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We propose a regularization based approach for case-adaptive classification in computer-aided diagnosis (CAD) of breast cancer.
The goal is to improve the classification accuracy on a query case by making use of a set of similar cases retrieved from an existing
library of known cases. In the proposed approach, a prior is first derived from a traditional CAD classifier (which is typically pre-
trained offline on a set of training cases). It is then used together with the retrieved similar cases to obtain an adaptive classifier
on the query case. We consider two different forms for the regularization prior: one is fixed for all query cases and the other is
allowed to vary with different query cases. In the experiments the proposed approach is demonstrated on a dataset of 1,006 clinical
cases. The results show that it could achieve significant improvement in numerical efficiency compared with a previously proposed
case adaptive approach (by about an order of magnitude) while maintaining similar (or better) improvement in classification
accuracy; it could also adapt faster in performance with a small number of retrieved cases. Measured by the area of under the ROC
curve (AUC), the regularization based approach achieved AUC = 0.8215, compared with AUC = 0.7329 for the baseline classifier
(P-value = 0.001).

1. Introduction

Clustered microcalcifications (MCs) can be an important
early sign of breast cancer in women. MCs are calcium
deposits of very small dimension and appear as granular
bright spots in a mammogram (e.g., Figure 1). Due to their
subtlety in appearance and variation in size and shape in
mammogram images, accurate diagnosis of MC lesions as
benign or malignant is a very challenging clinical problem
for radiologists [1]. In recent years, there has been signifi-
cant research in development of computer-aided diagnosis
(CADx) techniques for clustered MCs, aiming to provide a
second opinion to radiologists in their diagnosis in order to
improve their performance and efficiency [1–3]. Laboratory
observer studies have shown that with CADx radiologists
can improve their biopsy recommendation by sending more
cancer cases and fewer benign cases for biopsy [2–5].

In CADx, a pattern classifier is typically first pretrained
on a set of existing cases and subsequently applied to predict

the likelihood that a given lesion is malignant or benign.
For this purpose, many different machine-learning methods
have been investigated, for example, [6–9]. In recent years,
content-based image retrieval (CBIR) has been studied as an
alternative approach in CADx [10–12]. Instead of predicting
likelihood, this approach is to provide radiologists with
examples of lesions with known pathology that are similar
to the lesion being evaluated. The purpose is to provide
relevant information from the retrieved cases to boost
the diagnostic accuracy on the case under consideration
[13]. In the literature, there exist a number of studies on
the predictive value of retrieved mammogram cases. For
example, the correlation in disease condition between the
query and retrieved cases was examined in [14, 15]. The
fraction of malignant cases among all retrieved cases was
used as a useful predictor for the query by Floyd et al.
[16, 17]. The similarity level between a retrieved case and
the query was used as a weighting factor in the prediction by
Zheng et al. [18]. A genetic algorithm was used to adjust the
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Figure 1: A mammogram image in CC view (a) and clustered
microcalcifications in magnified view (b).

weighting factors of the retrieved cases by Mazurowski et al.
[19]. An observer study was used to investigate the potential
diagnostic value of similar cases by Nakayama et al. [20].

Recently, we have been exploring a case-adaptive
approach to boost the performance of a CADx classifier by
using retrieved similar cases [21, 22]. The basic idea behind
this approach is as follows: for a query case under considera-
tion, we will first apply CBIR to obtain a set of similar cases
from a reference library of known cases; we will then use
these retrieved cases to modify the decision boundary of an
existing classifier (baseline) in the neighborhood of the query
case so as to improve its classification accuracy on the latter.
In particular, we demonstrated this case-adaptive approach
on a classifier based on logistic regression [22]. The adaptive
classifier was obtained through retraining with a weighted
mixture of the retrieved cases and the training cases of the
baseline classifier. This adaptive approach was demonstrated
to yield improved classification accuracy when compared to
its baseline counterpart. Moreover, it could even outperform
the classifier when it was retrained with all the cases in the
reference library.

Based on this prior success, in this work, we further
develop this case-adaptive classification approach by using a
regularized adaptive classifier. One drawback of the adaptive
classifier in [22] is the extra cost associated with retraining of
the classifier for each query case. It also needs access to the
training cases of the baseline classifier, which are required
for retraining the classifier. To reduce this computational
complexity associated with the adaptive classifier, we will
use a prior to regularize the adaptive classifier as opposed
to reusing the entire training set of the baseline classifier
each time for a new query. This prior is derived from the
baseline classifier, and it plays the following two key roles:
(1) incorporate the information of the baseline classifier, and
(2) prevent overfitting by the adaptive classifier when the
number of retrieved samples is small. We will consider two
specific forms for this prior: one is uniform for all query
cases, and the other varies adaptively with the query. Our
results demonstrate that such a regularized adaptive classifier
not only can be much simpler computationally, it also can
adapt faster in performance with a small number of retrieved
cases.

Regularization techniques are often used in machine
learning to deal with ill-posed problems or to prevent over-
fitting by an underlying model. They usually assume the
form of a penalty to the complexity of the model, such as
L2-norm penalty in ridge regression [23], which penalizes
the length of the solution in a least-square problem. In
the well-known support vector machine (SVM) [24], the
separation margin of the classifier is used in the form of an
L2-norm penalty term. Parallel to L2-norm, L1-norm penalty
has also been used for regularization, for example, the LASSO
algorithm [25]. In this work, we will derive from the baseline
classifier a regularization term for adaptive classification. The
regularization term has the form of L2-norm penalty, which
can also be viewed as a prior distribution of the solution.

The rest of the paper is organized as follows: The develop-
ment of the adaptive classification schemes with regulariza-
tion is given in Section 2. Details related to evaluation meth-
ods on CADx classification performance are described in
Section 3. Experimental results and discussions are furnished
in Section 4. Finally, conclusions are given in Section 5.

2. Regularized Adaptive Classification with
Retrieval of Similar Cases

The problem we consider can be stated as follows: for a given
query lesion x, we first obtain from a reference library a set
of known cases which have similar image features to x; our
goal is to make use of these similar, known cases to improve
the classification accuracy on x. To motivate the proposed
development, below we first briefly review the case-adaptive
approach developed previously in [22]. For simplicity, our
approach will be presented using a linear classifier. However,
it can be readily extended to a nonlinear classifier by using
the kernel trick as in [22].

2.1. Adaptive Classification Boosted with Similar Cases. Con-
sider a linear classifier of the form:

f (x) = wTx, (1)

where x is a vector denoting an input pattern (i.e., lesion),
and f (x) is the classifier output which is typically compared
against an operating threshold for decision on x. For
notational simplicity, in (1) the input vector x is augmented
by a constant element 1 so that the bias term is absorbed into
the discriminant vector w.

In practice, the unknown vector w is determined from
a set of training samples {(xi, yi), i = 1, . . . ,N}, where the
labels yi ∈ {0, 1} are given for each sample xi. In [22], we
considered logistic regression [26], in which w is determined
by maximizing the following log-likelihood function:

L(w) =
N∑

i=1

log p
(
yi, xi; w

)
, (2)

where p(yi = 1, xi; w) = [1 + exp(−wTxi)]
−1

.
Now, consider a query lesion x, and a set of Nr retrieved

cases {(x(r)
j , y(r)

j ), j = 1, . . . ,Nr} which are similar to x.
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The adaptive classifier for x is obtained by modifying the
objective function (2) as

LAda(w) =
N∑

i=1

log p
(
yi, xi; w

)
+

Nr∑

j=1

βj log p
(
y(r)
j , x(r)

j ; w
)

,

(3)

where the weighting factors βj are defined according to the

similarity of x(r)
j to the query x [22]. These factors are larger

than 1 in magnitude. The idea is to put more emphasis on
the retrieved samples, particularly those more similar to the
query, so as to refine the decision boundary of the classifier
in the neighborhood of x. For retrieval of similar cases, the
Euclidean distance between their image features to the query
was used in [22], and it is also used in this work.

2.2. Regularized Adaptive Classification with Uniform Prior.
Observe that the objective function in (3) consists of two
terms: the first term is that of the baseline classifier in (2),
and the second term is the weighted sum of the log-likelihood
of the retrieved cases. Conceptually, the first term can be
viewed as a stabilizer for the adaptive classifier to avoid over-
fitting for the retrieved cases (which would lead to poor
generalization on the query). However, this term involves
all the training cases of the baseline classifier, which can be
computationally demanding particularly when the number
of retrieved cases is much smaller than the number of existing
training cases, that is, Nr � N .

To address this problem, we propose a regularized
approach for designing the adaptive classifier, as illustrated
in Figure 2. The idea is to replace the baseline classifier
term in (3) by a prior term on the discriminant vector w.
Naturally, this prior term is desired to be predetermined from
the training set {(xi, yi), i = 1, . . . ,N}, so that the resulting
adaptive classifier will be computationally more efficient for
online implementation.

Let vector w denote the solution of the baseline classifier
in (2), that is, the likelihood function L(w) assumes maxi-
mum at w. Noting that the gradient∇L(w) = 0 at w, we can
apply Taylor series expansion about w and rewrite L(w) as

L(w) ≈ L(w) +
1
2

(w −w)T∇2L(w)(w −w). (4)

Thus, we can rewrite the modified objective LAda(w) in
(3) as (after ignoring the constant term)

LAda(w) ≈
Nr∑

j=1

βj log p
(
y(r)
j , x(r)

j ; w
)

+
1
2

(w −w)T∇2L(w)(w −w).

(5)

The second term in (5) can be viewed as a penalty term
defined by a multivariate Gaussian prior which has mean
w and covariance matrix [−∇2L(w)]−1. Consequently, the
objective function in (5) assumes the form of maximum a
posteriori estimation (except that the log-likelihood terms of

Retrieval

case library

Query case ClassifierRetrieved cases

Training set

Prior estimation

x f (x)

w/wVar

{(xri , yri )}

{(xi, yi)}

Figure 2: Diagram of retrieval-driven case-adaptive classification
with regularization.

the retrieved cases are weighted according to their similarity
level to the query).

Note that the Hessian matrix ∇2L(w) in (5) can be pre-
computed from the likelihood function L(w) of the trainings
samples. By comparing to (3), we can see that the numerical
complexity associated with the objective function in (5) is
much reduced, because it consists of far fewer data terms
than (3) when Nr � N . Furthermore, there is no longer need
in (5) to access the training cases, which can be advantageous
in practice.

To further simplify the computational complexity of
the adaptive classifier, in this study we assume that the
components of w are independent and approximate the
covariance matrix [−∇2L(w)]−1 in (5) by C−1I, where C is a
constant. Upon such approximation, we can further simplify
the objective function in (5) as

LUni(w) =
Nr∑

j=1

βj log p
(
y(r)
j | x(r)

j ; w
)
− C

2
‖w −w‖2. (6)

The constant C in (6) can be viewed as a parameter
to control the influence of the regularization term, which
has two important roles. First, it is used to prevent over-
fitting by the adaptive classifier especially when Nr is small.
Second, and more importantly, it is used to also enforce
the fidelity of the adaptive classifier to the training cases
{(xi, yi), i = 1, . . . ,N} as in (3). Consequently, LUni(w) in (6)
consists of information from both the retrieved cases and the
existing training cases. In particular, in the extreme case that
C = 0, the objective function LUni(w) in (6) simply amounts
to retraining the classifier with only the retrieved cases; on
the other hand, when C = ∞, the adaptive classifier in (6)
coincides with the baseline classifier w.

In this study, the weighting coefficient for a retrieved case

x(r)
j in (6) is defined as

βj =
γj

∑Nr

k=1 γk
, where γj = exp

⎛
⎜⎝
−
∥∥∥x(r)

j − x
∥∥∥

2

σ2

⎞
⎟⎠. (7)
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That is, βj varies according to the distance between x(r)
j and

x. The parameter σ is used to adjust the sensitivity of βj with
respect to the distance.

In our experiments, the Newton-Raphson algorithm was
used for optimization of the adaptive classifier in (6). For
completeness, the detailed algorithm is provided in the
appendix

2.3. Adaptive Classification with Varying Regularization. In
(6), the regularization term is the same for all query cases, the
purpose of which is to keep the adaptive classifier from being
too different from the baseline classifier. As an alternative, it
might be advantageous to adjust this term according to the
input feature of the query case. Below, we consider such an
approach in which the mean vector w in the regularization
term is allowed to vary for each query case. That is, we
modify the objective function in (6) as

LVar(w) =
Nr∑

j=1

βj log p
(
y(r)
j | x(r)

j ; w
)
− C

2
‖w −wVar‖2,

(8)

where wVar is now varied with the query case x.
To determine the mean vector wVar, we first pre-

determine an adaptive vector wi customized for each case in
the training set, that is, {(xi, yi), i = 1, . . . ,N}, as described
below. Afterward, for a given query x, the mean vector wVar

is interpolated from the adaptive vectors of the training cases
according to their distances to the query. Specifically, we
have

wVar =
N∑

i=1

ciwi, (9)

where the weighting coefficients ci are so defined that those
cases closer to x will have more contributions to wVar. In this
study, the following is used for ci:

ci = αi∑N
k=1 αk

, where αk = exp

(
−‖x − xi‖2

σ2

)
. (10)

To determine the adaptive vectors wi for the cases in the
training set {(xi, yi), i = 1, . . . ,N}, we modify the objective
function in (2) as

L̃(w1, . . . , wN ) =
N∑

i=1

log p
(
yi, xi; wi

)− C′

2

N∑

i=1

‖wi −wi‖2.

(11)

The rationale for the introduced penalty term in (11) is that
those cases with similar features should also have similar
discriminant vectors. The parameter C′ is used to control
the trade-off between this penalty and the likelihood term. In
(11), wi denotes the weighted average of the adaptive vectors
from the rest of the cases as in (9) with xi treated as the query
in (10).

3. Performance Evaluation

3.1. Dataset. In this study, we use a dataset as in our previous
work [22]. This dataset consists of digitized, standard-
view, screen-film mammographic images collected from
two sources: one from the Department of Radiology, The
University of Chicago (UC), and the other from the DDSM
dataset maintained at The University of South Florida [27].
Altogether, there were a total of 1,006 cases (646 benign, 360
malignant) in the dataset, all containing clustered MCs. To
characterize the MC lesions, we use a set of nine features
previously determined in [22], namely, (a) number of MCs
in the cluster, (b) density of the cluster, measured by the
number of MCs in a unit area, (c) mean of the MC size in the
cluster, (d) eccentricity of the cluster, (e) standard deviation
of the distance from individual MCs to the geometric center
of the cluster, (f) maximum of the mean intensity of MCs,
(g) mean of the average intensity in each MC window, (h)
standard deviation of the contrast of MCs, and (i) standard
deviation of the 4th order central moment of MCs. These
features are used to form a vector x for each lesion in the
dataset. A detailed description for the construction of this
dataset can be found in [22].

3.2. Experiment Setup. To demonstrate the proposed ap-
proach for case-adaptive classification, we used the following
setting in our experiments. The dataset of all 1,006 cases
was first randomly divided into three subsets, denoted by
S1, S2, and S3, respectively, such that S1 and S2 consisted
of 175 cases (100 benign, 75 malignant) each, and S3 had
the remaining 656 cases (446 benign, 210 malignant). These
three subsets were used as follows: S1 was used as the training
set, S2 was used as the test set for performance evaluation,
and S3 was set aside as a library of known cases for retrieval
for adaptive classification. The distribution of the different
cases among the three subsets was out of the consideration
to balance the malignant and benign cases for both training
and testing while maintaining a large number of cases for
retrieval.

To avoid any potential bias, the training set S1 was used
to determine the parameters C, C′ of the classifiers from
the following candidate values: [0.001, 0.01, 0.05, 0.1, 0.2,
0.5, 1, 5, 10, 100] using a 10-fold cross-validation. For
parameter σ , we follow our previous work [22] and set
it to be 1.63, which corresponds to the 10th percentile of
the inter-distance among training cases; the test set S2 was
used exclusively for evaluation. When testing the adaptive
classifiers, for each case in S2, a set of cases similar to the test
case was retrieved from S3, and subsequently used to train the
adaptive classifiers. The resulting classifiers were then applied
to classify the test case. This was to ensure that the test case
itself will not be used in any way for boosting the adaptive
classifier.

To evaluate the classification performance, we conducted
a receiver operating characteristic (ROC) analysis, which is
now routinely used for performance evaluation in classifi-
cation tasks. An ROC curve is a plot of the classification
sensitivity (i.e., true positive fraction) as the ordinate versus
the specificity (i.e., false positive fraction) as the abscissa;
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for a given classifier, it is obtained by continuously varying
the threshold associated with its decision function. As a
summary measure of overall diagnostic performance, the
area under an ROC curve (denoted by AUC) is used. A
larger AUC means better classification performance. In our
experiments the ROCKIT program [28] was used to calculate
the AUC values for the different classifiers.

To remove the effect of case distributions, we applied a
bootstrapping methodology for testing the performance of
the classifiers. A total of 2,000 bootstrap sample sets were
used [29, 30], of which each was obtained by sampling with
replacements from the cases in S2. The classifier performance
was subsequently obtained over each bootstrap sample set.

In our evaluation, the proposed adaptive approach was
compared against the following different classifiers: (1)
the baseline classifier (2) trained with S1; (2) the adaptive
classifier in (3). In addition, to demonstrate the effect of
regularization, we also tested the adaptive classifier without
using regularization, that is, by ignoring the regularization
term in (6). Finally, we also considered the classifier trained
with both S1 and S3, which represents the scenario where all
the cases in the retrieval library were used for training the
classifier.

4. Results and Discussions

4.1. Regularized Adaptive Classification. In Figure 3, we show
the performance results obtained by the regularized adaptive
classifiers with uniform prior in (6) (Ada-Reg-Uni) and with
adaptive prior in (8) (Ada-Reg-Var). To demonstrate the
effect of retrieved cases, the results are shown for the number
of retrieved cases Nr varied from 6 to 300. For comparison,
results are also given in Figure 3 for the following classifiers:
the baseline classifier (LR), the adaptive classifier previously
developed in [22] (Ada-LR), the adaptive classifier without
regularization (Ada-Reg-Non), and, finally, the classifier
trained with all the cases in S1 and S3 (LR-all).

From Figure 3, it can be seen that the regularized adaptive
classifiers Ada-Reg-Uni and Ada-Reg-Var both could out-
perform the baseline classifier LR. In particular, with Nr =
50, Ada-Reg-Uni achieved AUC = 0.8111 and Ada-Reg-Var
achived AUC = 0.8059, compared with AUC = 0.7329 for
the baseline classifier LR (P-value = 0.001 for Ada-Reg-Uni,
and 0.004 for Ada-Reg-Var). With Nr = 100, Ada-Reg-Uni
obtained its best performance of AUC = 0.8215; Ada-Reg-
Var achieved its best performance of AUC = 0.8192 with
Nr = 200. However, no further improvement was observed
when Nr was increased beyond 200. We believe that this
is because that the benefit from additional retrieved cases
diminishes as they are not sufficiently similar to the query.

Furthermore, from Figure 3, it can be seen that when
Nr < 50 Ada-Reg-Var and Ada-Reg-Uni are both higher in
AUC than Ada-LR. This indicates that Ada-Reg-Var and Ada-
Reg-Uni could adapt faster to the local decision boundary
with a small number of retrieved cases. This could be
attributed to the use of the prior in the regularized adaptive
classifiers. With Nr further increased (above 100), Ada-
Reg-Uni and Ada-Reg-Var became similar in performance;

LR
LR-all
Ada-LR

Ada-Reg-Uni
Ada-Reg-Non

Ada-Reg-Var

Nr

101 102

0.8

0.75

0.7

0.65

0.6

A
U

C

Figure 3: Classification performance (AUC) achieved by the case-
adaptive classifiers with/without regularization (Ada-Reg-Non,
Ada-Reg-Uni and Ada-Reg-Var). The number of retrieved cases Nr

was varied from 6 to 300. For comparison, results are also shown for
the baseline classifier (LR), the classifier trained with all the available
cases (LR-all), and the adaptive classifier in [22] (Ada-LR).

this is because with a large Nr the retrieved cases became
more influential than the prior on the classifier.

The respective effects of retrieved cases and regulariza-
tion can be illuminated by examining the results achieved
by Ada-Reg-Non, that is, when no regularization was used
in the adaptive classifier. With Nr < 50, Ada-Reg-Non was
much lower in performance than even the baseline classifier
LR; this was clearly due to the issue of over-fitting. However,
with increased Nr , its performance AUC was improved from
0.7633 with Nr = 50 to 0.7927 with Nr = 200, approaching
its regularized counterparts.

Furthermore, the regularized adaptive classifiers Ada-
Reg-Uni and Ada-Reg-Var could also outperform the base-
line classifier LR-all (AUC = 0.7643) which was trained with
all the available cases in S1 and S3. Specifically, the Ada-Reg-
Uni and Ada-Reg-Var outperformed LR-all with P-value =
0.004 (Nr = 100) and P-value = 0.005 (Nr = 200), respec-
tively.

4.2. Effect of Regularization. The rationale behind the pro-
posed regularization-based approach for adaptive classifica-
tion is to use a prior to regularize the adaptive classifier in
order to prevent it from over-fitting to the retrieved cases.
As can be seen from (6), the regularization parameter C
is used to control the balance between the retrieved cases
and the baseline classifier. A larger C means more influence
of the prior on the adaptive classifier (and less influence
by the retrieved cases), and vice versa. To demonstrate
this effect, in Figure 4, we show the resulting performance
achieved by the classifier Ada-Reg-Uni with the parameter
C varied over a large range. The number of retrieved cases
Nr was fixed at 100. Note that, as C → 0, the classifier
performance approaches that of Ada-Reg-Non (i.e., retrieval
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Figure 4: Effect of regularization prior in adaptive classifier Ada-
Reg-Uni with parameter C varied between two extreme cases (i.e.,
C → 0 for no regularization, and C → ∞ regularization alone) and
fixed Nr = 100.

only, Nr = 100); on the other hand, as C → ∞, the classifier
performance approaches that of the baseline classifier LR
(i.e., no retrieval). The best performance was obtained with
C varied between these two extreme cases.

4.3. Execution Time. In Figure 5, we show the execution
time taken for classifying the cases in the test set by the
different adaptive classifiers Ada-Reg-Uni, Ada-Reg-Var, and
Ada-LR. For comparison, results are also shown for the
baseline classifier LR. Our implementation was in MATLAB
on a 2-GHz PC. As can be seen, the regularized classifiers
Ada-Reg-Uni and Ada-Reg-Var were similar in execution
time. While slower than the baseline classifier LR, both were
notably faster than Ada-LR. Specifically, with Nr < 100, the
regularization-based approaches were about 10 times faster.
For Nr larger than 100, the execution time increased for the
adaptive classifiers as more samples were used in training,
but still much lower than that of Ada-LR. Interestingly,
the execution time for Ada-LR slightly decreased with Nr

larger than 10. We believe that this was due to improved
conditioning in the Hessian matrix of the objective function
with increased Nr . The higher numerical efficiency of the
regularized classifiers over the adaptive classifier was due
to their much simplified objective functions in which only
retrieved cases were used.

5. Conclusion

In this work, we investigated a regularization based approach
for case-adaptive classification of microcalcification lesions
in mammograms. Deviating from a previously developed
adaptive approach, in which a set of retrieved cases was used
in conjunction with the training cases of a baseline classifier
to re-retrain an adaptive classifier, we derived a prior in

101

100

10−1

10−2

Nr

T
im

e 
(s

)

LR
Ada-LR

Ada-Reg-Uni
Ada-Reg-Var

101 102

Figure 5: Execution time for classifying all test cases in S2 by the
different classifiers. The regularization approaches (Ada-Reg-Uni
and Ada-Reg-Var) are similar in execution time, and are notably
faster than the adaptive classifier in [22] (Ada-LR).

place of the baseline classifier as a regularization term in
the adaptive classifier. This prior was used together with
the retrieved cases from a reference library to optimize the
classification on a query case. Our goal was to reduce the
numerical complexity associated with online training of the
adaptive classifier. We explored two different forms for the
regularization prior: one is invariant for the different query
cases and the other is allowed to vary with respect to the
features of the query cases. We demonstrated the proposed
regularization approach on a dataset of 1,006 cases. The
results show that it could achieve significant improvement
in numerical efficiency (around 10 times in execution speed)
while maintaining similar (or better) improvement in classi-
fication accuracy compared to a previous nonregularization
approach. The regularization approach was also observed to
achieve faster adaption in performance with a small number
of retrieved cases.

Appendix

A. Optimization in Regularized
Adaptive Classifier

We used the Newton-Raphson method to solve the opti-
mization problems associated with the regularized adaptive
classifiers. In particular, consider the objective function in
(6), which we rewrite as:

L(w) =
N∑

i=1

βi log p
(
yi | xi; w

)− C

2
‖w −w‖2, (A.1)

where p(yi, xi; w) is defined as

p
(
yi = 1, xi; w

) = 1
1 + exp(−wTxi)

,

p
(
yi = 0, xi; w

) = 1− p
(
yi = 1, xi; w

)
.

(A.2)
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Substituting (A.2) into (A.1), we get

L(w)=
N∑

i=1

γi
{
yiwTxi−log

(
1+exp

(
wTxi

))}
−C

2
‖w−w‖2.

(A.3)

The gradient and Hessian matrix of L(w) can then be
obtained as

∇L(w) = XTΓ
(

y − p
)− C(w −w),

∇2L(w) = −XTΓWX− CI,
(A.4)

where y is the column vector of sample labels yi, X is
the input matrix, p is the column vector of probabilities
p(yi, xi; w), Γ, and W are diagonal matrices with Γi,i = γi,
Wi,i = p(yi, xi; w)(1− p(yi, xi; w)), respectively.

The Newton-Raphson update is computed iteratively as

wnew = wold −
(
∇2L

(
wold

))−1∇L
(

wold
)

= wold +
(

XTΓWoldX + CI
)−1

×
[

XTΓ
(

y − p
)− C

(
wold −w

)]
.

(A.5)
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