancer (NSCLC)

patients who underwent an 18F-fluorodeoxyglucose (FDG) positron emission tomography/

computed tomography (PET/CT) scan prior to and during (chemo)radiotherapy to be able to

evaluate radiomics’ potential to assess early response. Previous studies have explored (early)

response assessment using information derived from FDG PET/CT scans [10–15]. Since the

PET/CT scans obtained during treatment are generally not acquired in clinical practice, it is

difficult to gather large datasets of this type. Therefore, the data in the current study were col-

lected from three different institutes where small sub-cohorts were available and is therefore a

typical example of a multi-centric study with retrospectively collected data.

Retrospective studies, although collected from centers with high quality care, often suffer

from heterogeneities within and between datasets, which is unavoidable in clinical practice.

Therefore, the current study aims to evaluate the multicenter patient data in terms of cohort

characteristics and prognostic performance, intending to highlight common issues and

emphasizing pitfalls for future (radiomic) studies.

Materials and methods

Study cohort

The entire study cohort consists of 138 stage II-IV NSCLC patients, all treated with curatively

intended (chemo)radiotherapy. The study population was divided into four different datasets

from three different institutes. Datasets 1 and 2 originated from MAASTRO Clinic, Maas-

tricht, the Netherlands. Dataset 3 is from Clinique Victor Hugo, Le Mans, France, and Dataset

4 was obtained from University Medical Center Freiburg, Freiburg, Germany. Dataset 1 was

prospectively collected with approval of the Institutional Review Board of the Department of

Radiation Oncology of Maastricht University Medical Center (Maastro Clinic) (clinicaltrials.

gov NTC00522639). The original study that collected the data in Dataset 2 was approved by

the Institutional Board of the Department of Radiation Oncology of Maastricht University

Medical Center (Maastro Clinic), as stated in [12]. Dataset 3 was collected in a previous study

[16] and approved by the appropriate Institutional Review Board. Dataset 4 was prospectively

collected with approval of the Ethics Committee of the Albert-Ludwig University Freiburg,

Germany Freiburg (clinicaltrials.gov NCT00697333).

All patients underwent an 18F-FDG-PET/CT scan before radiotherapy for treatment plan-

ning purposes and an additional scan approximately two weeks after the start of treatment.

The scanning parameters are summarized in Table 1. Detailed cohort descriptions are pro-

vided in Supplementary Information: S1 Text.

For all patients, overall survival (OS), calculated from the start of radiotherapy, was col-

lected to serve as a clinical endpoint in this study. A patient still alive at the time of study analy-

sis was considered right-censored. Median follow-up times were calculated using the Kaplan-

Meier estimator with reversed events, considering death as censored data.

Tumor segmentation and image analysis

The primary gross tumor volume (GTV) was delineated by experienced radiation oncologists

on pre- and during-radiotherapy fused FDG-PET/CT images using the following WL settings,

W:1700 L:-300 (lung) and for W:600 L:40 (mediastinum). These target delineations were not

evaluated by other specialists and the reproducibility of these segmentations was not investi-

gated in this study, as this segmentation process was just part of normal clinical practice.
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FDG-PET/CT images were converted into standard uptake value (SUV) prior to analysis [17].

A total of 1295 radiomic features were extracted from CT images and 1400 radiomic features

were extracted from PET images. Prior to radiomics feature extraction, all images were resam-

pled into voxel dimensions 1×1×3 mm3 for CT and 4×4×3 mm3 for PET, which corresponded

to the average voxel dimensions of all images rounded to the nearest integer. Resampling

decreases the variability of radiomic features [18] and was performed using cubic interpola-

tion. For one PET scan the resampling resulted in a segment splitting off from the original vol-

ume resulting in two separate volumes. As radiomic features have a different interpretation

when extracted from multiple volumes, this patient was excluded from the analyses to avoid

inconsistencies.

The image analysis included the investigation of different feature groups: 1) Morphological

‘Shape’, 2) Fractal, 3) Local Intensity ‘LocInt’, 4) Statistical features ‘Stats’, 5) Intensity-volume

histogram ‘IVH’, 6) Textural features, including gray-level co-occurrence matrix ‘GLCM’,

gray-level run length matrix ‘GLRLM’, gray-level size zone matrix ‘GLSZM’, neighborhood

gray tone difference matrix ‘NGTDM’, gray-level distance zone matrix ‘GLDZM’, neighbor-

hood gray-level dependence matrix ‘NGLDM’, 7) Laplacian of Gaussian filter ‘LoG’ (prior to

group 4), and 8) Wavelet filter (prior to group 6). The feature descriptions of the feature

groups (fractal, local intensity and intensity histograms) can be found in the Supplementary

Information S2 Text. Other feature descriptions can be found elsewhere [19]. The IVH fea-

tures were extracted from PET images only and these allow to retrieve the metabolic tumor

volume (MTV), which is defined as the volume of voxels with an intensity above x% of

Table 1. Scanning parameters. Scanning parameters for all scans included in the study.

Parameters Dataset 1 (n = 100) Dataset 2 (n = 62) Dataset 3 (n = 54) Dataset 4 (n = 60)

Manufacturer Siemens Siemens Philips Healthcare Philips Healthcare

CT Tube voltage 120 kVp 120 kVp 120 kVp (n = 39) 120 kVp

140 kVp (n = 15)

Tube current 120 mA (n = 3) 80 mA (n = 13) Median [range] Median [range]

160 mA (n = 15) 336 mA (n = 49) 183 mA [115–277] 183 mA [35–337]

173 mA (n = 1)

240 mA (n = 72)

Convolution kernel B19f (n = 97) B19f (n = 37) B B

B30f (n = 2) B30f (n = 12

B41f (n = 1) B41f (n = 13)

Slice thickness 3 mm 3 mm 5 mm 1 mm (n = 16)

2 mm (n = 16)

3 mm (n = 4)

4 mm (n = 24)

Pixel spacing 0.98 mm 0.98 mm 1.2 mm (n = 44) Median [range]

1.4 mm (n = 10) 1.2 mm [0.7–1.4]

PET Reconstruction algorithm OSEM2D 4i8s OSEM2D 4i8s BLOB-OS-TF BLOB-OS-TF

Slice thickness 3 mm 3 mm 4 mm 2 mm (n = 38)

4 mm (n = 22)

Pixel spacing 4.07 mm 4.07 mm 4 mm 2 mm (n = 38)

4 mm (n = 22)

Injected FDG dose Median [range] Median [range] Median [range] Median [range]

180 MBq [113–354] 302 MBq [175–482] 290 MBq [139–474] 340 MBq [198–434]

Planned interval FDG injection–image acquisition 60 minutes 60 minutes 60 minutes 60 minutes

https://doi.org/10.1371/journal.pone.0217536.t001
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SUVmax within the lesion (from 10 to 90% (MTV10%—MTV90%)) [20] and total lesion glycol-

ysis (TLG), by multiplying MTV by the corresponding mean SUV within the segmented vol-

ume: TLG10%—TLG90% [20, 21].

Image analysis was performed in Matlab R2014a (The Mathworks, Natick, MA) using in-

house developed software used for feature extraction. The absolute variation (abs) and per-

centage (rel) variation between subsequent scans were also derived, defined as:

Abs ¼ Duringtreatment � Pretreatment ð1Þ

Rel ¼
Duringtreatment � Pretreatment

Pretreatment
ð2Þ

In total, eight sets of radiomic features were derived from each dataset, being CT-scan1 (pre-

treatment), CT-scan2 (during treatment), PET-scan1, PET-scan2, CT-abs, CT-rel, PET-abs

and PET-rel.

Cohort comparison

To compare the four cohorts, two different approaches were applied. First of all, clinical char-

acteristics were compared to test univariate cohort differences using a Wilcoxon rank test for

continuous variables or a chi-square test for categorical variables. P-values below 0.05 were

considered significant. Note that the p-values of these analyses were not corrected for multiple

testing.

Secondly, the cohort differences (CD) model approach described in detail by van Soest

et al. [7, 8] was used to assess the multivariate cohort differences by predicting to which cohort

a patient belongs. It provides as summarizing measure of the level of generalizability of the

model, ranging from reproducibility to transferability. Two CD-models were created. The first

CD-model included two-year survival (binary variable) as an independent variable, as well as

radiomic features of a model developed in the current study (see next section ‘Model develop-

ment’). The second CD-model also included the clinical variables ‘Gender’ and ‘Overall Stage’

as independent variables to investigate whether potential differences between the cohorts can

be explained by those clinical parameters. As two-year survival was used as input variable, four

patients of Dataset 2 were not included in this analysis due to shorter follow-up times. For the

CD-model, stage was converted into dummy variables, using three categories II, IIIa or IIIb/

IV. Stage II was used as the reference category.

The binary dependent variable of the CD-models was cohort A or B. A simple logistic

regression was used to train the regression beta coefficients and predict to which cohort the

data belongs. This procedure was applied to all possible combinations of two datasets. The per-

formance of the CD-models for each combination of two datasets was evaluated by their

Receiver Operating Curve (ROC). High CD Area under the Curve (AUC) values would indi-

cate a large difference between the distributions in the cohorts and imply that the model tests

transferability rather than reproducibility [7, 8].

Model development

Each of the four datasets was used to train a model, which was subsequently validated on the

three remaining datasets. Moreover, a model was developed by combining all data into one

large dataset (n = 138) which was split randomly into training (75%, n = 103) and validation

(25%, n = 35), as proposed in [22].

For model development, a least absolute shrinkage and selection operator (LASSO) method

was applied [23]. A 10-fold cross validation procedure was repeated 200 times to optimize the
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penalty coefficient lambda, i.e. to find the smallest error, and to stabilize the method. Inputs

for LASSO were the total of extracted radiomic features from either CT-scan1, CT-scan2,

PET-scan1, PET-scan2, CT-abs, CT-rel, PET-abs or PET-rel. The performance of the penal-

ized Cox model was evaluated using Harrell’s concordance index (c-index), for which 1 indi-

cates perfect discrimination and a value of 0.5 no discrimination (no greater than chance

expectation) [24]. Moreover, prognostic index (PI) values, defined as ∑iβixi, were calculated for

all four datasets. These were analyzed to give insight in discriminative ability of the model, as

proposed by Royston and Altman [25].

Classification comparison

For the combined dataset, five different classifiers were investigated according to the method-

ology described by Deist, Dankers et al. [26]. These include glmnet (penalized generalized lin-

ear models), rf (random forest), svm (support vector machine), LogitBoost (boosting) and

rpart (regression trees). The neural network classifier was not investigated, as these required

too long computation times for a large number of input parameters and extensive tuning. The

classifiers deal with binary outcomes, therefore ‘two-year survival’ was used as endpoint. Since

four patients in Dataset 4 did not reach the minimum of two years of follow-up, these patients

were excluded for this specific analysis. The maximum number of repetitions was increased to

47 (limited by available calculation time on the computer) for this study and default tuning

was turned off. All other settings were kept to the standards as described in [26].

All statistical methods were performed in R (version 3.4.3), using the packages survcomp,

survival and glmnet. For the classification comparison, additional packages were used as

described in [26]. P-values below 0.05 were considered significant.

Univariable analysis

The performance of commonly assessed PET metrics as potential prognostic factors was also

investigated in an attempt to validate previous findings [10–16]. Also, radiomic features can be

hard to interpret, whereas these PET metrics are well-known. A univariable Cox proportional

hazard regression was computed for the percentage variation of most commonly assessed PET

metrics: volume, maximum SUV (maximum image intensity value), mean SUV, peak SUV

(maximum average SUV in a 1 cm3 spherical volume), MTV50% (volume above 50% of inten-

sity) and TLG50% (TLG for the volume above 50% of intensity). This analysis was performed

on the combined dataset of 138 patients.

Results

Characteristics of the cohorts are summarized in Table 2, which shows that all clinical parame-

ters were significantly different between one or more datasets, except age (indicated with the

bold numbers). All patients from Datasets 1, 3 and 4 received concurrent chemoradiotherapy

and no other treatment between the first PET scan and the start of radiotherapy (RT). In Data-

set 2, 55% of patients received sequential chemoradiotherapy and one patient did not receive

any chemotherapy. Because of the limited sample size available to us for this study, we have

decided to not exclude outliers (e.g. PET scans separated by long time intervals) in an effort to

make the dataset more homogeneous.

Median [range] survival was 1.6 [0.1–4.5], 2.3 [0.2–7.0], 1.8 [0.3–5.9] and 3.1 [0.1–5.2] years

for Dataset 1, 2, 3 and 4, respectively (Fig 1). Median follow-up was 3.8 [2.5–4.5], 6.9 [6.6–7.0],

4.0 [2.6–5.9] and 3.4 [1.3–5.2] years for Dataset 1, 2, 3 and 4, respectively.

Fig 2 shows the ROCs of the CD-model for each combination of two datasets. AUC values

ranged from 0.66 (Dataset 3 versus 4) to 0.89 (Dataset 2 versus 4). None of the confidence
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intervals included 0.5, meaning that all AUC values were significantly different from 0.5 (not

shown). The ROC curves of the CD-model, which included gender and overall stage, resulted

in slightly higher AUC values, ranging from 0.77 to 0.92 (S1 Fig).

To assess prognostic performance, models were developed using all four different datasets

once as training and the remainders as validation. The first models were trained on the image

sets of the largest dataset, Dataset 1 (n = 50). Using LASSO, prognostic predictors were identi-

fied for the image sets CT-scan1, CT-rel and PET-abs. For the other image sets, no prognostic

models were identified. Since Dataset 1 was the largest dataset and CT scans prior to treatment

are currently most commonly used to assess prognostic performance, the model belonging to

CT-scan1 of Dataset 1 was chosen to be used to construct the CD-model (Fig 2). This model,

built using LASSO, consisted of 3 variables: 1) Wavelet LLH (Low Low High) Fractal sd

Table 2. Patient characteristics. Patient characteristics for all four datasets used in this study. The bold numbers 1, 2, 3 or 4 indicate the datasets from which the variable

was significantly different.

Dataset 1 (n = 50) Dataset 2 (n = 31) Dataset 3 (n = 27) Dataset 4

(n = 30)

Age [years] - - - -

Range (median) 35–86 (63) 46–82 (64) 41–76 (62) 47–83 (64)

Mean ± SD 62 ± 11 65 ± 9 61 ± 8 65 ± 9

Gender 3 3 1,2,4 3

Male 25 (50%) 22 (71%) 25 (93%) 19 (63%)

Female 25 (50%) 9 (29%) 2 (7%) 11 (37%)

Stage 2,3,4 1 1 1

II - 2 (6%) 4 (15%) 1 (3%)

IIIa 17 (34%) 14 (45%) 16a (59%) 16 (53%)

IIIb 27 (54%) 15 (48%) 7 (26%) 13 (43%)

IV 6 (12%) - - -

Histology 3,4 3,4 1,2 1,2

Adenocarcinoma 18 (36%) 6 (19%) 11 (41%) 9 (30%)

Squamous cell carcinoma 14 (28%) 9 (29%) 14 (52%) 18 (60%)

NSCLC Otherwise Specified 18 (36%) 16 (52%) 2 (7%) 3 (10%)

Radiotherapy [dose] 2,3 1,3,4 1,2 2

Range (median) 45–69 (69) 46–70 (61) 66–70 (66) 30–74 (66)

Mean ± SD 64 ± 6 61 ± 7 68 ± 2 66 ± 8

Chemotherapy 2 1,3,4 2 2

Concurrent 50 (100%) 13 (42%) 27 (100%) 30 (100%)

Sequential - 17 (55%) - -

No - 1 (3%) - -

Interval pre-PET–First RT [days] 3,4 3,4 1,2,4 1,2,3

Range (median) 4–16 (7) 2–13 (7) 5–93 (33) 2–37 (16)

Mean ± SD 7 ± 2 8 ± 2 38 ± 21 17 ± 7

Interval First RT–during-PET [days] 2,3 1,3,4 1,2,4 2,3

Range (median) 5–20 (15) 6–19 (8) 15–32 (21)b 14–24 (15)

Mean ± SD 15 ± 2 9 ± 3 21 ± 4 16 ± 3

Interval between PET scans [days] 2,3,4 1,3,4 1,2,4 1,2,3

Range (median) 19–27 (22) 10–24 (16) 21–110 (52) 22–59 (33)

Mean ± SD 22 ± 2 17 ± 3 59 ± 21 34 ± 8

aIncludes one TxN2M0 patient, for which the merged structure between node and tumor was analyzed.
bTwo patients’ first PET scans were acquired more than 30 days after start of radiotherapy.

https://doi.org/10.1371/journal.pone.0217536.t002
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(standard deviation), 2) Wavelet LLH GLDZM IV (Inverse Variance) and 3) Wavelet LLH

GLSZM IV. The corresponding beta coefficients of the Cox model were 1.38, 5.0�10−17 and

2.9�10−32, respectively. Fig 3 shows the ranges of the prognostic index (PI) for all four datasets

for this model.

In Table 3 shows the results for Harrell’s concordance index for the imaging features

extracted from all image sets and the calculated differences. The performances of models

trained on Dataset 2, 3 or 4 are shown in Supplementary Information S3 Text.

Furthermore, all data was combined into one large cohort and randomly split into training

(n = 103) and validation (n = 35). For CT-rel and CT-abs, models were selected with c-indices

Fig 1. Kaplan-Meier curves. Kaplan-Meier curves for overall survival of all datasets.

https://doi.org/10.1371/journal.pone.0217536.g001
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significantly different from 0.5: 0.68 [95% C.I. 0.61–0.74] and 0.68 [95% C.I. 0.61–0.74],

respectively. However, none of these models could be validated on the validation subgroup,

reaching c-indices of 0.54 [95% C.I. 0.42–0.67] and 0.50 [95% C.I. 0.37–0.62]. For the other

image sets, subsets of regressors were identified which resulted in predictions (i.e. relative

risks) equal to 1 for all patients, meaning that the model did not contain any prognostic

information.

Besides LASSO, different classifiers were investigated to further examine the prognostic

value of the radiomic features for 2-year survival. The mean AUC values are shown in the heat-

map of Fig 4.

Table 4 shows the results of the univariable analysis of the prognostic value of percentage

variation of common PET imaging descriptors on the combined cohort of 138 patients. The

results for hazard ratio (HR), corresponding confidence interval (CI) and the c-index were

shown.

Fig 2. ROCs cohort difference model. Receiver Operator Curves (ROC) for the cohort difference (CD) model for each combination

of datasets, including three radiomic features and ‘two-year survival’ as independent variables.

https://doi.org/10.1371/journal.pone.0217536.g002
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Discussion

This study aimed to show potential issues using a typical problematic example of retrospective

multi-centric study, by investigating different methodologies and approaches for comparing

cohort characteristics and assessing prognostic performance in a radiomic study. The analysis

was based on a combined evaluation of four sub-cohorts, which resulted in the inclusion of

138 patients. The acquisition of a larger dataset is challenging for this research question, as

FDG-PET/CT scans during treatment are not standard in clinical routine. As far as we are

aware, the current dataset is one of the largest available. Nevertheless, the amount of data is

probably less than required in order to build a generalized feature model for repeated PET/CT

studies. Although the size of this dataset may not be sufficient from a statistical point of view,

its results may provide clinical relevant insights to be obtained in order to improve future stud-

ies with limited sample sizes. Therefore, we think it is important to publish these results in an

Fig 3. Prognostic Index. Prognostic index (PI) ranges for all datasets based on the model developed on CT–scan1, using Dataset 1 as training

dataset.

https://doi.org/10.1371/journal.pone.0217536.g003
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attempt to guide reflections and considerations with respect to analyses and conclusions in

future (radiomic) studies. In this study, both the characteristics of the study cohort and the

prognostic performance of imaging features were extensively explored.

First of all, comparison of the cohort characteristics of all datasets showed that all variables

were significantly different between two or more datasets, except for age. The overall stage, as

well as the received radiotherapy dose of the patients in Dataset 1, was significantly different

compared to the other three datasets. In addition, the timing of chemotherapy was different,

since 55% of the patients from Dataset 2 received sequential chemotherapy, whereas all other

patients received concurrent chemotherapy. Furthermore, the intervals between the two

FDG-PET/CT scans was quite different between the datasets, since this was a retrospective

Table 3. Model performance. Values of Harrell’s concordance index with 95% confidence intervals, in the case Dataset 1 (n = 50) was used as training (T) to develop a

model using LASSO. Validation (V) results are shown for Dataset 2, 3 and 4. Significant values are indicated in grey. A hyphen indicates that either all coefficients were

forced to zero, or all predictions were equal to one, meaning that no linear combination of any subset of regressors was useful in predicting the outcomes.

CT-scan1 CT-scan2 PT-scan1 PT-scan2 CT-rel CT-abs PT-rel PT-abs

T-Dataset 1 0.68 - - - 0.67 - 0.64

T-Lower bound 0.59 - - - 0.57 - 0.56

T-Upper bound 0.76 - - - 0.76 - 0.73

V-Dataset 2 0.55 - - - 0.58 - 0.56

V-Lower bound 0.40 - - - 0.48 - 0.43

V-Upper bound 0.69 - - - 0.69 - 0.70

V-Dataset 3 0.41 - - - 0.53 - 0.56

V-Lower bound 0.27 - - - 0.39 - 0.44

V-Upper bound 0.54 - - - 0.68 - 0.68

V-Dataset 4 0.49 - - - 0.62 - 0.52

V-Lower bound 0.37 - - - 0.48 - 0.36

V-Upper bound 0.62 - - - 0.75 - 0.68

https://doi.org/10.1371/journal.pone.0217536.t003

Fig 4. Classifiers heatmap. Heatmap with the mean AUC values found for each classifier and each image set, predicting two-year survival. The entire cohort

with at least two-years of follow-up (n = 134) was used in this investigation.

https://doi.org/10.1371/journal.pone.0217536.g004
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study and the initial purposes of the studies were different. The variations in treatment types

as well as differing outcomes between the cohorts are a probable source of noise that dilutes

any signal present within the radiomic features. Furthermore, heterogeneities introduced by

differences in timing of the imaging sessions, e.g. between PET scans, are a well-known con-

founding factor in retrospective imaging studies. Besides the large variabilities of clinical vari-

ables between the datasets, the CD-model showed high AUC values (0.65–0.88). The high

AUC values of the CD-model indicate high ability to predict to which dataset the data belongs.

In other words, high AUC values mean that the (distribution of) the input variables of the

cohort are very different. This may be caused by differences in radiomic features since the sur-

vival is very similar for all datasets (Fig 1). Moreover, this shows that the model tests the trans-

ferability rather than the reproducibility of the model, i.e. the model is specific for a

population. While the exclusion of patients with characteristics considered to be outliers

would have resulted in a more homogeneous dataset, we decided against this approach as it

would have resulted in too small a dataset to draw any conclusions from.

Secondly, the prognostic performance of the radiomic features extracted from CT, PET,

delta-CT or delta-PET, was investigated. The models were selected using a LASSO procedure.

High values of Harrell’s concordance index (around 0.7 and even reaching 0.86) indicate good

prognostic performance of the models trained on Dataset 2. Nevertheless, the results could not

be validated on independent datasets, with the only significant c-index being 0.64 achieved on

Dataset 4 for PET-scan1. This c-index was the only value being significantly different from 0.5.

When one of the other datasets was used as training, no model achieved a c-index significantly

different from 0.5 on any of the remaining validation datasets. In terms of discriminative

power of the model, the spread of prognostic indices shown for the model trained on CT-

scan1 of Dataset 1 does not show relevant outliers or differences between the datasets. In sum-

mary, the model performance results show the importance of validation: one should be careful

with presenting results that are developed on (small) datasets without validation, as they are

likely to be over-optimistic. In case only one (large) dataset is available, a cross-validation pro-

cedure could be applied to reduce the risk of overfitting. A recent paper summarizes the need

for validation to assess the clinical usefulness of prognostic models [27].

Potentially, LASSO (e.g. penalized regression) was not the optimal method to select a prog-

nostic model. Therefore, multiple other classifiers [28] were investigated using the methodol-

ogy described by Deist et al. [26]. Since the sub-cohorts were small, all data were combined

into one large cohort to investigate the ability of five different classifiers to predict 2-year sur-

vival. None of the classification methods was able to produce a clinical significant result, with

the highest mean AUC being 0.58 for the radiomic features extracted from CT images prior to

treatment. This result was achieved by the support vector machine (svm), which overall

obtained the highest AUC results. Combining datasets into one large cohort did also not result

Table 4. Univariable analysis. Cox regression on the percentage variation of the PET imaging descriptors most commonly used, reporting the univariable hazard ratio

(HR), 95% confidence interval (CI) of the HR and corresponding p-value. Univariable performance is reported in terms of the concordance-index (c-index). Absolute val-

ues of Scan 1 and 2, and percentage variation between PET acquisitions of the analyzed metrics are also presented (mean ± standard deviation).

Scan 1 Scan 2 Percentage difference HR 95% CI p-value c-index

Volume [cm3] 85 ± 113 68 ± 94 -20 ± 31 1.11 0.55–2.25 0.77 0.50

SUV max 12 ± 6.2 9.0 ± 4.1 -20 ± 39 1.16 0.73–1.83 0.53 0.52

SUV mean 5.3 ± 2.5 4.1 ± 1.8 -12 ± 71 1.09 0.87–1.36 0.45 0.55

SUV peak 8.8 ± 4.3 6.4 ± 2.8 -18 ± 51 1.14 0.83–1.56 0.43 0.54

MTV 50% 26 ± 39 20 ± 25 -9.5 ± 46 1.72 1.09–2.71 0.02 0.54

TLG 50% 266 ± 499 132 ± 212 -25 ± 61 1.19 0.92–1.54 0.18 0.56

https://doi.org/10.1371/journal.pone.0217536.t004

FDG-PET/CT radiomics for NSCLC patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0217536 June 3, 2019 12 / 17

https://doi.org/10.1371/journal.pone.0217536.t004
https://doi.org/10.1371/journal.pone.0217536


in significant c-indices, potentially influenced by the heterogeneity within the combined data-

set, which makes it rather difficult to develop a prognostic model.

The performance of the percentage variation of commonly used PET metrics was also

investigated. Only MTV50% achieved a significant Hazard Ratio, but the corresponding c-

index of the Cox model was not significantly different from 0.5. This performance was also

performed on the PET features extracted from either scan 1 or 2 instead of the percentage vari-

ation. None of the metrics was significantly related to overall survival (results not shown). This

contradicts previously published results, which have shown the importance of these metrics in

a prognostic setting [29, 30].

The results do not show conclusive results for the possibility to perform early treatment

response assessment using an additional 18F-FDG-PET/CT scan acquired at intermediate time

point during treatment with a radiomics analysis. However, the potential prognostic value of

differences between two time points was investigated before and showed promising, but also

conflicting results [10, 12, 14, 16, 31]. Cremonesi et al. [32] reports that the differences in PET

parameters are a main limitation for 21 recent studies in early response assessment for NSCLC

patients. In general, radiomic features are highly affected by different acquisition and recon-

struction settings [33–39]. This is one of the factors that could (partly) explain the results in

the current study. In this study, there were large differences between datasets, but even within

a dataset the acquisition and reconstruction settings were not identical, as shown in Table 1.

The inconsistency of settings within a dataset is an issue which is difficult to overcome, espe-

cially in retrospective studies. Initiatives to provide protocols and guidelines will hopefully

improve standardization in the future [40–42]. Moreover, a recent study proposed a ‘post-

reconstruction harmonization method’ to reduce the variability in radiomic features extracted

from PET images from different institutes [43]. Besides the inconsistency in acquisition and

reconstruction settings within a dataset, other parts of the radiomics workflow including seg-

mentation [44], pre-processing [45, 46] and feature extraction, remain problematic for multi-

center studies and the transferability and reproducibility of developed models. A recent review

proposed a harmonization for the radiomics methodology [47]. Moreover, the image bio-

marker standardization initiative (ISBI) attempts to standardize radiomics in terms of feature

definitions and processing [48]. Nevertheless, the lack of standardization remains one the

main limitations for radiomic studies. Several factors can improve the quality of future radio-

mic studies and reduce the risk of false positive results, as summarized in the recently proposed

Radiomics Quality Score (RQS) [3].

The descriptive character of this study is intended to serve as a tool for highlighting com-

mon issues in radiomics literature and to emphasize pitfalls for future studies. Moreover, we

emphasize the urgent need to publish negative results to avoid publication bias. With the cur-

rent study, we would like to highlight the importance of proper validation of the results, but

also the consideration of the feasibility of performing a (radiomic) study. We would recom-

mend to perform statistically rigorous sample size calculations upfront and to perform an

extensive cohort investigation to decrease the risk of false positive findings. It is essential to

reduce this risk, as the main goal is to improve individual treatment decisions for better patient

outcome, which can only be achieved when proper statistically sound investigations are

reported.

Conclusion

In an attempt to inform future radiomic studies, we illustrate possible problems that can be

encountered in retrospective multi-centric study by evaluating cohort characteristics and clini-

cal characteristics. The models presented do not support any correlation between radiomic
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features acquired from FDG-PET/CT scans and overall survival. Further investigations indi-

cate that the radiomic analysis was influenced by the limited sample size and heterogeneous

imaging and clinical characteristics.
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27. Zwanenburg A, Löck S. Why validation of prognostic models matters? Radiotherapy and Oncology.

https://doi.org/10.1016/j.radonc.2018.03.004 PMID: 29598835

28. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in

cancer prognosis and prediction. Computational and structural biotechnology journal. 2015; 13:8–17.

Epub 2015/03/10. https://doi.org/10.1016/j.csbj.2014.11.005 PMID: 25750696; PubMed Central

PMCID: PMCPMC4348437.

29. Paesmans M, Garcia C, Wong CY, Patz EF Jr., Komaki R, Eschmann S, et al. Primary tumour stan-

dardised uptake value is prognostic in nonsmall cell lung cancer: a multivariate pooled analysis of indi-

vidual data. Eur Respir J. 2015; 46(6):1751–61. Epub 2015/09/26. https://doi.org/10.1183/13993003.

00099-2015 PMID: 26405289.

30. Fried DV, Mawlawi O, Zhang L, Fave X, Zhou S, Ibbott G, et al. Stage III Non-Small Cell Lung Cancer:

Prognostic Value of FDG PET Quantitative Imaging Features Combined with Clinical Prognostic Fac-

tors. Radiology. 2016; 278(1):214–22. Epub 2015/07/16. https://doi.org/10.1148/radiol.2015142920

PMID: 26176655; PubMed Central PMCID: PMCPMC4699494.

31. Fave X, Zhang L, Yang J, Mackin D, Balter P, Gomez D, et al. Delta-radiomics features for the predic-

tion of patient outcomes in non-small cell lung cancer. Scientific reports. 2017; 7(1):588. Epub 2017/04/

05. https://doi.org/10.1038/s41598-017-00665-z PMID: 28373718.

32. Cremonesi M, Gilardi L, Ferrari ME, Piperno G, Travaini LL, Timmerman R, et al. Role of interim (18)F-

FDG-PET/CT for the early prediction of clinical outcomes of Non-Small Cell Lung Cancer (NSCLC) dur-

ing radiotherapy or chemo-radiotherapy. A systematic review. European journal of nuclear medicine

and molecular imaging. 2017; 44(11):1915–27. Epub 2017/07/07. https://doi.org/10.1007/s00259-017-

3762-9 PMID: 28681192.

FDG-PET/CT radiomics for NSCLC patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0217536 June 3, 2019 16 / 17

https://doi.org/10.1186/s13550-016-0208-5
https://doi.org/10.1186/s13550-016-0208-5
http://www.ncbi.nlm.nih.gov/pubmed/27334609
https://doi.org/10.1097/RLU.0000000000000615
http://www.ncbi.nlm.nih.gov/pubmed/25546211
https://doi.org/10.1053/j.sult.2010.10.001
http://www.ncbi.nlm.nih.gov/pubmed/21147377
https://doi.org/10.1080/0284186x.2017.1351624
http://www.ncbi.nlm.nih.gov/pubmed/28885084
https://doi.org/10.1016/j.radonc.2017.04.016
http://www.ncbi.nlm.nih.gov/pubmed/28506693
https://doi.org/10.1007/s00259-012-2280-z
https://doi.org/10.1007/s00259-012-2280-z
http://www.ncbi.nlm.nih.gov/pubmed/23151913
https://doi.org/10.2967/jnumed.107.049585
http://www.ncbi.nlm.nih.gov/pubmed/18483085
http://www.ncbi.nlm.nih.gov/pubmed/7069920
https://doi.org/10.1186/1471-2288-13-33
http://www.ncbi.nlm.nih.gov/pubmed/23496923
https://doi.org/10.1002/mp.12967
http://www.ncbi.nlm.nih.gov/pubmed/29763967
https://doi.org/10.1016/j.radonc.2018.03.004
http://www.ncbi.nlm.nih.gov/pubmed/29598835
https://doi.org/10.1016/j.csbj.2014.11.005
http://www.ncbi.nlm.nih.gov/pubmed/25750696
https://doi.org/10.1183/13993003.00099-2015
https://doi.org/10.1183/13993003.00099-2015
http://www.ncbi.nlm.nih.gov/pubmed/26405289
https://doi.org/10.1148/radiol.2015142920
http://www.ncbi.nlm.nih.gov/pubmed/26176655
https://doi.org/10.1038/s41598-017-00665-z
http://www.ncbi.nlm.nih.gov/pubmed/28373718
https://doi.org/10.1007/s00259-017-3762-9
https://doi.org/10.1007/s00259-017-3762-9
http://www.ncbi.nlm.nih.gov/pubmed/28681192
https://doi.org/10.1371/journal.pone.0217536


33. Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET

images due to different acquisition modes and reconstruction parameters. Acta oncologica (Stockholm,

Sweden). 2010; 49(7):1012–6. Epub 2010/09/14. https://doi.org/10.3109/0284186x.2010.498437

PMID: 20831489; PubMed Central PMCID: PMCPmc4091820.

34. van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, et al. Repeatability of

Radiomic Features in Non-Small-Cell Lung Cancer [F]FDG-PET/CT Studies: Impact of Reconstruction

and Delineation. Mol Imaging Biol. 2016. https://doi.org/10.1007/s11307-016-0940-2 PMID: 26920355.

35. Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of Image Reconstruction Set-

tings on Texture Features in 18F-FDG PET. Journal of nuclear medicine: official publication, Society of

Nuclear Medicine. 2015; 56(11):1667–73. https://doi.org/10.2967/jnumed.115.156927 PMID:

26229145.

36. Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE. Quantitative radiomics: impact of

stochastic effects on textural feature analysis implies the need for standards. Journal of medical imag-

ing (Bellingham, Wash). 2015; 2(4). https://doi.org/10.1117/1.jmi.2.4.041002 PMID: 26251842;

PubMed Central PMCID: PMCPMC4524811.

37. Mackin D, Ger R, Dodge C, Fave X, Chi P-C, Zhang L, et al. Effect of tube current on computed tomog-

raphy radiomic features. Scientific reports. 2018; 8(1):2354. https://doi.org/10.1038/s41598-018-

20713-6 PMID: 29403060

38. Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, et al. Measuring Computed Tomography Scan-

ner Variability of Radiomics Features. Investigative radiology. 2015; 50(11):757–65. https://doi.org/10.

1097/RLI.0000000000000180 PMID: 26115366; PubMed Central PMCID: PMCPMC4598251.

39. Bailly C, Bodet-Milin C, Couespel S, Necib H, Kraeber-Bodere F, Ansquer C, et al. Revisiting the

Robustness of PET-Based Textural Features in the Context of Multi-Centric Trials. PloS one. 2016; 11

(7):e0159984. Epub 2016/07/29. https://doi.org/10.1371/journal.pone.0159984 PMID: 27467882;

PubMed Central PMCID: PMCPMC4965162.

40. Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET

and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. European journal of

nuclear medicine and molecular imaging. 2010; 37(1):181–200. Epub 2009/11/17. https://doi.org/10.

1007/s00259-009-1297-4 PMID: 19915839; PubMed Central PMCID: PMCPMC2791475.

41. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT:

EANM procedure guidelines for tumour imaging: version 2.0. European journal of nuclear medicine and

molecular imaging. 2015; 42(2):328–54. Epub 2014/12/03. https://doi.org/10.1007/s00259-014-2961-x

PMID: 25452219; PubMed Central PMCID: PMCPMC4315529.

42. de Jong EEC, van Elmpt W, Hoekstra OS, Groen HJM, Smit EF, Boellaard R, et al. Quality assessment

of positron emission tomography scans: recommendations for future multicentre trials. Acta oncologica

(Stockholm, Sweden). 2017; 56(11):1459–64. Epub 2017/08/24. https://doi.org/10.1080/0284186x.

2017.1346824 PMID: 28830270.

43. Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, et al. A post-reconstruc-

tion harmonization method for multicenter radiomic studies in PET. Journal of nuclear medicine: official

publication, Society of Nuclear Medicine. 2018. Epub 2018/01/06. https://doi.org/10.2967/jnumed.117.

199935 PMID: 29301932.

44. Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust Radiomics

feature quantification using semiautomatic volumetric segmentation. PloS one. 2014; 9(7):e102107.

https://doi.org/10.1371/journal.pone.0102107 PMID: 25025374; PubMed Central PMCID:

PMCPMC4098900.

45. Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R, et al. The effect of SUV

discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor tex-

ture analysis. Scientific reports. 2015; 5:11075. https://doi.org/10.1038/srep11075 PMID: 26242464;

PubMed Central PMCID: PMCPMC4525145.

46. Mackin D, Fave X, Zhang L, Yang J, Jones AK, Ng CS, et al. Harmonizing the pixel size in retrospective

computed tomography radiomics studies. PloS one. 2017; 12(9):e0178524. Epub 2017/09/22. https://

doi.org/10.1371/journal.pone.0178524 PMID: 28934225; PubMed Central PMCID: PMCPMC5608195.

47. Sollini M, Cozzi L, Antunovic L, Chiti A, Kirienko M. PET Radiomics in NSCLC: state of the art and a pro-

posal for harmonization of methodology. Scientific reports. 2017; 7(1):358. Epub 2017/03/25. https://

doi.org/10.1038/s41598-017-00426-y PMID: 28336974; PubMed Central PMCID: PMCPMC5428425.

48. Zwanenburg A, Leger S, Vallieres M, Lock S. Image biomarker standardisation intitiative—feature defi-

nitions. CoRR. 2016;abs/1612.07003.

FDG-PET/CT radiomics for NSCLC patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0217536 June 3, 2019 17 / 17

https://doi.org/10.3109/0284186x.2010.498437
http://www.ncbi.nlm.nih.gov/pubmed/20831489
https://doi.org/10.1007/s11307-016-0940-2
http://www.ncbi.nlm.nih.gov/pubmed/26920355
https://doi.org/10.2967/jnumed.115.156927
http://www.ncbi.nlm.nih.gov/pubmed/26229145
https://doi.org/10.1117/1.jmi.2.4.041002
http://www.ncbi.nlm.nih.gov/pubmed/26251842
https://doi.org/10.1038/s41598-018-20713-6
https://doi.org/10.1038/s41598-018-20713-6
http://www.ncbi.nlm.nih.gov/pubmed/29403060
https://doi.org/10.1097/RLI.0000000000000180
https://doi.org/10.1097/RLI.0000000000000180
http://www.ncbi.nlm.nih.gov/pubmed/26115366
https://doi.org/10.1371/journal.pone.0159984
http://www.ncbi.nlm.nih.gov/pubmed/27467882
https://doi.org/10.1007/s00259-009-1297-4
https://doi.org/10.1007/s00259-009-1297-4
http://www.ncbi.nlm.nih.gov/pubmed/19915839
https://doi.org/10.1007/s00259-014-2961-x
http://www.ncbi.nlm.nih.gov/pubmed/25452219
https://doi.org/10.1080/0284186x.2017.1346824
https://doi.org/10.1080/0284186x.2017.1346824
http://www.ncbi.nlm.nih.gov/pubmed/28830270
https://doi.org/10.2967/jnumed.117.199935
https://doi.org/10.2967/jnumed.117.199935
http://www.ncbi.nlm.nih.gov/pubmed/29301932
https://doi.org/10.1371/journal.pone.0102107
http://www.ncbi.nlm.nih.gov/pubmed/25025374
https://doi.org/10.1038/srep11075
http://www.ncbi.nlm.nih.gov/pubmed/26242464
https://doi.org/10.1371/journal.pone.0178524
https://doi.org/10.1371/journal.pone.0178524
http://www.ncbi.nlm.nih.gov/pubmed/28934225
https://doi.org/10.1038/s41598-017-00426-y
https://doi.org/10.1038/s41598-017-00426-y
http://www.ncbi.nlm.nih.gov/pubmed/28336974
https://doi.org/10.1371/journal.pone.0217536

