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Abstract: In Drosophila, male reproductive fitness can be affected by any number of processes, ranging
from development of gametes, transfer to and storage of mature sperm within the female sperm
storage organs, and utilization of sperm for fertilization. We have previously identified the 89B
cytogenetic map position of D. melanogaster as a hub for genes that effect male paternity success
when disturbed. Here, we used RNA interference to test 11 genes that are highly expressed in the
testes and located within the 89B region for their role in sperm competition and male fecundity when
their expression is perturbed. Testes-specific knockdown (KD) of bor and CSN5 resulted in complete
sterility, whereas KD of CG31287, Manf and Mst89B, showed a breakdown in sperm competitive
success when second to mate (P2 < 0.5) and reduced fecundity in single matings. The low fecundity
of Manf KD is explained by a significant reduction in the amount of mature sperm produced. KD of
Mst89B and CG31287 does not affect sperm production, sperm transfer into the female bursa or
storage within 30 min after mating. Instead, a significant reduction of sperm in female storage
is observed 24 h after mating. Egg hatchability 24 h after mating is also drastically reduced for
females mated to Mst89B or CG31287 KD males, and this reduction parallels the decrease in fecundity.
We show that normal germ-line expression of Mst89B and CG31287 is needed for effective sperm
usage and egg fertilization.

Keywords: gene expression; sperm gene function; reproduction; fecundity; sperm competition;
fertilization

1. Introduction

Variation in fecundity and fertility influences an organism’s reproductive fitness.
The identification of genes contributing to variation in phenotypes, particularly those that
impact fitness, is a long-standing question among evolutionary geneticists [1]. In Drosophila
and other organisms, gene perturbation screens such as loss-of-function alleles or transgenic
constructs that modulate gene expression have been used to identify sperm and seminal
fluid protein genes that have an impact on different aspects of male fecundity. Perturbation
of specific genes can completely or partially block the production of mature sperm [2],
drastically decrease the ability of males to store sperm [3–5], disturb the retention and
release of sperm in/from storage [6–8], and even impair sperm viability once in female
storage [9,10]. Both sperm and seminal fluid protein genes have been shown to influence
male sperm competitive ability [11]. A gene perturbation approach can be fruitful not
only in determining the molecular underpinnings of traits such as fecundity and fertility,
but together with the implementation of detailed phenotypic tests, can contribute to the
much-needed annotation of yet functionally unknown genes within genomes.

In D. melanogaster males, mature sperm are stored in a pair of seminal vesicles that
are connected to the ejaculatory duct [12]. During copulation, sperm, alongside seminal
fluid proteins from the accessory glands, are transferred to the female. The transfer of
male seminal fluid proteins triggers a series of conformational changes in the female bursa
that help move transferred sperm towards the anterior end of the bursa and closer to
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the entrance of female sperm storage organs [13,14]. The female sperm storage organs
include a long, coil-shaped seminal receptacle, which opens into the common oviduct at
the top of the bursa, and two mushroom-shaped spermathecae connected to the bursa
by a duct near its anterior end [12,15]. Thousands of sperm are transferred to the female
during copulation, however, only approximately 20% of the sperm are stored [12]. The
excess sperm within the bursa and the gelatinous mating plug deposited by the male
during copulation are expelled one to six hours after the mating, with the majority expelled
approximately three hours after mating [16,17]. The stored sperm are used very efficiently
for fertilization [7,12,18,19], which allows the female to produce fertile eggs for up to two
weeks [12].

Among internally fertilizing organisms, mature sperm face challenges between in-
semination and fertilization as sperm interacts with the female structural and biochemical
environment and possibly undergoes the molecular modifications required for compe-
tency [20,21]. In Drosophila, the importance of the female environment is highlighted by
changes in the bursa shortly after sperm transfer, which helps with positioning sperm for
storage [13,14], influence of spermathecal secretory cells on sperm motility [22], modulation
of sperm release, and impact on sperm competition by the nerve terminals innervating
the female reproductive tract [17,23,24]. Thus, in any gene perturbation assay seeking
to determine effects on sperm function, it becomes critical to examine sperm within the
female reproductive tract at different time points after insemination.

We have previously identified, using a combination of genetic mapping, bioinformatics
tools, and gene disruption of candidate genes, the 89B cytogenetic location as harboring
genes of interest in terms of sperm development, non-competitive male fecundity and
sperm competitiveness [25,26]. Our prior work used a combination of gene disruptions via
P-element insertions and a non-tissue specific Act5C-Gal4 driver to knockdown (KD) gene
expression via RNAi [26]. Ubiquitous KD of Mst89B significantly reduced second male
paternity success (P2) without affecting fecundity, but the reduction in average P2 was
less than 10% and the KD did not break down second male advantage (i.e., P2 > 0.5) [26].
The use of a combination of P-element insertion mutagenesis and non-tissue-specific KDs
poses the question of whether our prior results might have been influenced by ubiquitous
rather than tissue-specific gene effects [26]. Here, we use a bam-Gal4 driver to specifically
KD gene expression in the germline [2,27]. We conduct germline-specific KD of 11 genes
with high expression in the testes located in the 89B cytogenetic region (including three
previously tested using Act5C-Gal4 [26]) to test their role in male fecundity and second
male paternity success. We also test the effects of knocking down these genes on sperm
production, sperm transfer, sperm storage, egg fertilization, and egg viability. KD of two
genes (CSN5 and bor) rendered fully sterile males. KD of Manf, Mst89B, and CG31287
drastically disrupted P2 and male fecundity. We found that males with the KD of Manf
produced significantly fewer sperm whereas males with the KD of Mst89B and CG31287
produced normal amounts of sperm. Sperm from these two genes’ KDs were normally
transferred and stored in the female’s seminal receptacle, but the amount of sperm retained
in storage dropped significantly within the first 24 h after mating. This drop in the number
of sperm in storage caused a similar drop in egg fertilization over the same period of time.

2. Materials and Methods
2.1. Gene Selection

Genes were identified using FlyBase (https://flybase.org). First, all the genes located
in the hypothesized 89B hotspot were retrieved from FlyBase and were then screened
based on their expression pattern using FlyAtlas anatomy microarray and modENCODE
anatomy RNA-Seq data. We selected genes categorized as having high expression in the
testes in at least one of the two data sources (Table S1).

https://flybase.org
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2.2. Fly Stocks and Maintenance

UAS-hairpin lines for candidate genes were purchased from Vienna Drosophila Re-
source Center (VDRC) and Bloomington Drosophila Stock Center (BDSC) (Table S2). The
KK lines from VDRC and the Harvard Transgenic RNAi Project (TRiP) lines from BDSC
were specifically chosen because these stocks contain UAS-hairpin sequences inserted
at specific locations in the second chromosome. Specific insertion of the UAS-hairpin
construct avoids the variable level of hairpin expression associated with P-element-based
constructs due to their random insertion in the genome [28]. The bam-Gal4 stock was kindly
provided by Dr. Geoffrey D. Findlay (College of the Holy Cross, Worcester, MA, USA).
Wild-type flies were purchased from Ward’s Science (stock 87w6550) and ebony flies from
BDSC (stock 1658).

All flies were reared on cornmeal-molasses-yeast-agar media and maintained in a
12-h light-dark cycle at 23 ± 1 ◦C. Parental stocks were maintained by allowing males and
females to mate for ten days before discarding them. Flies were anesthetized using CO2
for collection and sexing. Post-eclosion, females were collected every five hours to ensure
virginity. All experimental procedures were performed with D. melanogaster females and
males, which were aged for three to six days prior to use.

2.3. Gene Knockdown

To KD candidate gene expression, males from lines with the UAS-hairpin were crossed
with females from the bam-Gal4 driver strain. F1 sexually naïve males were collected from
these crosses and the male reproductive tract dissected in 1x PBS to verify gene KD. For each
candidate gene and wild-type control, three biological samples were prepared with each
sample containing reproductive tracts from six males. RNA was isolated from the whole
reproductive tract of KD and wild-type control males using the Bio-Rad Aurum Total
RNA Mini Kit. Extracted RNA was quantified and checked for purity using a NanoDrop
spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA). Complementary DNA
(cDNA) was synthesized using an iScript Select cDNA Synthesis Kit (Bio-Rad, Mississauga,
ON, Canada). Three 3-fold serial dilutions were prepared before performing quantitative
PCR (qPCR) to test primer efficiencies (Table S2). We tested three reference genes, RpS18,
eEF1α1, and αTub84B, and found that RpS18 showed the highest expression and the least
variability in expression between samples (Figure S1). As a result, only RPS18 was used
to normalize all expression data. qPCR reactions were carried out using the iQ SYBR
Green Supermix Kit and run in a CFX Connect Real-Time PCR Detection System (Bio-Rad,
Mississauga, ON, Canada). The expression level of the target gene in each sample was
determined by calculating ∆Cq as the Cq of the reference gene (RpS18) minus the Cq of the
target gene and ∆∆Cq as the ∆Cq of the treatment (gene KD) minus the ∆Cq of the control
(wild-type).

2.4. Fecundity and Sperm Competition

Single-pair matings were performed between KD or control males and wild-type
females to assess their ability to father progeny. On Day 0, virgin females were placed in
individual vials (vial 1) with either a KD male or a control male. Matings were visually
confirmed and the males were removed immediately after mating. On Day 5, mated females
were moved to a new vial (vial 2), and on Day 10 the females were discarded. Progeny
from vials 1 and 2 were counted from 164 females seven days after F1 eclosion began.

To determine offensive sperm competitive ability, KD or control males were crossed
with females that were homozygous for an ebony (e/e) recessive mutation and had already
been singly mated to same-aged ebony males. On day 0, 20 virgin e/e females and 30 e/e
males were crossed en masse. 24 h later (day 1), the males were discarded, and the females
were individually transferred to a fresh vial (vial 1) containing fly media supplemented
with active dry yeast. An aspirator was used to transfer flies to avoid use of CO2, which
can increase copulation latency [29]. On day 3, a single wild-type control or a male with a
specific gene KD was added to each vial using an aspirator. Vials were inspected every
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12 min for up to eight hours to visually confirm that mating had occurred. Females were
transferred to a new fresh vial (vial 2) and allowed to oviposit. Five days after second
mating (day 8), females were transferred to a fresh vial for an additional seven days (vial
3). Progeny from 141 females over vials 1, 2, and 3 were counted on the 20th day after
the beginning of oviposition and scored based on body coloration, with ebony progeny
being fathered by the first male and non-ebony progeny being fathered by the second male.
The fraction of progeny in vials 2 and 3 sired by the second male to mate was designated
as P2.

2.5. Sperm Production, Sperm Transfer, Sperm Storage, Egg Hatchability, and Larva Viability

For males where KD of a gene resulted in low fecundity, sperm production, transfer,
and storage as well as egg hatchability and viability were determined. For sperm produc-
tion, the reproductive tract of three- to six-day old naïve males was dissected to isolate
one of their seminal vesicles. The sperm heads in the seminal vesicle were stained with
4′,6-Diamidin-2-phenylindol (DAPI) and counted. The sperm were visualized under a
Olympus (Shinjuku City, Japan) BX60 fluorescent microscope and an image was taken for
each sample. The software ImageJ with the plugin Cell Counter was used to individually
score the number of sperm present in the seminal vesicle.

Sperm transfer and sperm storage was evaluated by using singly mated wild-type
females with KD or control males. Mating was visually confirmed, and the females were
frozen 30 min and 24 h after the end of copulation (AEC). Sperm transfer was determined
by dissecting the reproductive tract of females frozen 30 min AEC and counting the number
of sperm present in the bursa. For sperm storage in the primary storage organ, the seminal
receptacle [16,30,31], females frozen at 30 min and at 24 h AEC were dissected. Sperm
heads were stained with DAPI and counted using ImageJ (bursa) as previously described
or directly from the dissected samples (seminal receptacle).

Egg hatchability was evaluated by mating virgin wild-type females en masse in bottles
containing 60 females and 60 KD or control males. The bottles were capped with petri
dishes containing agar tinted with grape juice, and the females were left to lay eggs for
24 h. Each cross was duplicated. The following day, the eggs were counted in the petri
dishes and the number of larvae scored for two subsequent days to score egg-hatchability.
In addition, we transferred groups of 6 to 10 larvae into individual vials and counted the
number of pupae (larva to pupa viability) and number of adults (pupa to adult viability)
produced in each vial.

2.6. Statistical Analysis

Based on the a priori hypothesis that RNAi should decrease gene expression, a one-
tailed independent t-test was used to test reduction in expression caused by KDs relative
to wild-type controls. Phenotypic data, except for viability, was analyzed using one-way
ANOVA with treatment (wild-type and KDs) as the main factor, followed by a posteriori
Scheffe’s test. Viability data were analyzed using chi-square test of proportions and non-
parametric statistics. All statistical tests were conducted using SPSS (version 25). To correct
for multiple hypothesis testing, p-values were FDR corrected.

3. Results

We identified a total of 69 protein coding genes located in the 89B region and focused
on 13 genes with high testes expression (Table S1). All candidate genes had stocks available
from either VDRC or BDSC stock centers, except for CG42446. The remaining 12 genes
(Table S2) were KD, and gene expression was compared against wild-type controls. KD of
CG5903 did not result in significant down regulation of gene expression (Figure S2). For
the remaining 11 genes, the effect of each gene germline down regulation was tested in
single mating fecundity and sperm competition assays.
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3.1. Reduced Germline Expression via RNAi Identifies Genes Needed for Male Fecundity

We found significant differences in fecundity among males tested (F11,152 = 38.7;
P < 0.001). A Scheffe’s post-hoc test shows that compared with control wild-type males,
germline KD of 7 genes resulted in decreased fecundity (FDR corrected p-values, q < 0.01;
Figure 1A). In particular, KD of five genes (Manf, CG31287, Mst89B, CSN5, bor) displayed
the strongest effect, with more than 50% reduction in fecundity. Males with the KD of CSN5
and bor were sterile with no adult offspring being produced. In comparison to control
males, males with the KD of Mst89B, Manf, and CG31287 only fathered 6.5%, 39.2%, and
32.3% of the progeny, respectively (Figure 1A). As expected, sterile males (KD of CSN5
and bor) sired no progeny in sperm competition assays. For the other gene KDs, we found
significant variation among tested males in second male paternity success (F9,131 = 20.8;
P < 0.001) and a significant correlation between single-pair mating fecundity and sperm
competitive ability (Pearson correlation coefficient r = 0.923; P < 0.001; R2 = 0.851). Only the
KDs of Mst89B, Manf and CG31287 had significantly lower second male paternity success
than wild-type males (Scheffe’s post-hoc test, q < 0.01), with the KD causing a breakdown
of second male paternity success (average P2 < 0.5) (Figure 1B).

Cells 2021, 10, x FOR PEER REVIEW 5 of 12 
 

 

of CG5903 did not result in significant down regulation of gene expression (Figure S2). 
For the remaining 11 genes, the effect of each gene germline down regulation was tested 
in single mating fecundity and sperm competition assays. 

3.1. Reduced Germline Expression via RNAi Identifies Genes Needed for Male Fecundity  
We found significant differences in fecundity among males tested (F11,152 = 38.7; P < 

0.001). A Scheffe’s post-hoc test shows that compared with control wild-type males, 
germline KD of 7 genes resulted in decreased fecundity (FDR corrected p-values, q < 0.01; 
Figure 1A). In particular, KD of five genes (Manf, CG31287, Mst89B, CSN5, bor) displayed 
the strongest effect, with more than 50% reduction in fecundity. Males with the KD of 
CSN5 and bor were sterile with no adult offspring being produced. In comparison to con-
trol males, males with the KD of Mst89B, Manf, and CG31287 only fathered 6.5%, 39.2%, 
and 32.3% of the progeny, respectively (Figure 1A). As expected, sterile males (KD of 
CSN5 and bor) sired no progeny in sperm competition assays. For the other gene KDs, we 
found significant variation among tested males in second male paternity success (F9,131 = 
20.8; P < 0.001) and a significant correlation between single-pair mating fecundity and 
sperm competitive ability (Pearson correlation coefficient r = 0.923; P < 0.001; R2 = 0.851). 
Only the KDs of Mst89B, Manf and CG31287 had significantly lower second male paternity 
success than wild-type males (Scheffe’s post-hoc test, q < 0.01), with the KD causing a 
breakdown of second male paternity success (average P2 < 0.5) (Figure 1B). 

  
(A) (B) 

Figure 1. Average fecundity (A) and second male paternity success (B) for gene knockdowns compared with the wild-
type (WT) control. Asterisks (*) above bars identify samples with averages significantly different from the wild-type con-
trol. Error bars are 2 standard errors of the mean. 

When compared with wild-type males (Figure 2A), KD of bor and CSN5 have visible 
spermatids but smaller seminal vesicles devoid of sperm (Figure 2B,C). Manf KD males 
had a similar phenotype, but their seminal vesicles contained some mature sperm (Figure 
2D). We found abundant spermatogonia and spermatocytes at the apical end of the testes 
in all KDs (Figure 2, orange arrows), and the cysts appear to elongate normally to form 
sperm bundles (Figure 2, black arrows). The clearest difference among these KDs relative 
to wild-types is the complete lack of mature sperm in KDs of bor and CSN5, and the very 
small number of sperm produced by Manf KDs (Figure 2).  

 

Figure 1. Average fecundity (A) and second male paternity success (B) for gene knockdowns compared with the wild-type
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When compared with wild-type males (Figure 2A), KD of bor and CSN5 have visible
spermatids but smaller seminal vesicles devoid of sperm (Figure 2B,C). Manf KD males had
a similar phenotype, but their seminal vesicles contained some mature sperm (Figure 2D).
We found abundant spermatogonia and spermatocytes at the apical end of the testes in all
KDs (Figure 2, orange arrows), and the cysts appear to elongate normally to form sperm
bundles (Figure 2, black arrows). The clearest difference among these KDs relative to
wild-types is the complete lack of mature sperm in KDs of bor and CSN5, and the very
small number of sperm produced by Manf KDs (Figure 2).

We followed up on the fertility of Mst89B, Manf, and CG31287 KD lines by quan-
tifying the amount of sperm cells present in the seminal vesicle (Figure S3). We found
significant differences in sperm production among wild-type males and the KDs for the
three genes (F3,47 = 83.01; P < 0.001). Males with perturbed expression of Mst89B and
CG31287 had significantly fewer sperm in their seminal vesicles than wild-type males
(q = 0.004 and q = 0.0001 respectively), but large amounts of sperm could still be detected
(Mean ± standard deviation: 1,039 ± 199 and 952 ± 132 respectively). Comparatively,
males with the KD of Manf produced very few sperm (107 ± 150) (Figure 3A). Manf KDs
produced, on average, more offspring than KDs of Mst89B (Figure 1A) despite producing
so few sperm (Figure 2A). While it is possible that Manf KDs might be able to boost females’
egg-laying and fertilization compared with Mst89B KDs, this is more likely explainable by
stochastic variation caused by differences between individuals in effectiveness of the KD.
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Given that the seminal vesicle of Mst89B and CG31287 KD males contained large amounts
of sperm (Figure 3A), we tested whether egg hatchability or larval viability were impaired.
We found that females mated to Mst89B and CG31287 KD males hatched a significantly
lower proportion of eggs than controls (6.7% and 33.1% respectively compared with 92.1%
for controls; Chi-squared test, controls vs. gene KDs: P < 0.001) (Figure 3B).
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However, we found no significant differences in larva to pupa and pupa to adult
viability (Kruskal-Wallis: larva to pupa, H = 2.59; p = 0.274, and pupa to adult, H = 4.49;
p = 0.106) (Table 1).

Table 1. Average proportion of larva to pupa (P/L) and pupa to adult (A/P) viability for wild-type
controls and knockdowns (KD) of genes Mst89B and CG31287.

Treatment N P/L A/P

Control 96 0.89 0.93
CG31287 86 0.84 0.99
Mst89B 44 0.94 0.97

3.2. Knockdown of Mst89B and CG31287 Does Not Affect Sperm Transfer but Impairs Long-Term
Sperm Storage

We investigated whether the ability of Mst89B and CG31287 KD males to transfer
and store sperm was hindered (Figure S3). We found that Mst89B and CG31287 KD males
transferred large amounts of sperm to the female bursa that were comparable to control
males (F2,26 = 0.907; p = 0.416) (Figure 4A). Additionally, females mated to Mst89B and
CG31287 KD males had a similar amount of sperm in their seminal receptacle to females
mated to control males at 30 min AEC (F2,32 = 2.257; p = 0.121) (Figure 4B). However, at 24 h
AEC, the amount of sperm in the SR of females mated to Mst89B and CG31287 KD males
was significantly different among samples, with significantly reduced amounts of sperm
in females mated to KDs relative to those mated to control males (F2,32 = 96.820; p < 0.001;
pairwise Scheffe’s post-hoc tests comparisons wild-type vs. KDs q < 0.001) (Figure 3B).
Compared with the control females, the SR of females mated to CG31287 and Mst89B KD
males showed approximately a 52% and 75% decrease in the amount of sperm stored at
24 h AEC, respectively.
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4. Discussion

Given that the majority of the Drosophila melanogaster genome is made of non-coding
sequences that might serve as putative regulatory elements [32], it becomes imperative to
understand how perturbations of gene expression can affect traits such as male fecundity.
Additionally, broad rather than detailed phenotypic characterization of fecundity itself,
combined with the polygenic nature of the trait, have made it difficult to identify genes
influencing sperm function and fecundity [11]. A male’s reproductive fitness can be
drastically reduced due to challenges sperm cells face after transfer to the female and prior
to fertilization. For example, subtle problems in the sperm itself, or other components
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of the ejaculate composition, can impair the ability of sperm to remain in female storage,
affect its localization inside the female reproductive tract, incapacitate movement within
and between storage organs, and influence the sperm fertilization capacity [3,4,7,33–39].
Here, we focused our genetic survey to a specific locus (89B) previously identified as a
hub for genes with roles in male fecundity [25,26] and have used RNAi to test the effect
of single gene perturbation on different aspects of male fecundity. We lack null mutants
that could be used to establish a better relationship between gene and phenotype, but
our primary interest is in assessing the effect of modifications in gene expression, rather
than the effect of complete gene loss, in post-mating success phenotypes. Nevertheless,
RNAi can give false positives due to off-target effects by base-pairing with unintended
mRNAs [40]. In what follows, we discuss our findings for the germline KD of 5 genes
affecting fertility. Some of our phenotypic characterizations confirm previous results but
others are novel. To address the possibility that some of the observed phenotypes could
be off-target artifacts, we use the Updated Targets of RNAi Reagents website (UP-TORR)
(https://www.flyrnai.org/up-torr/About.jsp) [41] for in silico examination of sequence
similarities to other genome targets. However, in the absence of independent RNAi non-
overlapping gene target experimental controls or RNAi rescue experiments, a caveat
remains as we cannot fully rule out possible off-target effects.

KD of CSN5 and bor rendered males fully sterile. These KDs appear to have normal
sperm elongation, but their seminal vesicles are devoid of sperm. We are not able to see
any break down before spermatid elongation, but subtle pre-elongation defects might
be missed in our assay, as Cyst cell-RNAi against CSN5 (COP9 signalosome subunit 5)
has been claimed to cause a weak defect in germline enclosure and differentiation [42].
We found no in silico evidence for off-target effects of our CSN5 RNAi construct. In
Caenorhabditis elegans, KD of atad-3, the ortholog of bor (belphegor) has also been shown to
cause sterility despite the gonadal morphology of the animals appearing normal [43]. In
Drosophila, manipulation of bor expression in larva has been shown to affect mitochondrial
morphology and function and to increase autophagy [44]. However, our detection of
a role in adult male sperm production and fertility in Drosophila is novel. The bor KD
construct has an off-target effect to CG45063, a gene of unknown function with low testes
expression. Manf (Mesencephalic astrocyte-derived neurotrophic factor) is known to play a
role in neuronal development and function [45,46], and here we have identified a new
function of this gene as it is required for production of mature sperm. Lindström et al. [47]
suggested that, based on the localization of Manf in the endoplasmic reticulum (ER), it
could partake in ER-mitochondrial crosstalk, and disturbances in Manf protein levels
could affect protein transport to the mitochondria. In Drosophila, post meiosis II (i.e.,
pre-elongation), giant mitochondria fuse and pack into a structure called the nebenkern,
which differentiates into major and minor mitochondrial derivates that run along the entire
length of an elongated spermatid [48]. Mutant flies with small mitochondrial derivates
produce spermatids with severe elongation defects, and giant mitochondria are required
to provide structural support to elongating spermatids [49]. However, Manf KDs appear
to have normal spermatids, were able to produce few mature sperm cells, and had low
fecundity. While we cannot identify defective spermatid elongation, it is possible that
mitochondrial function may be somehow impacted in Manf KDs, affecting spermatids
maturation. The Manf RNAi construct can potentially exert its effect through two off-target
genes. One is Sulfated (Sulf1), an enzyme with low testes expression that regulates Wingless
(Wg) and Hedgehog (Hh) signaling during development (http://flybase.org/). More
importantly, the other off-target is mei-P26, which is involved in germline differentiation
and spermatogenesis, and thus an off-target effect of mei-P26 might contribute to our
detected phenotype. While this remains to be tested, phase contrast imaging of mei-P26
mutants show a very different testes phenotype than the one we report here for the Manf
KD, with over-proliferation of spermatogonial cysts at the testes apical end [50].

We show that the germline KD of Mst89B drastically affects male fecundity by im-
pairing the ability of sperm to properly fertilize eggs once in female storage. We did not

https://www.flyrnai.org/up-torr/About.jsp
http://flybase.org/
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detect any off-target effect for the Mst89B RNAi construct. Previously, we found that the
KD of Mst89B with the Act5C-Gal4 driver did not affect fecundity but led to a decrease in
second male paternity success despite no breakdown of the second male advantage (i.e.,
P2 remained higher than 0.5) [26]. The Act5C promoter has been shown to be ineffective in
driving transgenes expression in the germline [27], so it is possible that our previous result
was caused by perturbation of the gene expression in somatic cells. It is also possible that
the Act5C-Gal4 driver induced a lesser germ-line perturbation, given the weaker expression
of the transgene in the germline, than the bam-Gal4 driver. Similarly, KD of CG31287 with
the Act5C-Gal4 driver did not affect male fecundity in non-competitive or competitive
assays [26] but here, when KD with bam-Gal4, resulted in a similar phenotype as the Mst89B
KD. The CG31287 RNAi construct had no detectable off-target effects.

Functionally, not a lot is known about Mst89B or CG31287, except that Mst89B is a
cytoplasmic protein expressed during spermatogenesis only in germline-derived cells [51].
Several genes required for the normal functioning of sperm have been previously identi-
fied using single-gene perturbation assays. For example, Dnah3, is required to maintain
sperm motility, without which Dnah3 mutants are infertile [33]. Loss of Sdic leads to an
inability to displace resident sperm from the storage organs leading to fewer second-male
progeny [8,52], even though it does not result in morphological defects in sperm nor does
it impair motility or the ability of males to sire progeny [8]. In a similar fashion to the KD
of CG31287 and Mst89B, Pkd2 and shps mutants produce and transfer normal amounts of
sperm to the female bursa, but significantly fewer eggs are fertilized [36,53]. However, in
the case of Pkd2 and shps, mutant sperm are unable to enter storage. Pkd2 mutant sperm
form abnormal flagellar waveforms, which inhibit their entry into the SR [34,35]. Mutation
of shps also affects sperm motion parameters, but it is unclear whether the defective motion
impedes the sperm’s ability to enter storage [36].

In addition to low hatchability, we found that females mated to CG31287 and Mst89B
KD males had fewer sperm in their storage organs 24 h AEC. Sperm release from the
storage organs is known to be mediated by several seminal fluid proteins, with a number
of proteins interacting with sex peptide, a seminal fluid protein bound to sperm that
affects sperm release [6,18,54–58]. Only the loss-of-function mutation of Acp29AB results
in faster depletion of sperm from the storage organs, but it does not affect hatchability or
fecundity [55]. There is at least one known gene that is required for the normal release of
sperm from storage and egg fertilization. Like the KDs of CG31287 and Mst89B, mutation
of the gene wasted (wst) does not affect sperm transfer or storage, but compared with
controls, 92% of the stored sperm is lost from the seminal receptacle within 24 h after
mating [7]. Furthermore, fewer sperm from wst mutants enter the egg for fertilization
compared with sperm from controls, and the majority that do enter the egg are unable
to initiate mitotic divisions, resulting in reduced hatchability [7]. Given the similarity of
phenotypes observed between wst mutants and our KDs of CG31287 and Mst89B, it is
possible that these genes are functionally related. The development of stable transgenic
lines using gene editing and the incorporation of fluorescent markers into the mutants
should facilitate further functional characterization of these two genes.
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9/10/2/289/s1, Table S1: Genes located in 89B and their expression level in testes, Table S2: Stocks
used to generate KDs of genes with high expression in testes and primers information, Figure S1:
Test of expression level of candidate reference genes RpS18, eEF1α1 and αTub84B in the male
reproductive tract of KD males, Figure S2: Expression of genes in KDs relative to control wild type
(wt) males, Figure S3: Microscopy images of sperm in the male seminal vesicle (SV) and the female
storage organs.
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