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Introduction

Candida albicans is a polymorphic fungus that causes a wide spectrum of complex diseases

ranging from superficial mucocutaneous disorders to life-threatening invasive and dissemi-

nated infections, particularly in immunocompromised individuals. Understanding this com-

plex Candida–host interaction and the mechanisms that favour protective immunity over

immune pathology may provide valuable insights for the rational design of new immunothera-

pies. Immunity to C. albicans during mucosal and disseminated infections involves the coop-

erative action of innate and adaptive immune effectors that ultimately determines patient

outcome. In recent years, huge progress has been made in our understanding of Candida
immunity, particularly with regard to inflammasome activation, characterised by the release of

the cytokines interleukin (IL)-1β and IL-18.

IL-1β and IL-18 are potent pro-inflammatory cytokines that coordinate the activation of

innate and adaptive immune cells. They are produced as inactive cytoplasmic precursors (pro-

IL-1β and pro-IL-18) in response to danger- or pathogen-associated molecular patterns

(DAMPs/PAMPs; priming step) and must be posttranslationally processed by multimeric

complexes, termed ‘inflammasomes’, to generate the mature, biologically active cytokines [1].

Inflammasomes typically consist of a sensor protein, an adaptor (apoptosis-associated speck-

like protein containing a caspase recruitment domain (CARD) (ASC)), and an effector cas-

pase. Inflammasome assembly and activation of downstream caspases are triggered by several

molecular and cellular signalling events (activation step) that include ion flux, reactive oxygen

species (ROS), mitochondria dysfunction, or lysosomal destabilisation [1]. In addition to cyto-

kine secretion, pro-inflammatory caspases localised on inflammasomes can also cleave and

activate the pore-forming protein gasdermin D (GSDMD). Cleaved GSDMD oligomerises and

forms pores in the plasma membrane, leading to an inflammatory form of programmed cell

death called pyroptosis, which functions as a host defence mechanism in a wide range of

microbial infections [2]. However, inflammasome activation may be a double-edged sword

and thus requires tight regulation to be protective rather than immunopathogenic [3]. Accord-

ingly, determining the role played by inflammasomes during infectious diseases will be essen-

tial to identify intervention strategies aimed at boosting or inhibiting inflammasome-mediated

immune responses.

Inflammasome activation during C. albicans infection

Multiple inflammasomes can be activated as a result of the complex interplay between host

receptors and C. albicans cell wall components and secreted molecules. Thus far, C. albicans
has been shown to activate nucleotide-binding oligomerisation domain (NOD)-like receptor
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family pyrin domain-containing 3 (NLRP3), NOD-like receptor family CARD domain-con-

taining protein 4 (NLRC4), and noncanonical/caspase-8 or caspase-11 inflammasomes in

myeloid or epithelial cells (see PLOS Pathogens Pearls [4] for further details and references).

Furthermore, accumulating evidence has demonstrated that Candida-induced inflammasome

activation can lead to pyroptotic cell death (see PLOS Pathogens Pearls [5] for further details

and references). Although the precise signalling sensed by cytosolic NLRs remains unclear,

several molecular and cellular events leading to Candida-induced inflammasome activation

are emerging. Fungal cell wall components can be recognised by cell surface C-type lectin

receptors (CLRs) and Toll-like receptors (TLRs), which mainly provide a priming signal lead-

ing to the synthesis of pro-IL-1β and NLRP3 inflammasome components. For instance,

engagement of the CLR dectin-1 and TLR2 by β-glucan and zymosan has been demonstrated

to prime macrophages for subsequent IL-1β release by C. albicans, whilst the 2 stimuli were

unable to elicit this response by themselves [6]. Similarly, Myd88 and B cell lymphoma 10

(BCL10), which mediate signals downstream of TLRs and CLRs, respectively, have been

recently demonstrated to be necessary (induction of NLRP3 and IL-1β transcripts) but not suf-

ficient to trigger inflammasome activation and pyroptosis in macrophages, suggesting that

inflammasome activation and priming can be decoupled in response to C. albicans [7]. How-

ever, C. albicans activation of spleen tyrosine kinase (Syk)-coupled CLRs was found to induce

both pro-IL-1β synthesis and NLRP3 inflammasome activation through ROS production and

potassium efflux in murine dendritic cells [8]. Furthermore, β-glucan and both heat-killed and

live Candida can induce the assembly and activation of a noncanonical CARD-9/BCL10/

mucosa-associated lymphoid tissue lymphoma translocation (MALT)-1/ASC/caspase-8

inflammasome in human dendritic cells independently from dectin-1 internalisation or an

intracellular NLR [9]. This alternative pathway may represent a rapid mechanism through

which human dendritic cells release IL-1β to initiate and polarise appropriate adaptive

immune responses. These findings also suggest that different signalling pathways may lead to

inflammasome activation in distinct mononuclear phagocyte subsets during C. albicans
infection.

After recognition of Candida PAMPs, host cell surface receptors mediate the internalisation

of the pathogenic fungus. Phagocytosis of C. albicans and host lysosomal dysfunction were

shown to be required for NLRP3 inflammasome activation [10]. Indeed, treatment of macro-

phages with cytochalasin D or CA-074-Me, which inhibit phagocytosis and cathepsin B,

respectively, inhibited IL-1β production following C. albicans infection [10]. Furthermore, the

yeast-to-hypha transition [10] and changes in the profile of PAMPs expressed in the hyphal

cell wall, for example, the absence of a fully matured, branched outer mannan layer and the

exposure of inner hyphal cell wall components (e.g., β-glucan and chitin), have been proposed

to enhance recognition by pattern recognition receptors (PRRs) and IL-1β production by mac-

rophages [11]. Recently, however, the importance of C. albicans morphogenesis per se in the

induction of inflammasome activation and pyroptosis has been placed under scrutiny. Indeed,

filamentation-deficient C. albicans mutants capable of triggering IL-1β secretion and pyropto-

sis [12,13] and C. albicans mutants that retain the ability to form hyphae but induce decreased

IL-1β secretion and macrophage pyroptosis [13,14] have been identified. These findings have

also highlighted that biochemical features of the fungal cell wall, rather than just the physical

morphology of Candida, likely contribute to inflammasome activation and pyroptosis. For

instance, srb9Δ/Δ mutant hyphae, which show reduced surface-exposed β-1,3-glucan, also

exhibit reduced ability to cause IL-1β secretion and macrophage death post-phagocytosis [14].

Furthermore, fungal cell wall remodelling within the macrophage phagosome and exposure of

glycosylated mannoproteins were required to trigger macrophage pyroptosis [7,12]. Addition-

ally, increased biosynthesis of fungal plasma membrane ergosterol during the yeast-to-hypha
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transition within phagosomes and its association with the outer mannoprotein layer have been

shown to trigger inflammasome activation and pyroptosis [15]. Fungal cell wall remodelling

was also observed to be dispensable for the priming step but crucial for inflammasome activa-

tion and macrophage pyroptosis, in the absence of phagolysosomal rupture [7]. However, how

the signal moves from the phagosome to the cytoplasm to activate the cytosolic NLRP3

remains unclear. Indeed, whether the fungal moieties interact with membrane-bound recep-

tors and/or enter the cytosol to trigger inflammasome activation has not yet been determined.

Apart from cell wall components, secreted molecules from C. albicans can also act as trig-

gers of inflammasome activation. For instance, clathrin-dependent internalisation of secreted

aspartyl proteinases (Sap2p and Sap6p) by human mononuclear phagocytes induces an early

cascade of events (potassium efflux, ROS production, and lysosomal damage) leading to

canonical NLRP3/caspase-1 activation and IL-1β/IL-18 production [16]. Additionally, studies

with murine macrophages reveal that Sap-induced type I interferon production activated a

noncanonical/caspase-11 inflammasome, which enhanced caspase-1 activation and cytokine

production [16]. Furthermore, secretion of the peptide toxin candidalysin can also induce

NLRP3/ASC/caspase-1 assembly and IL-1β maturation in human and murine macrophages

via a mechanism requiring potassium efflux [17]. Candidalysin is secreted by hyphae, and

phagocytes can be exposed to hyphae either pre- or post-phagocytosis. However, experiments

conducted in the presence of cytochalasin D have shown inhibition of candidalysin-induced

inflammasome activation, suggesting that toxin internalisation is required [17]. Thus, although

a rapidly growing body of literature has begun to unravel the regulation and molecular mecha-

nisms responsible for inflammasome activation during Candida infection, much remains to be

learned, and further investigations are required for a better understanding of the precise mech-

anistic details.

Inflammasomes are immunological weapons in the fight against C.

albicans infection

In vivo studies have confirmed that inflammasomes are critical for mounting an effective anti-

Candida response and in restricting fungal growth and dissemination. Using a murine model

of oropharyngeal candidiasis (OPC) and Il1r-/-, Nlrp3-/-, Asc-/-, and caspase-1-/- mice, Hise and

colleagues showed that inflammasome components were critical for controlling C. albicans
burdens in tongue tissue, preventing dissemination to the kidneys and enhancing host survival

[6]. In a follow-up study, NLRC4 inflammasome activation was also demonstrated to prevent

OPC and early systemic dissemination of C. albicans infection by coordinating both innate

and adaptive immune responses [18]. Neutrophils are essential for innate immunity and resis-

tance to fungal pathogens, and IL-1β participates in driving neutrophil recruitment at the site

of infection. Neutrophil influx into the Nlrc4-/- tongue was drastically reduced compared to

either wild-type (wt) or Nlrp3-/- mice, and NLRC4 activation was crucial for the trafficking of

neutrophils to the site of active Candida infection. Furthermore, antimicrobial peptides are

important effector molecules of innate immunity that disrupt pathogen function and act as

regulators of inflammation. Interestingly, the expression of antimicrobial peptides in the buc-

cal mucosal tissue of Nlrc4-/-, Nlrp3-/-, and Asc-/- mice was strongly reduced compared to wt

mice following C. albicans infection. Similarly, mucosal IL-17 responses to Candida were

dependent on both NLRP3 and NLRC4 [18]. OPC was more severe in Nlrc4-/- mice compared

with either wt or Nlrp3-/- mice, suggesting that NLRC4 plays a more prominent role than

NLRP3 against oral infection. In addition, murine bone marrow chimaera experiments

showed that OPC is controlled by NLRC4 functioning in the stromal and epithelial compart-

ment and by NLRP3 functioning in hematopoietic-derived inflammatory cells, whilst
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protection against disseminated fungal infection was driven by NLRP3 functioning in both

hematopoietic and stromal cell lineages [18].

Currently, the fungal components that activate inflammasomes at mucosal surfaces are

unclear, but oral epithelial cells are known to secrete IL-1β in response to candidalysin [19].

Notably, IL-1β release may occur through epidermal growth factor receptor (EGFR) activation

[20] and drives the proliferation of innate IL-17+TCRαβ+lymphocytes in tongue tissue [21],

which are essential for the resolution of murine OPC [22]. These data strongly suggest a central

role for candidalysin in inflammasome-mediated defences against OPC. Epithelial inflamma-

somes may also be activated through the EphA2 receptor, since oral tissues of EphA2−/− mice

expressed lower levels of IL-1β, interferon gamma (IFN-γ), and IL-17A and harboured higher

fungal burdens and greater fungal dissemination to the liver [23].

Inflammasome activation is also critical for protection against (intravenous) disseminated

C. albicans infection. Nlrp3-/- mice rapidly succumb to C. albicans infection compared with wt

mice [8] and are associated with significantly increased fungal burdens in the kidneys, liver,

spleen, and lungs [8,10]. Likewise, Asc-/- and Caspase-1-/- mice were more susceptible to dis-

seminated candidiasis, with bone marrow–derived dendritic cells releasing significantly

reduced levels of IL-1β and IL-18 following C. albicans challenge [24]. In addition, impaired

production of IL-17 and IFN-γ was observed in C. albicans–challenged splenocytes isolated

from Il-1β-/- and Il-18-/- mice, respectively [24].

Together, these findings suggest that the activation of inflammasomes plays a prominent

role in driving protective innate and adaptive antifungal immune responses during mucosal

and invasive Candida infections (Fig 1A). However, the precise role of C. albicans–triggered

pyroptosis has yet to be elucidated. Importantly, a recent study has shown that pyroptosis

occurs in vivo in the kidneys of infected mice during the early stages of infection [15]. Further-

more, neutrophil recruitment in the kidneys of infected mice was dependent on C. albicans
mutant strains capable of inducing inflammasome activation and pyroptosis [7]. Thus,

although pyroptosis may represent an immune evasion strategy to overcome killing by macro-

phages, this inflammatory form of programmed cell death may also favour neutrophil recruit-

ment to eliminate the pathogen.

NLRP3 inflammasome: A double-edged sword in Candida infection

Whilst inflammasome activation is generally considered beneficial for mounting protective

anti-Candida responses, it may also be detrimental and drive immunopathology, as seems to

be the case in vulvovaginal candidiasis (VVC). Symptomatic VVC infection is linked to

immune hyperreactivity to the fungus and characterised by significant vaginal neutrophil infil-

tration, NLRP3 inflammasome activation, and increased cytokine production. Notably, poly-

morphisms and variable number tandem repeats in the NLRP3 gene are associated with VVC

[25,26]. Likewise, overexpression of NLRP3, caspase-1, and elevated IL-1β secretion are

observed in vaginal epithelial cells isolated from symptomatic VVC patients [27]. In murine

studies, neutrophil numbers and IL-1β levels were reduced in vaginal lavage fluid of Nlrp3-/-

mice challenged with C. albicans [28]. Interestingly, both filamentation [29] and candidalysin

secretion [30] are critical in driving inflammation (including IL-1β), neutrophil recruitment,

and pathology in VVC, suggesting a primary role for candidalysin in vulvovaginal immuno-

pathogenesis (Fig 1B).

IL-22 also appears to play a role in VVC. A functional single nucleotide polymorphism

(SNP) in the human IL-22 gene was found to be associated with a decreased risk for VVC and

correlated with increased IL-22 expression [31]. Borghi and colleagues demonstrated that an

IL-22/NLRC4/IL-1 receptor antagonist (IL-1Ra) axis controls NLRP3 activation during
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Fig 1. Interplay between C. albicans, inflammasomes, and the host immune system during infection. (A) NLRP3 and NLRC4

inflammasome activation in epithelial and myeloid cells and the release of IL-1β and IL-18 during oral and systemic candidiasis are

instrumental components of the inflammatory response, ultimately orchestrating both innate and adaptive immunity to eliminate the fungus.

(B) During VVC, hyphae- and hypha-associated virulence factors induce a powerful NLRP3 inflammasome and inflammatory response that

drives the recruitment of large numbers of neutrophils to the site of inflammation. Host genetic variations in inflammasome and other
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Candida infection [32]. In this model, IL-22 production via the aryl hydrocarbon receptor

(AhR) activates epithelial NLRC4, which, in turn, restrains NLRP3 activity by inducing sus-

tained production of IL-1Ra. Similarly, NLRC4, but not NLRP3 expression, was increased by

IL-22 in response to Candida in human vulvovaginal A431 cells. Moreover, high levels of IL-

1β and low levels of IL-1Ra and IL-22 were observed in vaginal fluids of patients with recurrent

VVC, suggesting that defective production of IL-1Ra and IL-22 and the impairment of this

axis may contribute to disease pathogenesis [32] (Fig 1B). These data highlight the importance

of regulating inflammasome activation to fine tune inflammatory processes during C. albicans
infection. However, whether the pro-inflammatory nature of C. albicans–induced pyroptosis

[7] contributes to disease pathogenesis is still largely unknown and is thus an important direc-

tion for future research.

Candida, inflammasomes, and inflammatory bowel disease

Inflammatory bowel disease (IBD) is characterised by chronic inflammation of the gastrointes-

tinal (GI) tract, which includes ulcerative colitis (UC) and Crohn’s disease (CD). Notably,

alterations in the biodiversity and composition of fungal microbiota, with an expansion of C.

albicans, are observed in IBD patients [33,34]. Although the cause and the exact mechanism of

IBD pathogenesis remain to be elucidated, environmental stimuli (e.g., diet, antibiotics, and

antifungals), imbalanced interactions with commensal gut microbes, including fungi, and

aberrant immune responses appear to contribute to the development of the chronic intestinal

inflammation in genetically susceptible individuals [35]. Interestingly, IBD is associated with

SNPs in dectin-1, which is a critical CLR required for an effective antifungal immune response

[36]. Consistently, dextran sulfate sodium (DSS)-induced colitis was more severe following

Candida tropicalis supplementation in dectin-1-/- mice. In addition, fluconazole treatment

reduced colitis symptoms, inflammatory cell infiltration, and production of IL-17 and IFN-γ
by T cells, confirming that impaired antifungal immunity leads to increased disease severity

[36]. Similarly, higher levels of neutrophil infiltration, colon lesions, and IL-1β expression

were observed in DSS-treated mice following GI colonisation with C. albicans [37].

IBD is also associated with SNPs in CARD-9 [38], and mice lacking CARD-9 or the kinase

Syk show reduced inflammasome activation and IL-18 secretion during azoxymethane

(AOM)–DSS-induced colitis-associated colon cancer [39]. These mice also exhibited reduced

IFN-γ production by T cells and increased inflammation and epithelial hyperplasia. Notably,

similar events occurred when wt mice were depleted of commensal fungi and disease severity

significantly ameliorated by exogenous IL-18 supplementation. Furthermore, CARD-9 and

Syk were required for caspase-1 activation and IL-18 release in bone marrow–derived myeloid

cells in response to C. albicans. Thus, inflammasome-mediated IL-18 release through the acti-

vation of Syk/CARD-9 signalling by commensal gut fungi preserves epithelial barrier function,

promotes CD8+ T cell responses, and ultimately, restrains colitis and colon tumorigenesis

[39]. Interestingly, CD is also associated with SNPs in NLRP3 and concomitant reduction in

pathways likely influence VVC susceptibility and hyperreactivity to the fungus. An imbalance of NLRP3 inflammasome activation and its IL-

22/NLRC4/IL-1Ra negative feedback pathway also contributes to hyperinflammation and disease pathogenesis. (C) A combination of

environmental (e.g., diet, antibiotics, and antifungals) and host genetic factors can promote dysbiosis and loss of intestinal immune

homeostasis. Impaired mucosal barrier function and dysregulated antimicrobial immune responses result in uncontrolled chronic

inflammation. In the genetically susceptible host, impaired inflammasome-mediated anti-Candida responses contribute to intestinal

inflammation and IBD pathogenesis. CARD-9, caspase recruitment domain-containing protein 9; CLRs, C-type lectin receptors; EGFR,

epidermal growth factor receptor; IBD, inflammatory bowel disease; IFN-γ, interferon gamma; IL, interleukin; IL-1Ra, IL-1 receptor

antagonist; NLRC4, NOD-like receptor family CARD domain-containing protein 4; NLRP3, NOD-like receptor family pyrin domain-

containing 3; PRRs, pattern recognition receptors; Saps, secreted aspartyl proteinases; Syk, spleen tyrosine kinase; Th, T-helper; VVC,

vulvovaginal candidiasis.

https://doi.org/10.1371/journal.ppat.1008975.g001
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IL-1β production [40]. Indeed, whilst the exact role of NLRP3 in IBD is not yet fully elucidated,

increasing evidence has suggested that appropriate inflammasome activation has a protective

effect in colitis and colitis-associated carcinogenesis [41]. For instance, Nlrp3-/-, Asc-/-, and cas-
pase-1-/- mice were observed to be highly susceptible to DSS-induced colitis. Furthermore,

these mice also exhibited commensal overgrowth and bacteremia, increased DSS-induced

morbidity and lethality, and an exaggerated immune response, which may further worsen dis-

ease severity [42]. Similarly, a pathophysiological model linking impaired anti-Candida
responses, including an impaired NLRP3 inflammasome activity, and the development of CD

has been suggested. This model supports a scenario whereby the progression of IBD in geneti-

cally susceptible individuals results from a vicious cycle: inflammation and abnormalities in

immune regulation promote proliferation and mucosal invasion by C. albicans, which, in turn,

exacerbates the inflammatory process and tissue damage as a consequence of immune dysre-

gulation [43].

Although animal models cannot fully reflect human diseases, they have greatly contributed

to our understanding of the mechanism of IBD and the potential contribution of gut fungi and

dysregulated immune responses to IBD pathogenesis. Interestingly, the anti-IL-17A monoclo-

nal antibody secukinumab was ineffective in the treatment of CD in a randomised, double-

blind, placebo-controlled proof-of-concept study and highlighted adverse effects in patients

including a higher frequency of Candida infections compared to placebo [44]. This result fur-

ther suggests that impaired anti-Candida immunity, including defective inflammasome-driven

responses, may play a role in human IBD. Nonetheless, further investigation is required to

confirm this model and the relationship between Candida, inflammasome dysregulation, and

GI inflammation (Fig 1C).

Inflammasomes as therapeutic targets in Candida disease

Inflammasome activation plays a pivotal role in antifungal immune responses and is a tightly

regulated process. Dysregulation of the inflammasome can lead to host damage and exces-

sive inflammation, with inflammasome hyperactivation being a central player in several

human autoinflammatory and autoimmune diseases. This has encouraged efforts to identify

potent and specific ways to interfere with inflammasome activation or the activity of inflam-

masome-dependent cytokines [1]. Hence, targeting inflammasome pathways may provide

novel and effective therapeutic approaches to neutralise potent inflammatory mediators that

exacerbate the pathogenesis of C. albicans infection, as in the case of VVC. Notably, admin-

istration of recombinant IL-1Ra (anakinra) can reduce NLRP3-driven inflammation and

protect against infection in mouse models of Candida vaginitis [32]. Furthermore, the

NLRP3 inhibitor MCC950 and the adenosine triphosphate (ATP)-sensitive potassium chan-

nel inhibitor glyburide, which also inhibits inflammasome activation, significantly reduced

IL-1β release by the human monocytic cell line THP-1 following Candida exposure or stim-

ulation with candidalysin [45]. Likewise, intravaginal inoculation of glyburide in mice prior

to C. albicans infection reduced neutrophil infiltration and IL-1β production in vaginal

lavage fluid [28]. These findings demonstrate the potential role for inflammasome inhibitors

or anti-IL-1β treatment in the control of hyperinflammation-driven C. albicans diseases.

Future work will determine whether such a therapeutic approach can be translated to clinical

care.
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