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Liver fibrosis in chronic hepatitis B is the pathological repair response of the liver to chronic injury, which is a key step in the
development of various chronic liver diseases to cirrhosis and an important link affecting the prognosis of chronic liver diseases.
The further development of liver fibrosis in chronic hepatitis B can lead to the disorder of hepatic lobule structure, nodular
regeneration of hepatocytes, formation of a pseudolobular structure, namely, cirrhosis, clinical manifestations of liver dys-
function, and portal hypertension. So far, the diagnosis of liver fibrosis in chronic hepatitis B has been made manually by doctors.
However, this is very subjective and boring for doctors. Doctors are likely to be interfered with by external factors, such as fatigue
and lack of sleep. This paper proposed a 5-layer deep convolution neural network structure for the automatic classification of liver
fibrosis in chronic hepatitis B. In the 5-layer deep convolution neural network structure, there were three convolution layers and
two fully connected layers, and each convolution layer was connected with a pooling layer. 123 ADC images were collected, and
the following results were obtained: the accuracy, sensitivity, specificity, precision, F1, MCC, and FMI were 88.13% + 1.47%,
81.45% + 3.69%, 91.12% + 1.72%, 80.49% + 2.94%, 80.90% * 2.39%, 72.36% + 3.39%, and 80.94% + 2.37%, respectively.

1. Introduction

Liver fibrosis in chronic hepatitis B is caused by the excessive
accumulation of extracellular matrix proteins, including
collagen, that occurs in most types of chronic liver diseases
[1]. Liver fibrosis in chronic hepatitis B is the pathological
repair response of the liver to chronic injury, which is a key
step in the development of various chronic liver diseases to
cirrhosis and a vital link affecting the prognosis of chronic
liver diseases. The further development of liver fibrosis in
chronic hepatitis B can lead to the disorder of hepatic lobule
structure, nodular regeneration of hepatocytes, formation of
a pseudolobular structure, namely, cirrhosis, clinical man-
ifestations of liver dysfunction, and portal hypertension.
Liver fibrosis is histologically reversible, and cirrhosis is
difficult to reverse but can be reversed in a few cases.

So far, there are three main methods to diagnose liver
fibrosis in chronic hepatitis B. The first is the imaging

diagnosis of liver fibrosis in chronic hepatitis B [2]: some
signs of liver fibrosis can be found by B-ultrasound, MRI,
spiral CT, and color Doppler diagnoses, such as irregular or
nodular liver outline, changes of liver parenchymal signal,
irregular or nodular shape, an increase of spleen thickness,
widening of the portal vein, and spleen vein. However, these
influential diagnoses cannot make a clear diagnosis of liver
fibrosis and fibrosis degree, so it is often used as the auxiliary
diagnosis index in clinic. The second is the pathological
diagnosis of liver fibrosis in chronic hepatitis B [3]: clinical-
pathological diagnosis of liver fibrosis can not only diagnose
liver fibrosis but also understand the degree of development
of liver fibrosis and potential liver damage. The third is the
diagnosis of liver fibrosis in chronic hepatitis B by serum
indicators [4]: serum index is the most widely studied
method for the diagnosis of liver fibrosis in chronic hepatitis
B. There are hyaluronic acid, III type procollagen, para-type
collagen, and laminin in the diagnosis of liver fibrosis in
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chronic hepatitis B. Through the measurement and judg-
ment of its detection value, it is of great value to the diagnosis
of liver fibrosis in chronic hepatitis B and the measurement
of the degree of liver fiber in chronic hepatitis B. However,
the serological indexes are not completely corresponding to
the pathological changes of liver fibrosis in chronic hepatitis
B at present, so attention should be paid to the differenti-
ation in diagnosis.

The diagnosis of liver fibrosis in chronic hepatitis B is
carried out manually by doctors. However, this is very
subjective and boring for doctors. Doctors are likely to be
interfered with by external factors, such as fatigue, lack of
sleep, and so on. With the continuous development of ar-
tificial intelligence and computer vision, computer tech-
nology has been applied to various fields, such as the analysis
of medical images [5]. Subramaniam et al. [6] used CNN to
segment and diagnose medical images. Kim et al. [7] used
the denoising CNN (DnCNN) method and trained the
network using regular-dose images as ground truth and low-
dose images as input. Li et al. [8] proposed an FCN model
similar to the u-net structure to regress MR images to CT
images. Li et al. [9] proposed a new region-based convo-
lution neural network framework for multitask prediction
using an epithelial network header and hierarchical network
header. Chen et al. [10] proposed a new CNN architecture,
called dense res-induction network (DRINET), to improve
the convolution layer to learn the characteristics of medical
images. Gu et al. [11] proposed a comprehensive attention-
based CNN (CA-Net) for more accurate and explainable
medical image segmentation that is aware of the most im-
portant spatial positions, channels, and scales at the same
time. Xiao et al. [12] proposed a Multiscale Receptive Field
Convolution Neural Network (MRF-CNN) for the seg-
mentation of the liver portal areas in hematoxylin and eosin-
(H&E-) stained whole slide images (WSIs). Yu et al. [13]
proposed a new liver fibrosis detecting algorithm based on
the ultrasound echo amplitude analysis and deep learning to
classify normal and fibrosis tissue in computer simulation
data. Reddy et al. [14] proposed a novel CAD framework
using convolution neural networks and transfer learning
(pretrained VGG-16 model).

This paper proposed a 5-layer deep convolution neural
network structure for the automatic classification of liver
fibrosis in chronic hepatitis B. This paper’s main innovations
and contributions are as follows:

(i) We proposed an automatic classification method of
liver fibrosis in chronic hepatitis B

(ii) We used batch normalization to make the model
training more stable and avoid gradient explosion

The remaining structure of this paper is as follows:
Section 2 introduces the materials, classification, methods,
and CNN structure are given in Section 3, Section 4 mainly
discusses the experimental results, and Section 5 is about the
conclusion, the shortcomings of this paper, and the future
research direction.
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2. Materials

A total of 123 ADC images were collected from local hos-
pitals with the full knowledge and consent of the patients. All
the collected ADC images were divided into stages of F0, F1,
F2, F3, and F4 according to the internationally used
METAVIR method, as shown in Figure 1.

The 123 ADC images of patients with chronic hepatitis B
were divided into FO-F4, among which FO had 12 patient
ADC images, F1 had 26 patient ADC images, F2 had 20
patient ADC images, F3 had 26 patient ADC images, and F4
had 39 patient ADC images, as shown in Table 1. Experi-
enced doctors reconfirmed the identification and classifi-
cation of all ADC images. This paper used the method binary
classification, FO and F1 as one positive group and F2, F3,
and F4 as one negative group.

3. Methodology

This paper mainly proposed a 5-layer deep convolution
neural network structure for the automatic classification of
liver fibrosis in chronic hepatitis B. Since the neural network
was proposed, it has been optimized and deepened by re-
searchers [5]. In the 2012 ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC), AlexNet [15] won the
championship. Two years later, GoogLeNet [16] won the
ILSVRC. In 2014, researchers developed a new deep con-
volution neural network structure: VGG [17]. The proposed
5-layer deep convolution neural network structure is
composed of the input layer, three convolution layers, three
pooling layers, two fully connected layers, and the output
layer, as shown in Figure 2.

3.1. Convolution. The convolution layer is one of the es-
sential parts of a deep convolution neural network (DCNN).
In the DCNN, the convolution layer implements a 2D
convolution for the 3D input and 3D filter, since the
channels of both input and filter are the same [18]. The
convolution layer has three main characteristics. First, the
parameters of the convolution layer are composed of a set of
learnable filters. Each filter is small in space (width and
height), but the depth is consistent with the input data.
Second, it can be seen as an output of a neuron. Neurons
only observe a small part of the input data and share pa-
rameters with all neurons on the left and right sides of the
space. Third, the convolution layer can reduce the number of
parameters. Because convolution has the characteristic of
“weight sharing,” it can reduce the calculation cost and
prevent overfitting due to too many parameters.

In the DCNN, the working principle of the convolution
layer is the filter scans the input for convolution operation to
extract features [19]. Its specific operation is the filter scans
the input from left to right and from top to bottom (find the
same part as the filter in the input), then multiplies the input
and the filter, and then, sums up to get the output.
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FIGURE 1: ADC images. (a) F0. (b) F1. (c) F2. (d) F3. (e) F4.
TaBLE 1: Demographics of liver fibrosis in chronic hepatitis B.
FO F1 F2 F3 F4
No. of ADC images 12 26 20 26 39
PL2 L PL
LI CL2 CL3 3
Output
FCL1 FCL2
FIGURE 2: The flowchart of our model.
As shown in Figure 3, the input matrix size is 4 x4, W,—-F,+2B
the filter matrix size is 3 x 3, and the output matrix size is Wi = Q +1
2 x2. We assume there is an input size with W x Hy x Dy.
W, is the width of the input, H is the height of the input, H. - H,-F,+2B +1 (1)
and Dy is the depth of the input. F, x F, x F,. F,, is the ket Q ’
width of the filter, F;, is the height of the filter, and
F; is the depth of the filter. The number of filters is Dy, =M.

generally not certain. Researchers usually determine the
number of filters by experience. The output is calculated
as follows:

In the abovementioned formula, the size of the output is
Wit X Hyy1 X Dyy 1, B represents the padding, Q represents
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Ficure 3: Convolution operation.

the stride, and M denotes the number of filters. The flow
chart of the convolution layer is shown in Figure 4.

3.2. Pooling. A pooling layer is usually added after one or
more convolution layers in the deep convolution neural
network. The pooling layer operation does not need a
specific kernel. The pooling layer has two advantages: (i)
helping to obtain invariance to translation and (ii) reducing
the dimension to reduce the amount of calculation [20]. Two
pooling layers are commonly used: max pooling and average
pooling.

Figure 5(a) shows that this is the max pooling that selects
the maximum value within the pool region. The width and
height of the pooling layer will be reduced by half with a
stride of 2. The output size of the pooling operation is a
matrix with 2 x 2, while the input size is a matrix with 4 x 4.
Pooling operation makes the dimension of input size greatly
smaller.

As shown in Figure 5(b), the working principle of av-
erage pooling is similar to that of maximum pooling, but the
average value replaces the maximum value.

Suppose a rectangular region R;; is given, where i is the
number of rows and j is the number of columns. The max
pooling formula is as follows:

m;; =maxx,, p=1L...,iandg=1,...,j, (2)

where m;; represents the output value of the rectangular

region R;; by the operation of the max pooling and x,,

represents the element at (p, q) in the rectangular region R;;.
The average pooling (AP) formula is as follows:

1
a; = —prq, p=1,...,iandg=1,...,j, (3)
[R5

where a;; represents the output value of the rectangular
region R;; by the operation of the average pooling, x,,
represents the element at (p, q) in the rectangular region R;;,
and IRijI represents the number of elements in the rect-

angular region R;;.

3.3. Batch Normalization. For the general neural training
model, data standardization has been able to complete the
training. However, with the increase of the number of layers
and the updating of the parameters in each layer, the results

closer to the output layer would change greatly. It is chal-
lenging to train deep convolution neural networks effectively
[21]. During the model training, batch normalization (BN)
uses the mean and standard deviation of small batch to
adjust the intermediate output of the neural network con-
tinuously [22] so that the value of the intermediate output of
the whole neural network in each layer is more stable.
Firstly, the batch B is set as

» X} (4)

where # is the number of elements in the batch B.
Then, the mean value of the batch B is calculated as
follows:

B={x;,x,,...

1
Hp D x; (5)
The variance is calculated as follows:
1 n
Ué‘_z Z (% - P‘B)Z- (6)
i=1

After calculating the mean and variance, the standard-
ized calculation is carried out:

x; -
z;— i~ HUB ]
2 (7)
op+€
€€ (€>0) is a very small constant, which guarantees that
the denominator is greater than 0. Based on the above-
mentioned standardization, two model parameters (scale

parameter p and shift parameter ) are introduced into the
batch normalization layer to get the output:

Yie—yz;+p. (8)

3.4. Rectified Linear Unit. The operation of the activation
function is to activate some neurons in the neural network
and transmit the activation information to the next layer of
the neural network. The neural network can solve nonlinear
problems because the activation function adds nonlinear
factors, which makes up for the expressive power of the
linear model and preserves and maps the “characteristics of
activated neurons” to the next layer through functions. In
this paper, we used the ReLU function, as shown in Figure 6.
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FIGUure 4: Convolution layer flow chart.
Max pool with 2x2 Average pool with
filter and stride 2 2x2 filter and stride 2

A

(a)

()

FIGURE 5: Pooling layer. (a) Max pooling. (b) Average pooling.

It can be seen from Figure 6 that ReLU is hard saturated
when y<0. When y >0, the ReLU can keep the gradient
unchanged. The formula is as follows:

, if y>0,
ReLU(y) = { > Y )
0, ify<o.

From Figure 6 and formula (9), we can see that the
ReLU activation function has several advantages: (i) in the
case of backpropagation, ReLU can avoid the problem of
gradient vanishing, (ii) ReLU makes the output of some
neurons zero, which leads to the sparsity of the network,
reduces the interdependence of parameters, and alleviates
the overfitting problem, and (iii) compared with other
activation functions, such as tanh and sigmoid, ReLU
calculation is very simple.

3.5. Structure of DCNN. In this paper, the proposed 5-layer
deep convolution neural network structure was composed of
three convolution layers and two fully connected layers, as
shown in Table 2. Each convolution layer was connected
with a pooling layer. Each convolution layer had a different
number of convolution kernels. The first convolution layer
had 32 convolution kernels, the second had 64 convolution
kernels, and the third had 96 convolution kernels. The
convolution kernel of each convolution layer was 3 x 3. After
three times convolution and pooling calculations, the pa-
rameter was 24576. The parameters of the first fully con-
nected layer to the second layer were 24576 x300. The
output of the second fully connected layer was 300 x 2. The
flow chart of the DCNN structure is as shown in Figure 7.

3.6. Measures. We use 10-fold cross validation to evaluate
our model. Wesetw € 1,..., 10, and the confusion matrix is
set as

Ll

f4

f=y

v

f=o0 y

FIGURE 6: ReLU.

TaBLe 2: DCNN structure.

Layer Size Parameters
Input 256 x 256
Conv. layer 1 64x64x32 32 3 x 3, pooling size=2
Conv. layer 2 32x32x64 64 3 x 3, pooling size=2
Conv. layer 3 16 x16 x 96 96 3 x 3, pooling size =2
FCL1 300x1 24576 x 300
FCL2 2x1 300x2
TP (w) FN(w)
M(w)=[ ], €l,...,10, (10)
FP(w) TN (w)

where M (w) is the confusion matrix of the w-th run, TP (w)
represents the true positive of the w-th run, FN(w) rep-
resents the false negative of the w-th run, FP (w) represents
the false positive of the w-th run, and TN (w) represents the
true negative of the w-th run.

We can define measures as
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Figure 7: DCNN flow chart.

TP (w) + TN (w)

(11)

wel,..., 10,

0 W) = G ) T FP () + TN(w) + EN(w) “ €110
B TP (w)
tz(W)—m, wel,..., 10,
B TN (w)
t3(U))—m, wel,..., 10,
B TP (w)
t4(UJ)—m, wel,..., 10,
B 2TP (w)
W) = ) s PP w) s Ny Y1
(W) = TP (w) x TN (w) — FP (w) x FN (w)
61 = JCTP (w) + FP(w)) x (TP (w) + EN (w)) x (TN (w) + FP (w)) x (TN () + EN (w))
t, (w) = TP w) wel,..., 10,

/(TP (w) + FP (w)) x (TP (w) + FN(w))

where t;, means accuracy, t, means precision, f; means
specificity, t, means sensitivity, t; means F1, t, means MCC,
and ¢, means FMI.

We calculate the mean y and standard deviation SD of all
the measures (hel,...,7):

| L
u(ty) = 10 u; ty (w),

(12)
10

Y [ - u ()

w=1

SD(t,) =

ROC (receiver operating characteristic) curve: each
point on the ROC curve reflects the sensitivity to the same
signal stimulation, as shown in Figure 8.

AUC (area under the curve): the area under the ROC
curve, between 0.1 and 1. AUC as a numerical value can
directly evaluate the quality of the classifier. AUC value is a
probability value. The larger the AUC value, the better the
current classification algorithm can classify.

3.7. Statistics. 10-fold cross validation is used to evaluate the
proposed structure, as shown in Figure 9. The dataset is divided
into ten parts, nine of which are used as training data and one
as test data. Each test gets the corresponding correct rate (or
error rate). Ten groups of data are obtained from 10-fold cross
validation. The average values of ten groups are used as the
evaluation values. To reduce the contingency caused by a single
division of training set and test set, the existing dataset is used
to partition multiple times. Cross validation is used to reduce
contingency and improve generalization ability.

4. Experiments

The results of 10-fold cross validation are given in Table 3.
Among the ten groups of data, the sensitivity of the ninth group
was the highest (86.84), and the sensitivity of the tenth group
was the lowest (73.68). The specificity of the tenth group was
the highest (95.33), and the specificity of the first group was the
lowest (88.24). The highest precision was 83.58 in the tenth
group, and the lowest was 75.00 in the first group. The highest
accuracy was (90.65) in the ninth group, and the lowest (85.37)
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FiGure 8: ROC curve.
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FIGURE 9: An example of 10-fold cross validation.
TaBLE 3: Experimental results.
Run Sen Spc Prc Acc F1 MCC FMI
1 78.95 88.24 75.00 85.37 76.92 66.27 76.95
2 80.26 92.35 82.43 88.62 81.33 73.16 81.34
3 81.58 91.76 81.58 88.62 81.58 73.34 81.58
4 81.58 88.82 76.54 86.59 78.98 69.22 79.02
5 84.21 89.41 78.05 87.80 81.01 72.16 81.07
6 80.26 91.76 81.33 88.21 80.79 72.29 80.80
7 81.58 91.76 81.58 88.62 81.58 73.34 81.58
8 85.53 91.18 81.25 89.43 83.33 75.66 83.36
9 86.84 92.35 83.54 90.65 85.16 78.37 85.18
10 73.68 95.33 83.58 87.40 78.32 69.76 78.48
MSD 81.45+3.69 91.12+1.72 80.49 £2.94 88.13 +1.47 80.90 +2.39 72.36 +3.39 80.94 £2.37

accuracy was in the first group. The maximum value of F1 was
85.16 in the ninth group, and the minimum value was 92.98 in
the first group. The maximum MCC value was 78.37 in the
ninth group, and the minimum was 66.27 in the first group.
The maximum FMI value was 85.18 in the ninth group, and the
minimum was 76.95 in the first group.

It can be concluded from the table that the ninth group
of data was the best among the ten groups. The first group of
data was the worst, and each data in the first group was the
lowest in ten groups.

We introduced the AUC curve and its implications in
Section 3.6. Generally speaking, when AUC =1, it is a perfect
classifier; when AUC is [0.85, 0.95], the classifier is very
good; when AUC is [0.7, 0.85], the classifier is general; when
AUC is [0.5, 0.7], the classifier is bad, when AUC is 0.5, the
model has no predictive value; and when AUC <0.5, the
classifier is worse than a random guess. As shown in Fig-
ure 8, horizontal axis: false positive rate (FPR) and vertical
axis: true positive rate (TPR). The AUC value is 0.9042,
which proves that our method is highly accurate.



5. Conclusions

This paper proposed a 5-layer deep convolution neural
network structure for the automatic classification of liver
fibrosis in chronic hepatitis B. We used 10-fold cross vali-
dation to evaluate the proposed 5-layer deep convolution
neural network structure and obtained the following results:
the accuracy, sensitivity, specificity, precision, F1, MCC, and
FMI were 88.13% + 1.47% 81.45% + 3.69%, 91.12% + 1.72%,
80.49% +2.94%, 80.90% +2.39%, 72.36% +3.39%, and
80.94% =+ 2.37%, respectively.

The limitations of this study: (i) the training dataset is
relatively small. As the number of cases increases and the
number of training increases, the system’s performance will
achieve higher accuracys; (ii) the data collected in this study
came from the same hospital. We plan to collect other MRI
exams from different centers to evaluate the efficiency of the
testing; (iii) we did not compare DCNN structures with the
different number of convolution and fully connected layers;
and (iv) we did not compare with other approaches.

In the future study, (i) we will collect more data from
different sources; (ii) in the next paper, we will do a com-
parative test on the DCNN structure to get the best DCNN
structure.
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