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Sickle cell disease is a genetic disease that increases systemic inflammation as well as the risk of pediatric strokes, but links between
sickle-induced inflammation and arterial remodeling are not clear. Cathepsins are powerful elastases and collagenases secreted by
endothelial cells and monocyte-derived macrophages in atherosclerosis, but their involvement in sickle cell disease has not been
studied. Here, we investigated how tumor necrosis alpha (TNFa) and circulating mononuclear cell adhesion to human aortic
endothelial cells (ECs) increase active cathepsins K and V as a model of inflammation occurring in the arterial wall. ECs were
stimulated with TNFa and cultured with peripheral blood mononuclear cells (PBMCs) from persons homozygous for sickle (SS)
or normal (AA) hemoglobin. TNFa was necessary to induce cathepsin K activity, but either PBMC binding or TNF« increased
cathepsin V activity. SS PBMCs were unique; they induced cathepsin K in ECs without exogenous TNF« (n = 4, P < 0.05).
Inhibition of ¢-Jun N-terminal kinase (JNK) significantly reduced cathepsins K and V activation by 60% and 51%, respectively.
Together, the inflammation and activated circulating mononuclear cells upregulate cathepsin activity through JNK signaling,
identifying new pharmaceutical targets to block the accelerated pathology observed in arteries of children with sickle cell disease.

1. Introduction

Sickle cell disease is a genetic disorder that causes in vivo po-
lymerization of hemoglobin molecules into rigid fibers with-
in red blood cells, deforming them in the canonically de-
scribed “sickle” shape. Rigid, sickled red blood cells and the
byproducts of their hemolysis cause chronic vascular damage
and increase systemic levels of inflammatory cytokines, mo-
bilized mononuclear cells [1], and pathological levels of
increased monocyte adhesion to the endothelium [2, 3].
Overall, these pathological inflammatory conditions and
mononuclear cell-endothelial cell interactions may contrib-
ute to intimal thickening, and lumen narrowing seen in pul-
monary hypertension and stroke lesions of children; pul-
monary hypertension is responsible for 20-30% of sickle-
cell-related deaths in adult patients [4, 5] and 11% of chil-
dren with sickle cell disease will suffer from a major stroke by
the age of 16.

Both of these clinical syndromes are characterized by vas-
cular remodeling [6-8]. Vascular remodeling analogous to

stroke lesions in sickle cell disease has been observed in
atherosclerosis, the major cardiovascular disease, where
mononuclear cell infiltration of the subendothelial space,
degradation of the elastic lamina, and subsequent smooth
muscle cell proliferation mediate lesion progression and
luminal narrowing [2]. These similarities suggest that com-
mon mechanisms for arterial remodeling may exist between
the well-studied, well-characterized atherosclerosis, and the
less understood mechanisms of sickle cell disease.

Arterial remodeling can be defined as changes in the
composition of proteins, cell types, and even cell phenotypes
that induce chronic effects on the structure, mechanical
properties, and total health of the artery [6—8]. This includes
degradation of old matrix by newly activated proteases as
well as synthesis and deposition of new extracellular matrix
proteins. Cysteine cathepsins, one such family of proteases
upregulated in arterial remodeling [6, 9], belong to the
papain superfamily of proteases and contain the most
potent human collagenases and elastases [10]. Increased
cathepsin activity has been linked to tissue destruction in
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the cardiovascular system with atherosclerotic elastic lamina
degradation [11-13], stent restenosis [14, 15], abdominal
aortic aneurysm formation [16], and heart valve remodeling
under hypertensive conditions [9].

Two cathepsins in particular have gained significant
interest in their role in arterial remodeling in cardiovascular
disease. Cathepsin K is the most potent human collagenase
yet identified [17], as well as an extremely powerful elastase
[18, 19]. Additionally, cathepsin K has been shown to
be highly expressed in atherosclerotic lesions where it de-
grades arterial collagen and subendothelial elastic lamina
[12, 13]. Cathepsin V is the most powerful mammalian
elastase yet identified and is expressed in human monocyte-
derived macrophages [10]. Studies have shown that the hu-
man cathepsin V homolog, murine cathepsin L [20, 21],
significantly contributes to cardiovascular disease in mouse
models [9, 22]. Neither of these two enzymes has been linked
to sickle-cell-disease induced vascular wall remodeling and
pathology.

In this study, we evaluated the potential involvement
of cathepsin-mediated arterial remodeling in sickle cell dis-
ease by studying the effects of TNFa stimulation and ad-
hesion of mononuclear cells isolated from whole blood
of individuals homozygous for the sickle mutation on
endothelial cell expression and activation of cathepsins K and
V. We employed a novel, multiplex cathepsin zymography
technique to simultaneously quantify the active forms of
cathepsins K, L, S, and V in response to the different stim-
ulation and coculture conditions [23]. Furthermore, we
investigated the phosphorylation of key kinases to identify
intracellular signaling cascades linking TNFa stimulation
and mononuclear cell binding to increased levels of active
cathepsins K and V as a proposed model for the unique and
accelerated tissue remodeling observed in arteries of children
and adults living with sickle cell disease.

2. Materials and Methods

2.1. Ethics Statement. All protocols were reviewed and ap-
proved by the Georgia Institute of Technology Institutional
Review Board, and informed consent was received from all
participants. In the case of minors, assent was provided by
parents/guardians.

2.2. Cell Culture. Human aortic endothelial cells (HAECs)
(Lonza) were cultured in MCDB medium 131 (Mediatech)
containing 10% fetal bovine serum (FBS), 1% L-glutamine,
1% penicillin/streptomycin, and 1% endothelial cell growth
serum (ECGS). Cells were maintained with 5% CO, at 37°C.

2.3. TNFa ELISA. Whole blood samples were allowed to
coagulate for 6 hours, followed by centrifugation at 900 g for
30 minutes to remove platelets and cells. The supernatant
was collected, and TNFa levels were quantified using an
enzyme-linked immunosorbent assay (ELISA) specific for
soluble, human TNFa (R&D Biosystems). Absorbance values
were recorded using Synergy 4 (Biotek) at 450 nm with
correction readings at 540 nm. Quantification of TNF«
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protein levels was calculated by generating a four-parameter
logistic standard curve using Gen5 software (Biotek).

2.4. Peripheral Blood Mononuclear Cell Isolation. Whole
blood samples were obtained from males and females ho-
mozygous for sickle (SS) or normal (AA) hemoglobin; pa-
tients on hydroxyurea, chronic transfusion, or who had ex-
perienced a recent crisis were excluded from this study.
Whole blood samples were centrifuged against a Ficoll-Paque
density gradient (density: 1.077 g/mL; GE Healthcare) for
30 minutes at 2450 rpm to separate the buffy coat layer.
After centrifugation, peripheral blood mononuclear cells
(PBMCs) were aspirated, washed in PBS, and pelleted by cen-
trifugation for 10 minutes. The isolated cells were then
washed with a red blood cell lysis buffer (0.83% ammonium
chloride, 0.1% potassium bicarbonate, and 0.0037% EDTA)
for seven minutes to remove any contaminating RBCs. Cell
number and viability were determined using a Vi-Cell (Beck-
man Coulter).

2.5. PBMC Adhesion Assay. HAECs were preconditioned in
normal growth media in the presence or absence of 10 ng/mL
recombinant human TNFa (Invitrogen) and cultured for 4
hours prior to the addition of 500,000 PBMCs/mL. Isolated
PBMCs were allowed to adhere for 45 minutes prior to
washing three times with PBS, and then cocultures were
maintained for an additional 20 hours. For JNK inhibition
studies, endothelial cells were preconditioned with 10 yg/mL
of SP600125 (EMD Biosciences) for one hour prior to addi-
tion of media containing vehicle, 10 ng/mL TNFw, and/or
10 ug/mL of SP600125.

2.6. Phosphorylated Kinase Screening. Cell lysates were pre-
pared per BioPlex Suspension Array System instructions
(BioRad). Lysates were incubated overnight with fluores-
cently labeled beads specific for the phosphorylated forms of
Akt (Ser473), extracellular signal-regulated kinases 1 and 2
(Thr202/Tyr204, Thr185/Tyr187), c-Jun NH,-terminal kin-
ase (JNK) (Thr 183 /Tyr 185), and c-Jun (Ser63) (BioRad).
The samples were then washed and incubated with kinase-
specific, biotinylated antibodies for 2 hours, followed by
treatment with avidin/streptavidin tagged with phycoeryth-
rin. Phosphorylated kinase levels were measured using a
BioPlex 200 System (BioRad).

2.7. Multiplex Cathepsin Zymography. Cathepsin zymogra-
phy was performed as described previously [24]. Determi-
nation of cathepsin V band required incubation in acetate
buffer, pH 4 [25]. Gels were imaged using an ImageQuant
4010 system (GE Healthcare). Images were inverted in Adobe
Photoshop and densitometry was performed using Scion
Image.

2.8. Statistical Analysis. Each experimental condition was
repeated with a minimum of three biological replicates, and
each data point is presented as the mean value and stand-
ard error of the mean. Representative images are shown.
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FiGure 1: Sickle cell disease preconditions circulating peripheral blood mononuclear cells to induce cathepsin K activity. Whole blood
samples were obtained from donors homozygous for the normal 3-globin allele (AA) and homozygous for the sickle allele (SS). (a) Baseline
serum levels of TNFa were quantified using an ELISA specific for human TNFa (n = 3, *P < 0.05, SEM bars shown). (b) PBMCs were
isolated via differential centrifugation through a density gradient. For cocultures, confluent EC cultures were preconditioned with 10 ng/mL
TNFa for 4 hours, prior to the addition of either AA or SS PBMCs. Nonadherent cells were washed away, and cocultures were maintained
for an additional 20 hours. Representative images of cocultures were used for mononuclear cell adhesion counts. (c) Cells were lysed and
cathepsin K activity was assessed using multiplex cathepsin zymography and quantified via densitometry (n = 10, *P < 0.05).

Unpaired student t-tests were used to determine statistical
significance ( *P < 0.05) between most experimental groups.

3. Results

3.1. Sickle Cell Disease Preconditions Circulating PBMCs to
Induce Cathepsin K Activity. Whole blood samples were
obtained from donors homozygous for normal (AA) or sickle
(SS) hemoglobin. First, an ELISA was run to quantify blood
serum levels of TNFa. SS donors had 5.43 = 2.3 pg/mL of
TNFa compared to 0.3 + 0.3 pg/mL of TNFa in AA controls
(n = 3, P <0.05), an almost 20-fold increase (Figure 1(a)).
TNFa stimulation of endothelial cells increased the adhesion
of AA PBMCs, compared to unstimulated EC cultures
(Figure 1(b)); however, the number of adhered SS PBMCs
was 100 times higher than TNFa stimulated AA PBMC
cocultures (Figure 1(b); n = 3, P < 0.001). Cells were
cultured together for an additional 20 hours for cathep-
sin induction, prior to lysing, collection, and multiplex

cathepsin zymography. SS PBMCs significantly increased
levels of active cathepsins K and V when cocultured with
endothelial cells, and without exogenous TNFa« stimulation
(Figure 1(c)), suggesting that the SS PBMCs were precondi-
tioned to induce this activity. AA PBMC cocultures in the
absence of TNF« lacked detectable bands of active cathepsin
K (Figure 1(c), left lane).

3.2. TNFa Stimulation and PBMC Interactions with Endothe-
lial Cells Activate INK Signaling. To investigate the intracel-
lular signal cascades increasing the levels of active cathepsins
K and V downstream of TNFa and PBMC adhesion cues, we
measured phosphorylation of JNK, c-jun, Akt, and ERK1/2
using Bioplex/Luminex technology, a quantitative bead-
based immunofluorescent assay that allowed measurement
of all four signals in one cell extract after 24 hours of coc-
ulture. JNK and its downstream signaling protein substrate,
c-Jun, showed the greatest activation in response to TNF«
stimulation with or without AA or SS PBMC:s (Figures 2(a)
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FIGURE 2: TNFa and PBMC interactions increase JNK and Akt phosphorylation. Confluent HAECs were cocultured with peripheral blood
mononuclear cells isolated from AA or SS donors, and lysates were collected for kinase analysis. Levels of phosphorylated (a) JNK, (b) c-
Jun, (c) Akt, and (d) ERK1/2 were measured, and phosphorylated kinase signals were normalized to unstimulated HAEC control (n = 3,

*P < 0.05, SEM bars shown).

and 2(b), n = 3, P < 0.01) with c-Jun activation as high
as 6-fold that of the EC controls. Akt phosphorylation was
significantly increased by AA PBMC binding alone even
without TNFa stimulation (Figure 2(c), n = 3, P < 0.01).
There were no changes in ERK 1/2 phosphorylation in any
condition for all time points measured (Figure 2(d)).

3.3. Cathepsins K and V Activities Induced by Sickle Cell
Disease PBMCs Were Significantly Reduced by INK Inhibition.
Since JNK and c-jun phosphorylation were significantly
upregulated, we tested if inhibiting this signal cascade would
block the increase in levels of active cathepsins K and V
by endothelial cells after adhesion and coculture with SS
PBMCs. HAECs were cultured with or without SP600125,
a JNK inhibitor, for 1 hour prior to addition of 10 ng/mL
TNFa or vehicle. AA or SS PBMCs were subsequently added,
and nonadhered cells were washed away. Cell lysates were

collected after 24 hours, and cathepsin activity was assessed
through multiplex cathepsin zymography. SP600125 signifi-
cantly reduced the upregulated cathepsin K and cathepsin V
activities of unstimulated SS PBMCs when cocultured with
endothelial cells by 48% and 29%, respectively (Figure 3;
n=>5,P<0.05).

4. Discussion

Endothelial cell expression of cathepsins and increased
cathepsin-mediated elastase activity are upregulated during
atherosclerotic development and induced by inflammation
and altered hemodynamics [9, 12, 13, 26, 27], which are both
present in sickle cell disease [26], leading to our hypothesis
that elevated TNFa and increased circulating mononuclear
cells would stimulate increased endothelial cell cathepsin
activity. This elevated activity may contribute to arterial
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FiGure 3: Cathepsins K and V activities induced by sickle cell disease PBMCs are significantly reduced by JNK inhibition with SP600125.
HAECs were incubated with or without 10 uM of the JNK inhibitor, SP600125, 1 hour prior to TNF« stimulation, as described previously.
Cocultures with AA or SS PBMCs were maintained for an additional 20 hours. Cell lysates were collected and analyzed via multiplex cathepsin
zymography. Densitometric analysis quantified active cathepsins K and cathepsin V (n = 3, *P < 0.05, SEM bars shown).

remodeling in sickle cell disease. The findings of this study
specifically implicate TNFa and mononuclear cell binding
to endothelium as key mediators, and that circulating
mononuclear cells in sickle cell disease are predisposed to
induce cathepsin proteolytic activity.

Here, we have specifically shown that TNFa stimulation
increased the expression and activity of the most potent
mammalian collagenase and elastase, cathepsins K and V,
respectively (Figure 1). Additionally, SS PBMCs significantly
increased cathepsin K activity in endothelial cells in the
absence of TNFq, suggesting that they were preconditioned
in the blood for adhesion to endothelium and cathepsin K
induction (Figure 1); AA PBMCs required TNFa stimulation
to reach these higher levels of cathepsin K and V (Figure 1).
These findings are consistent with reports that circulating
sickle erythrocytes increase mononuclear cell activation
and adhesion to endothelial cells [28] and support our
hypothesis that the blood milieu of people living with sickle
cell disease predisposes circulating mononuclear cells to
adhere to endothelium and promote arterial remodeling.
Previous studies have already established that the circulatory
environment in sickle cell disease preconditions peripheral
blood mononuclear cells into a pathologically activated state,
where these cells produce 139% more TNF« per cell than

control mononuclear cells [28, 29]; these mechanisms may
be at play here leading to increased active cathepsins K and
V.

Inhibition of JNK signaling with SP600125 reduced the
inflammation-induced activation of cathepsins K and V in
AA and SS PBMC cocultures with endothelium (Figure 3).
These findings highlight the role of JNK signaling as an
integration control point and as a therapeutic target to
inhibit the initiation of gene and protein expression in
response to inflammatory stimuli resulting in endothelial
cell upregulation of cathepsins K and V protein and activity.
More importantly, the predisposition of SS PBMCs to induce
these effects suggests that these novel mechanisms may
be occurring constantly in the vasculature of individuals
with sickle cell disease. It will be important to continue
these studies quantifying cathepsin activation of SS donors
with and without stroke or with high transcranial Doppler
velocities known to be a risk factor for stroke to parse
differential activation mechanisms potentially responsible
for the increased risk. Such investigations may reveal novel
biomarkers relevant to stroke risk prediction in pediatric
patients and open new avenues for pharmaceutical therapies
to prevent the arterial remodeling and luminal narrowing
that cause cardiovascular complications and death.



5. Conclusion

Elevated inflammatory factors and circulating mononucle-
ar cells inherent to sickle cell disease induce pathologically
high levels of cathepsins K and V activity when binding
to and stimulating endothelial cells, increasing proteolytic
activity that may be involved in arterial wall remodeling to
increase risk of stroke and pulmonary hypertension. There
is a pressing need for novel pharmaceutical targets to inhibit
these activities, and from this work, we propose that JNK,
cathepsin K, and cathepsin V are three new targets for inhi-
bition to reduce pathological arterial remodeling in sickle cell
disease.
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