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Abstract

Although we now routinely sequence human genomes, we can
confidently identify only a fraction of the sequence variants that
have a functional impact. Here, we developed a deep mutational
scanning framework that produces exhaustive maps for human
missense variants by combining random codon mutagenesis and
multiplexed functional variation assays with computational impu-
tation and refinement. We applied this framework to four proteins
corresponding to six human genes: UBE2I (encoding SUMO E2
conjugase), SUMO1 (small ubiquitin-like modifier), TPK1 (thiamin
pyrophosphokinase), and CALM1/2/3 (three genes encoding the
protein calmodulin). The resulting maps recapitulate known
protein features and confidently identify pathogenic variation.
Assays potentially amenable to deep mutational scanning are
already available for 57% of human disease genes, suggesting that
DMS could ultimately map functional variation for all human
disease genes.
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Introduction

Millions of people will soon have their genomes sequenced. Unfor-

tunately, we have only a limited ability to interpret personal

genomes, each carrying 100–400 rare missense variants (The 1000

Genomes Project Consortium, 2015) of which many must currently

be classified as “variants of uncertain significance” (VUS). For

example, gene panel sequencing aimed at identifying germline

cancer risk variants in families yielded VUS for the majority of

missense variants (Maxwell et al, 2016). Functional variants can be

predicted, but when high precision is required, computational tools

(Adzhubei et al, 2010; Choi et al, 2012) detect only one-third as

many pathogenic variants as experimental assays (Sun et al, 2016).

Unfortunately, validated experimental assays enabling rapid clinical

interpretation of variants are not available for the vast majority of

human disease genes.

Deep mutational scanning (DMS) (Fowler et al, 2010; Fowler &

Fields, 2014; Starita et al, 2017), a strategy for large-scale functional

testing of variants, can functionally annotate a large fraction of

amino acid substitutions for a substantial subset of residue posi-

tions. Recent DMS studies, for example, covered the critical RING

domain of BRCA1 (Starita et al, 2015) associated with breast cancer

risk, and the PPARG protein associated with Mendelian lipodystro-

phy and increased risk of type 2 diabetes (Majithia et al, 2016).

Such maps can accurately identify functionality of a clinical variant

in advance of that variant’s first clinical presentation. Diverse assays

can be used for DMS (see Table EV1). Functional complementation
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assays test the variant gene’s ability to rescue the phenotype caused

by reduced activity of the wild-type gene (or its ortholog in the case

of trans-species complementation) (Lee & Nurse, 1987; Osborn &

Miller, 2007). Cell-based functional complementation assays can

accurately identify disease variants across a diverse set of human

disease genes (Sun et al, 2016).

Challenges to the DMS strategy include the need to establish

robust assays measuring each variant’s impact on the disease-

relevant functions of a gene, and to generate maps that cover all

possible amino acid changes. Also, published DMS maps have not

typically controlled the overall quality of measurements nor esti-

mated the quality of individual measurements. Thus, the use of

DMS maps to confidently evaluate specific variants has been

limited.

Here, we describe a modular DMS framework to generate

complete, high-fidelity maps of variant function based on functional

complementation. This framework combines elements of previous

DMS studies, uses machine learning to impute and improve the map

with surprisingly high accuracy, and yields a confidence measure

for each reported measurement. In the following sections, we give

an overview of the overall framework for DMS, describe its initial

application to the SUMO E2 conjugase UBE2I, present complete

high-fidelity maps for three new disease-associated proteins and

explore the potential for clinical relevance. Finally, we assemble

information on functional assays for known human disease genes

and conclude that DMS is already potentially extensible to the

majority of human disease genes, suggesting the possibility of

exhaustive maps of functional variation covering all human genes.

Results

We describe a framework for comprehensively mapping functional

missense variation, organized into six stages (see Fig 1A): (i) mutage-

nesis; (ii) generation of a variant library; (iii) selection of functional

variants; (iv) readout of the selection results and analysis to produce

an initial sequence-function map; (iv) computational analysis to

impute missing values; and (vi) computational analysis to refine

measured values via machine learning. We describe and contrast two

versions of this framework: DMS-BarSeq and DMS-TileSeq.

A barcode-based deep mutational scanning strategy

We first describe DMS-BarSeq and its application to map functional

missense variation for the SUMO E2 conjugase UBE2I. In DMS-BarSeq,

a heterogeneous pool of cells bearing a library of different barcoded

expression plasmid is quantified via barcode-sequencing before and

after selection. For Stage 1 of the DMS framework—mutagenesis—we

sought a relatively even representation of all possible single amino

acid substitutions. We wished to allow multiple mutations per clone,

both because this allowed for greater mutational coverage for any

given library size, and offered an opportunity to discover intragenic

epistatic relationships. To this end, we scaled up a previous mutagene-

sis protocol (Seyfang & Huaqian Jin, 2004) to develop Precision Oligo-

Pool based Code Alteration (POPCode), which yields random codon

replacements (see Materials and Methods).

For Stage 2 of the framework—generation of a variant library—

we employed en masse recombinational cloning of mutagenized

UBE2I amplicons into a pool of randomly barcoded plasmids (see

Materials and Methods). The full-length UBE2I sequence and

barcode of each plasmid were established using a novel sequencing

method called KiloSeq which combines plate-position-specific index

sequences with Illumina sequencing to carry out full-length sequenc-

ing for thousands of samples (see Materials and Methods). We

retained clones that carried at least one amino acid substitution to

generate a final library comprised of 6,553 UBE2I variants, covering

different combinations of 1,848 (61% of all possible) unique amino

acid changes. Variant plasmids were pooled, together with empty

vector and wild-type control plasmids (see Materials and Methods).

For Stage 3—selection for clones encoding a functional protein—

we employed a S. cerevisiae functional complementation assay

(Jiang & Koltin, 1996; Sun et al, 2016), based on human UBE2I’s

ability to rescue growth at an otherwise-lethal temperature in a

yeast strain carrying a temperature-sensitive (ts) allele of the UBE2I

ortholog UBC9. Despite a billion years of divergence, yeast func-

tional complementation assays can accurately discriminate patho-

genic from non-pathogenic human variants (Sun et al, 2016). The

plasmid library from Stage 3 was transformed en masse into the

appropriate ts strain. Pools were grown for 48 h at the permissive

(25°C) and selective (37°C) temperatures, respectively (see Materi-

als and Methods).

To assess variant functions (Stage 4), barcodes were sequenced

at multiple timepoints of the selection, enabling reconstruction of

individual growth curves and normalized fitness quantification for

each of the 6,553 barcoded strains. Functional complementation

scores were calibrated so that 0 corresponds to the fitness of the null

allele and 1 to wild-type complementation (see Materials and Meth-

ods). Using replicate agreement and extent of library representation,

we estimated our uncertainty in each fitness value (see Materials

and Methods).

Before further refinement in Stages 5 and 6, we wished to assess

the quality of the DMS-BarSeq complementation scores. Based on

both technical (Fig 1B, top) and biological replicates (different

clones carrying the same mutation; Fig 1B, bottom), we found

scores to be reproducible (Pearson’s R of 0.97 and 0.78, respec-

tively). Semi-quantitative manual complementation assays for a

subset of mutants that spanned the range of fitness scores (see

Materials and Methods) correlated well with DMS scores. Indeed,

agreement between large-scale and manual scores was on par with

agreement between internal replicates of the large-scale scores

(Fig 1B and C).

We also examined evolutionary conservation and computational

predictors of deleteriousness, such as PolyPhen-2 (Adzhubei et al,

2010) and PROVEAN (Choi et al, 2012). Although each is an imper-

fect measure of the functionality of amino acid changes (Sun et al,

2016), each should and did correlate with DMS results (Fig 1D top

panel, Appendix Fig S1). Finally, we confirmed that, as expected,

amino acid residues on the protein surface are more tolerant to

mutation than those in the protein core or within interaction inter-

faces (Fig 1D, bottom panel). Taken together, these observations

support the biological relevance of the DMS-BarSeq approach.

A tiled-region strategy for mapping functional variation

While DMS-BarSeq has several advantages (see Discussion), its

performance comes at the cost of producing an arrayed library of
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clones, each with known coding and barcode sequence. We there-

fore also evaluated an alternative approach, DMS-TileSeq in which

each functional variant is detected via the effect of selection on the

abundance of clones carrying that variant. The frequency of each

variant in the pool is determined, before and after selection, by deep

sequencing of short amplicons that tile the complete coding region.

In terms of mutagenesis (Stage 1), DMS-TileSeq is identical to

DMS-BarSeq. Given the mutagenized amplicon library, the cloning

step (Stage 2) was carried out by en masse recombinational

subcloning into expression vectors (thereby skipping the step of

arraying and sequencing individual clones). This plasmid pool was

next transformed en masse into the ubc9-ts strain. Deep sequencing

detected 97% of all possible missense variants in our expression

library, and 100% of the amino acid substitutions that can be

achieved via single-nucleotide mutation. As with DMS-BarSeq,

DMS-TileSeq employs pooled strains grown competitively (Stage 3)

at the permissive and selective temperatures. In Stage 4, like some

previous DMS efforts (Doud & Bloom, 2016), we directly sequenced

the coding region from the clone population to determine variant

frequency before and after selection. Use of tiled amplicons enables

individual template molecules to be sequenced on both strands,

allowing elimination of most base-calling errors (Fowler et al, 2010;

A

C

B D

Figure 1. UBE2I screening and validation.

A Modular structure of the screening framework.
B Raw DMS-BarSeq fitness scores in technical replicates (separately plated assays of the same pool) and biological replicates (separate sub-strains in the pool carrying

the same variants).
C Manual spotting assay validation of a representative set of variants. Each row represents a consecutive fivefold dilution. Marked in red: maximal dilution visible in

empty vector control. Marked in green: maximal dilution with visible human wt control. Marked in yellow: dilution steps exceeding visible human wt control. Bar
heights represent summary screen scores. Error bars show Bayesian regularized standard error based on three technical replicates and a prior based on pre-selection
counts and final score (see Materials and Methods for details).

D Variants grouped by evolutionary conservation (AMAS score) of their respective sites (top) and grouped by structural context within the protein core, within protein–
protein interaction interfaces or on remaining protein surface (bottom). Boxes range across the second and third quartiles with the middle bar representing the
median. Whiskers show the most extreme values within 1.5×IQR. As normality cannot be assumed for the distributions of fitness scores, one-sided two-sample
Wilcoxon–Mann–Whitney tests were used. Low conservation (n = 60 clones) vs. medium conservation (n = 105 clones) W = 3789, *P = 0.015; medium conservation
(n = 105 clones) vs. high conservation (n = 404 clones) W = 28043, *P = 1.8 × 10�7; Core (n = 208 clones) vs. surface (n = 42 clones) W = 1649, *P = 1.01 × 10�10;
interface (n = 215 clones) vs. surface (n = 42 clones) W = 2461, *P = 1.58 × 10�6.
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Whitehead et al, 2012; Zhang et al, 2016) (see Materials and Meth-

ods for details). This reduction in base-calling error allows us to

more accurately measure lower allele frequencies in mutagenized

libraries.

To further assess the reliability of DMS-TileSeq, we compared

results with DMS-BarSeq for UBE2I. DMS-TileSeq and DMS-BarSeq

correlation was similar to that observed between biological DMS-

BarSeq replicates (Pearson’s R = 0.75, Appendix Fig S2). DMS-

TileSeq and DMS-BarSeq also behaved similarly in their agreement

with manual complementation assays (Appendix Fig S3). Thus,

DMS-TileSeq avoids the substantial cost of arraying and sequencing

thousands of individual clones, while performing on par with DMS-

BarSeq in terms of reliability of functional complementation scores.

After using regression to transform the DMS-TileSeq scores to

the more intuitive scale of DMS-BarSeq (where 0 corresponds to

the median score of null mutant controls and 1 corresponds to the

median score of wild-type controls), we combined scores from the

two methods, giving greater weight to more confident measure-

ments (see Materials and Methods). Scores emerging from this

procedure are referred to as “joint scores” below.

Machine learning to complete and refine maps

Although nearly all missense variants can be detected in our UBE2I

TileSeq libraries, we only considered those variants present with

“allele frequency” sufficient to allow confident detection of allele

frequency reduction post-selection (see Materials and Methods).

After filtering, 2,563 of 3,012 possible amino acid changes (85%)

were well measured. To complete missing entries in the map (Stage

5 in the framework), we trained a Random Forest (Breiman, 2001)

regression model using the existing joint scores in the map. The

model used four types of predictive feature: intrinsic (derived from

other measurements in our map); conservation-based; chemico-

physical; and structural. Particularly predictive features (Fig 2D)

included the average score of observed substitutions at a given posi-

tion, as weighted by measurement confidence. Conservation-based

features included BLOSUM62 (Henikoff & Henikoff, 1992), SIFT (Ng

& Henikoff, 2001) and PROVEAN (Choi et al, 2012) scores, and

position-specific AMAS (Livingstone & Barton, 1993) conservation.

Chemicophysical features included mass and hydrophobicity of the

original and wild-type amino acids, and the difference between

them. Structural features included solvent accessibility and burial in

interaction interfaces. Where DMS-BarSeq scores for multi-mutant

clones were available, we also used the confidence-weighted aver-

age score of all clones containing a particular substitution, and vari-

ant fitness expected from a multiplicative model (St Onge et al,

2007) (see Materials and Methods).

We assessed imputation performance using cross-validation.

Surprisingly, the error (root-mean-squared deviation or RMSD) of

imputed values (0.33) was on par with that of experimentally

measured data (Fig 2A). As an additional validation step, we

performed manual complementation assays for a set of UBE2I vari-

ants that were not present in the machine-learning training dataset

and compared the results against imputed values (Fig 2C), again

finding strong agreement. Predictions showed the least error in posi-

tions with high mutation density and the most error for hypercom-

plementing variants, that is, those yielding above-WT fitness levels

in yeast (Fig 2B). Although hypercomplementation may indicate that

a variant is adaptive in yeast, imputation generally predicted these

variants to be deleterious, a hypothesis we explore further below.

A

B

C D

Figure 2. Validation of machine-learning imputation for UBE2I.

A Cross-validation evaluation: Joint scores from DMS-BarSeq and DMS-TileSeq compared to machine-learning prediction in 10× cross-validation. The agreement is
comparable to that between biological replicates in the screen itself (compare to Fig 1B).

B Error map, showing cross-validation results for each data point sorted by amino acid position and mutant residue.
C Comparison of imputation predictions with individual spotting assays. Each row represents a consecutive fivefold dilution. Marked in red: maximal dilution visible in

empty vector control. Marked in green: maximal dilution with visible human wt control. Marked in yellow: dilution steps exceeding visible human wt control.
D Most informative features in the Random Forest imputation, as measured in % increase in mean squared deviation upon randomization of a given feature.
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In order to examine the impact of training set size on the imputa-

tion performance, we performed sub-sampling analysis. Perfor-

mance was poor below ~5% map completeness, increased

dramatically at ~10% map completeness, and then improved gradu-

ally (and approximately linearly) as completeness levels rose

beyond 10% (Appendix Fig S4). We also computationally examined

the expected impact of changing the mutagenesis method: When

training only on SNP-accessible variants (e.g., if one were using

libraries generated by error-prone PCR), imputation RMSD was

significantly worse (P = 2.4 × 10�5) compared to a training set of

equivalent sample size that can, as POPCode allows, contain all

possible amino acid substitutions (Appendix Fig S4).

To refine less-confident experimental measurements (Stage 6 of

the framework), we combined joint experimental scores with

Random Forest-predicted scores from the imputation procedure,

weighting by confidence level. Scores resulting from this combina-

tion are referred to as “refined scores” below. Overall, most values

were only adjusted minimally through refinement, with 90% of

values being altered by < 2.5% of the score difference between null

and wt controls (Appendix Fig S5A). This reflects the fact that most

values were already of high quality. To evaluate the effect on the

minority of variants that required stronger refinement, we looked

for cases that were of low quality in the DMS-TileSeq dataset, but

well measured in the DMS-BarSeq experiment. These cases would

allow us to treat the DMS-BarSeq values as an independent refer-

ence for comparison when performing the refinement procedure

only on the DMS-TileSeq dataset. We identified six cases that ful-

filled these criteria. In all six cases, refinement of DMS-TileSeq

resulted in improvement, that is, adjusted the corresponding values

such that they more closely resembled the gold standard

(Appendix Fig S5B). However, all changes were small, suggesting

that our refinement procedure was overly conservative and that

alternative weighting schemes should be explored as more “ground

truth” data become available.

Manual complementation assays, applied to a set of variants that

represented the full range of refined scores (Appendix Fig S3),

served to validate the reliability of the complete, refined functional

map of UBE2I after imputation and refinement. The map, as seen in

Fig 3A, fulfills biochemical expectations, with the hydrophobic core,

the active site and protein interaction interfaces being most strongly

impacted by mutations (Fig 3B). Detailed observations with respect

to structure, biochemistry, and epistatic behavior of double mutants

can be found in the Appendix Texts.

Hypercomplementing variants are likely to be deleterious
in humans

We further investigated UBE2I variants exhibiting hypercomplemen-

tation (Fig 3A). Manual assays confirmed that complementation

with these mutants allows greater yeast growth than does the

wild-type human protein (Appendix Fig S6A). These hypercomple-

menting substitutions did not reliably correspond to “reversion”

substitutions that inserted the corresponding S. cerevisiae residue

(Appendix Fig S6B). Some substitutions could be adaptive by

improving compatibility with yeast interaction partners. Indeed, a

comparison with co-crystal structure data (Gareau et al, 2012)

shows that many of the hypercomplementing residues are on the

surface proximal to the substrate, with some directly contacting the

substrate’s sumoylation motif (Fig 3C). In vitro sumoylation assays

performed previously for a small number of UBE2I mutants revealed

increased sumoylation for some substrates (Bernier-Villamor et al,

2002). Comparing our map with these sumoylation assay results,

we saw that cases of hypercomplementation were enriched for

substrate specificity shift (Appendix Fig S6C). However, other cases

of hypercomplementation hinted at different modes of adaptation

(see Appendix Text).

To explore whether variants exhibiting hypercomplementation

are more likely beneficial or deleterious in a human context, we

used a quantitative phylogenetic approach (Bloom, 2014, 2017) to

compare three models relating the (refined) complementation scores

to evolutionary preference for an amino acid variant: (i) Evolution-

ary preference is directly proportional to complementation score;

(ii) preference has a ceiling at the wild-type complementation score

(values > 1 were set to 1); or (iii) preference is set to the reciprocal

of complementation score for mutations with greater-than-wild-type

scores, corresponding to a deleterious effect of hypercomplementing

mutations. We used the phydms software (Bloom, 2017) to test

which of these three approaches best described the evolutionary

constraint on a set of naturally occurring UBE2I homologs, using re-

calculated refined scores that excluded conservation features from

the imputation and refinement process, to avoid circularity when

using natural sequence data to impute or refine scores. The best fit

is achieved by treating variants with greater-than-wild-type comple-

mentation in yeast as deleterious in humans (Appendix Table S1).

We therefore reinterpreted cases of hyperactive complementation in

our map as deleterious and repeated the machine-learning training,

imputation and refinement procedure. Repeated cross-validation

revealed the new imputed values based on the reinterpreted score

matrix to be more reliable (i.e., reducing cross-validation RMSD

from 0.33 to 0.24).

Variant impact maps for five additional disease-implicated genes

Having validated the framework, we sought to map functional varia-

tion for disease-relevant genes. We applied the higher-throughput

TileSeq approach, coupled with yeast complementation, to a diverse

set of genes: SUMO1, for which heterozygous null variants are asso-

ciated with cleft palate (Andreou et al, 2007); thiamine pyrophos-

phokinase 1 (TPK1), associated with vitamin B1 metabolism

dysfunction (Mayr et al, 2011); and CALM1, CALM2, and CALM3,

associated with cardiac arrhythmias (long-QT syndrome (Crotti

et al, 2013) and catecholaminergic polymorphic ventricular tachy-

cardia (Nyegaard et al, 2012)). Because the three calmodulin genes

encode the same polypeptide sequence, performing DMS for CALM1

also provided maps for CALM2 and CALM3.

As no corresponding DMS-BarSeq data were available to facili-

tate TileSeq score re-scaling for these genes, we rescaled scores such

that a score of 0 corresponded to the median of nonsense variants

while a score of 1 corresponded to the median of synonymous vari-

ants. The Random Forest model underlying imputation and refine-

ment was trained anew for each map. (Differences in the stringency

of each selection have the potential to introduce non-linear changes

in scale that will differ between maps.) Supporting the quality of the

resulting four maps, each map showed clear differences in TileSeq-

score distributions between likely neutral (synonymous) and likely

deleterious (nonsense) variants (Appendix Fig S7).
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To assess the impact of the machine-learning imputation and

refinement on the different maps, we measured the completeness of

each map before and after imputation, the cross-validation RMSD of

the imputation, as well as the maximum standard error value for

each map before and after refinement (Table 1). On average, 24.6%

of scores were obtained purely by imputation, and 3.96% of scores

were appreciably changed by > 5% of the difference between null

and wt controls as a result of refinement. Proteins for which overall

map quality was initially lower were improved most by refinement,

while others, like SUMO1, improved only modestly. Inspection of

the maps yielded a number of interesting biochemical and structural

observations (see Appendix Texts).

Phylogenetic analysis of SUMO1, as for UBE2I, showed that vari-

ants that complement yeast better than wild-type are best modeled as

being deleterious in humans (Appendix Table S1). As was done for

the first map, we transformed above-wild-type fitness scores to be

deleterious before the imputation and refinement step (see Materials

and Methods). Because hypercomplementing substitutions may

nonetheless provide interesting clues about differences between yeast

and human cellular contexts, we provide both transformed (Fig 4)

and untransformed (Appendix Fig S8) map versions. The full numeri-

cal values underlying the maps can also be found in Dataset EV1.

DMS functional maps reflect clinical phenotypes

To validate the utility of our maps in the context of human disease,

we extracted known disease-associated variants from ClinVar

(Landrum et al, 2016), as well as rare and common polymorphisms

A

B C

Figure 3. A complete functional map of UBE2I.

A A complete functional map of UBE2I as resulting from the combination of the complementation screen and machine-learning imputation and refinement. An impact
score of 0 (blue) corresponds to a fitness equivalent to the empty vector control. A score of 1 (white) corresponds to a fitness equivalent to the wild-type control. A
score > 1 (red) corresponds to fitness above wild-type levels. Shown above, for comparison are sequence conservation, secondary structure, solvent accessibility, and
burial of the respective amino acid in protein–protein interaction interfaces with covalently and non-covalently bound SUMO, the E1 UBA2, the sumoylation target
RanGAP1, the E3 RanBP2 and UBE2I itself. Hydrogen bonds or salt bridges between residues and the respective interaction partner are marked with red asterisks.
Residues buried in both the covalent SUMO and client interfaces are framed with dotted lines, marking the core members of the active site.

B UBE2I crystal structure with residues colored according to the median mutant fitness. Colors as in (A). The interacting substrate’s ΨKxE motif is shown in green stick
model; Covalently bound SUMO is shown as a red cartoon model; and non-covalently bound SUMO is shown in brown cartoon model. The structures shown were
obtained by alignment of PDB entries 3UIP and 2PE6.

C UBE2I crystal structure as in (B), with residues colored according to maximum mutant fitness.
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observed independent of disease from GnomAD (Lek et al, 2016),

and somatic variants previously observed in tumors from COSMIC

(Forbes et al, 2001).

While no germline disease-associated missense variants are

known for UBE2I and SUMO1 in ClinVar, somatic cancer variants

have been observed for both genes according to COSMIC. Somatic

variants in these three genes exhibited higher functional impact in

DMS maps than germline variants (Wilcoxon P = 2.6 × 10�5)

(Fig 5A). This does not necessarily suggest that either of these genes

are cancer drivers, as even passenger somatic variants should

subject to less purifying selection than germline variants, but it does

lend further credence to the biological relevance of our maps.

For TPK1, many very rare variants (minor allele frequency or

MAF < 10�6) are seen in GnomAD. The majority of these variants

were scored as deleterious (Appendix Fig S9A). Thiamine metabo-

lism dysfunction syndrome, reported to be caused by variants in

TPK1, is a severe disease to which patients succumb in childhood

(Mayr et al, 2011). Although GnomAD attempted to exclude subjects

with severe pediatric disease, the abundance of rare predicted-dele-

terious variants may be understood by the disease’s recessive inheri-

tance pattern. Using phased sequence data from the 1000 Genomes

Project (The 1000 Genomes Project Consortium, 2015) to determine

diploid genotypes in TPK1, we assigned each subject a diploid score

corresponding to the maximum (refined) score across each pair of

alleles. This improved prediction performance markedly, leading to

complete separation between disease and non-disease genotypes

using DMS, PROVEAN, or PolyPhen-2 scores (Appendix Fig S9B).

However, additional compound heterozygotes with known disease

status will be required to compare DMS with computational methods

in the task of identifying TPK1 disease variants.

Because the inheritance pattern of calmodulin disorders is typi-

cally dominant (Crotti et al, 2013), we did not consider diploid

genotypes but simply evaluated the ability of the (refined) DMS

scores to distinguish disease from non-disease variants (Fig 5B).

DMS scores performed well according to precision-recall analysis,

with an area under the precision-recall curve (AUC) of 0.72, exceed-

ing both PROVEAN (AUC = 0.48) and PolyPhen-2 (AUC = 0.47)

(Fig 5C). At a stringent precision threshold of 90%, DMS exceeded

twice the sensitivity of PROVEAN and PolyPhen-2.

We further wished to explore how classification based on these

observations would perform on variants of uncertain significance

(VUS). We therefore examined missense VUS substitutions seen by

Invitae, a clinical genetic testing company. Ten rare calmodulin

variants had been encountered, of which half were from tests

ordered due to a cancer indication, and the other half from tests

ordered for a cardiac disease indication. Blinded to indication, we

ranked and classified the 10 Invitae VUS variants by DMS score

(Table 2). We classified variants as “damaging” if they were below

both the highest score of known pathogenic variants and the lowest

score of GnomAD variants, and classified variants as “benign” if

they were both above the highest-scoring known-pathogenic variant

and the lowest-scoring GnomAD variant. All others were classified

as “uncertain”. Using these criteria, two Invitae variants were classi-

fied as damaging, two as uncertain, and six as benign. Based on the

patient test indications subsequently revealed by Invitae, five out of

the six variants we classified as benign were ordered due to a non-

cardiac indication, while both variants with damaging predictions

and both with VUS predictions corresponded to cardiac indications.

Overall, DMS scores (which do not depend on the somewhat arbi-

trary classification system described above) showed a significant

association with cardiac indications (P = 0.008, U = 24.5; Mann–

Whitney U-test). We note that the DMS scores used in this analysis

(Table 2) differ slightly from those in the final dataset (Dataset EV1)

because they were derived from an earlier version of the analysis

pipeline. To uphold the integrity of the blinded test, the old values

are shown in Table 2, but using the new values yielded precisely

the same association between CALM1 DMS score and cardiac indi-

cations (P = 0.008, U = 24.5; Mann–Whitney U-test).

Potential for applying deep mutational scanning more widely

DMS mapping requires an en masse functional assay that can be

applied at the scale of 104–105 variant clones. Among ~4,000 disease

genes, examination of four systematic screens and curated literature

suggests that ~5% of human disease genes currently have a yeast

complementation assay (Hamza et al, 2015; Kachroo et al, 2015;

Sun et al, 2016). This number could grow dramatically via system-

atic complementation testing under different environments and

genetic backgrounds. Moreover, complementation assays can also

be carried out in other model systems including human cells (Hart

et al, 2015). Based on only three large-scale CRISPR studies (Wang

et al, 2014; Blomen et al, 2015; Hart et al, 2015), cellular growth

phenotypes (which might serve as the basis for an en masse selec-

tion) have already been observed in at least one cell line for 29% of

human disease genes. Beyond complementation, assays of protein

interaction can, in addition to identifying variants directly impacting

interaction, can detect variants ablating overall function through

effects on protein folding or stability. In a recent study, approxi-

mately two-thirds of disease-causing variants were found to impact

at least one protein interaction (Sahni et al, 2015). Although only a

Table 1. Map quality comparison.

Gene
Possible AA
changes

Achieved AA
changes

Imputation
RMSD

Experimental
max(s.e.m.)

Refined
max(s.e.m.)

Refinement
> 0.05

UBE2I 3021 2563 (85%) 0.24 0.36 0.25 2.46%

SUMO1 1919 1700 (89%) 0.25 0.19 0.17 1.06%

TPK1 4617 3181 (69%) 0.34 0.49 0.37 5.51%

CALM1 2831 1813 (64%) 0.29 0.28 0.22 6.84%

Experimental max(s.e.m.): the largest standard error associated with any experimentally measured score in the given dataset; refined max(s.e.m.): the largest
standard error associated with any refined score in the given dataset. Refinement > 0.05: the percentage of variants whose scores were changed by more than
0.05 as a result of refinement.
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minority of human protein interactions have been mapped (Rolland

et al, 2014), already 40% of human genes have at least one interac-

tion partner detectable by yeast two-hybrid assay in a recent screen

(Rolland et al, 2014). Taking the union of available assays, we esti-

mate that 57% of known disease-associated genes (Dataset EV2)

already have an assay that is potentially amenable to DMS.

Discussion

The framework for systematically mapping functional missense

variation we describe here combines elements of previous DMS

studies and introduces a new mutagenesis strategy and a machine-

learning-based imputation and refinement strategy. This framework

Figure 4. Functional maps of SUMO1, TPK1, and calmodulin (CALM1/2/3).

Layout and colors as in Fig 3.
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enables DMS maps that are “complete” in the sense that high-

quality functional impact scores are provided for all missense vari-

ants to full-length proteins. Application to four proteins highlighted

complex relationships between the biochemical functions of these

proteins with phenotypes in the yeast model system. Analysis of

pathogenic variation, especially for calmodulin, supported the

potential clinical utility of DMS maps from this framework.

The two described versions of DMS, DMS-BarSeq and DMS-

TileSeq, each has advantages and limitations (Appendix Table S2).

DMS-BarSeq permits study of the combined effects of variants at any

distance along the clone and therefore can reveal intramolecular

genetic interactions. For DMS-BarSeq, fully sequenced variant clones

are arrayed, enabling further investigation of individual variants.

DMS-BarSeq can directly compare growth of any clone to null and

wild-type controls, resulting in an intuitive scoring scheme. However,

despite the efficient KiloSeq strategy for sequencing arrayed clone sets

we report for the first time here, DMS-BarSeq is more resource-inten-

sive. Although the regional sequencing strategy of DMS-TileSeq can

only analyze fitness of double mutant combinations falling within the

same ~150 bp tile, it is far less resource-intensive than DMS-BarSeq.

In the TileSeq libraries, many clones will contain multiple amino

acid substitutions (e.g., our UBE2I library averages 2.1 amino acid

changes per clone, so in this case, the Poisson distribution predicts

that 62% of clones will have more than one amino acid substitu-

tion). This raises the concern that the presence of multiple muta-

tions in these clones could obscure the functional effect of any

single mutation. However, the DMS-TileSeq scores in our UBE2I

map follow a distribution for synonymous variants that is unimodal

and distinct from the (also unimodal) distribution for nonsense

codon variants, indicating that, despite the presence of multiple

variants in many clones, we are able to clearly separate neutral vari-

ants from null variants (Appendix Fig S7). Indeed, despite the fact

that DMS-TileSeq libraries often have multiple clones, and DMS-

BarSeq analysis was based on single-mutant clones, our evaluations

of DMS-TileSeq and DMS-BarSeq maps of UBE2I indicated that they

are of similar quality. This may be understood by considering the

large clone population analyzed (typically > 100,000 clones), which

means that the impact of each given query mutation will be an aver-

age effect over many genetic backgrounds. This is analogous to

detecting a shift in a single SNP’s allele frequency between case and

A C

B

Figure 5. DMS functional maps reflect clinical phenotypes.

A Comparison of (refined) functional scores between rare polymorphisms (GnomAD) and somatic tumor mutations (COSMIC) in UBE2I and SUMO1. Bars show median
and quartiles. As normality cannot be assumed for the distributions of fitness scores, a one-sided two-sample Wilcoxon–Mann–Whitney test was used: n = {26,31}
variants, W = 570.5, P = 3.73 × 10�3.

B Impact score distributions in calmodulin overlayed with previously observed alleles in CALM1, CALM2, and CALM3: Rare alleles from GnomAD are shown in green;
ClinVar alleles classified as pathogenic are shown in red.

C Precision-recall curves for our DMS atlas, PROVEAN, and PolyPhen-2 with respect to distinguishing Gnomad variants from pathogenic alleles from ClinVar.
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control populations in a genomewide association study despite vari-

ation at other loci. We cannot exclude the possibility that libraries

that have a higher average number of mutations per clone or are

from genes for which a higher fraction of missense variants are dele-

terious, may perform less well in TileSeq. In such cases, it may be

desirable to reduce the mutation rate in the POPCode protocol. This

can be achieved by using lower concentrations of mutagenic oligos,

or using “DMS by parts,” in which multiple mutagenized libraries

are generated, each focusing mutagenesis on a different segment of

the protein.

Given that most missense variants in individual human genes are

single-nucleotide variants (Lek et al, 2016), and given that only

~30% of all possible amino acid substitutions are accessible by

single-nucleotide mutation, one might wonder why codon mutagen-

esis should be preferred over single-nucleotide mutagenesis. We see

four arguments for codon-level mutagenesis: (i) Knowing the func-

tional impact of all 19 possible substitutions at each positions

enables clearer understanding of the biochemical properties that are

required at each residue position; (ii) an analysis of > 60,000

unphased human exomes (Lek et al, 2016) found that each individ-

ual human harbors ~23 codons containing multiple nucleotide vari-

ants that together could encode an amino acid not encoded by

either single variant; (iii) it is not straightforward to generate

balanced libraries in which every single-nucleotide variant has

roughly equal representation, given that error-prone amplification

methods strongly favor transition mutations over transversion muta-

tions, while still avoiding frequent introduction of new stop codons;

and (iv) the major cost of DMS will likely continue to be develop-

ment and validation of the functional assay, so using codon-level

mutagenesis instead of (or in addition to) nucleotide-level mutagen-

esis has a relatively small impact on overall cost.

This study yielded four DMS maps measuring functional impact

of ~16,000 missense variants. The maps generated for sumoylation

pathway members UBE2I and SUMO1, and disease-implicated genes

CALM1/2/3 and TPK1 using our framework were consistent with

biochemical expectations while providing new hypotheses. DMS

maps based on functional complementation were highly predictive

of disease-causing variants, outperforming popular computational

prediction methods such as PolyPhen-2 or PROVEAN, confirming

previous observations (Sun et al, 2016). Given sufficient

experimental data for training, our results show that imputation can

“fill the gaps” with scores that are nearly as reliable as experimental

measurements and that computational refinement can improve

upon experimental measures.

Currently, the machine-learning model underlying our imputa-

tion and refinement is re-trained for every new map. Future imputa-

tion procedures may benefit by aggregating data from many maps to

train a more general imputation model. One challenge will be ensur-

ing that each map is measured on the same scale. For example, the

score distributions for missense variants in TPK1 showed a strong

bias toward deleteriousness, while missense variants in Calmodulin

were biased toward neutrality. However, it is unclear whether this

reflects intrinsic properties of these genes as opposed to differences

in the stringency of the two selection experiments.

As the community carrying out DMS experiments proceeds

toward a (perhaps-distant) common goal of generating a DMS map

for all human disease-associated proteins, there will be serious

challenges that both TileSeq and our computational methods help

to address. Previous DMS maps have assessed variation in rela-

tively short polypeptide regions (typically < 200 amino acids in

length). As we approach the median human protein length of ~500

residues, the constraint that we have only ~1–2 missense variants

per clones necessarily reduces the mutational density in each clone

and thus, the allele frequency in the mutagenized population. This

will require a substantial increase in the scale of the library of

independently transformed/transfected cells and correspondingly

increased sequencing depth to accurately quantify low allele

frequencies. Through the reduction in base-calling errors permitted

by sequencing both strands, TileSeq allows analysis of lower-

allele-frequency variants. Similarly, the need to cover all single

amino acid substitutions is substantially ameliorated by our

finding that, given a critical mass of DMS data, the quality of

imputed scores is nearly as good as experimental measurements.

Each of these improvements could have a major impact on the

field of deep mutational scanning.

Genome sequencing is likely to become common in clinical prac-

tice. Current estimates suggest that every human carries an average

of 100–400 rare variants that have never before been seen in the

clinic. DMS meets a critical need for fast, reliable interpretation of

variant effects. Instead of generating clones and functionally testing

Table 2. Invitae VUS classification.

Variant MAF sd/rmsd Imp/ref Unrefined DMS DMS call Indication

D94A NA 0.26 Imputed NA 0.46 Likely damaging Cardio

D96H NA 0.26 Imputed NA 0.72 Likely damaging Cardio

I28V 10�5 0.05 Mild ref. 0.88 0.88 Uncertain Cardio

N98S NA 0.05 Mild ref. 0.89 0.89 Uncertain Cardio

T35I 4 × 10�6 0.04 Mild ref. 0.93 0.93 Likely benign Non-Cardio

E48G NA 0.05 Mild ref. 0.93 0.93 Likely benign Cardio

G26D NA 0.06 Mild ref. 0.94 0.94 Likely benign Non-Cardio

T27S 3 × 10�5 0.05 Mild ref. 0.96 0.96 Likely benign Non-Cardio

V122A NA 0.05 Mild ref. 0.98 0.98 Likely benign Non-Cardio

A104G NA 0.08 Mild ref. 1.00 1.00 Likely benign Non-Cardio

sd/rmsd, standard error (for measured values)/root-mean-squared deviation (for imputed values); imp/ref, imputation/refinement; mild ref., mild refinement.
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variants of unknown significance after they are first observed, DMS

offers exhaustive maps of functional variation that enable interpre-

tation immediately upon clinical presentation, even for rare and

personal variation. Our survey of assays revealed that the majority

(57%) of human disease genes are potentially already accessible to

DMS analysis, so that we may begin to imagine an atlas of DMS

maps that reveals pathogenic missense variation for all human

disease proteins.

Although our current implementation of the complementation

assay uses a temperature-sensitive (ts) allele to provide a control,

genes for which no ts allele is yet known are still amenable to DMS

by using a null background in combination with an inducibly

expressible covering allele. There is even a potential for increasing

the number of genes with complementation assays by systematically

screening for sensitized backgrounds (exploiting known synthetic

lethality relationships or growth conditions). However, growth-

based complementation assays have limitations in that they may

have limited ability to detect gain- or change-of-function variants.

Yeast is also limited as a platform in which to study splicing regula-

tory or splicing variants. While adaptation of DMS technology to

human cell lines will be challenging, recent advances remove some

previous hurdles. In addition to the availability of CRISPR-Cas9 to

generate homozygous disruptions in target genes, recent advances

in “landing pad” technology (Matreyek et al, 2017) now allow trans-

fection and integration of a specific sequence into 1–8% of a popula-

tion of Hek293T cells. Thus, in theory, DMS could be done using on

the order of 1 M human cells.

Materials and Methods

POPCode mutagenesis

The Precision Oligo-Pool based Code Alteration (POPCode) scales

up a previous method (Seyfang & Huaqian Jin, 2004) to achieve

coverage over the complete spectrum of possible amino acid

changes at all protein positions. POPCode requires design of an

oligonucleotide centered on each codon in the open reading frame

(ORF) of interest, such that the target codon is replaced with an

NNK degenerate codon. This has been previously demonstrated to

allow all amino acid changes while reducing the chance in generat-

ing stop codons (Pal & Fellouse, 2005). Within each mutagenic

oligonucleotide, the arm flanking the target codon is varied to

achieve a predicted melting temperature that is as uniform as possi-

ble to facilitate an even mutation rate across the ORF sequence. We

developed a web tool that automates this design step, available

online at http://llama.mshri.on.ca/cgi/popcodeSuite/main (see also

“Code and data availability” section).

The POPCode mutagenesis experiment was performed via the

following steps: (i) The uracil-containing wild-type template was

generated by PCR-amplifying the ORF with dNTP/dUTP mix and

Hot Taq DNA polymerase; (ii) the mixture of phosphorylated

oligonucleotide pool and uracil-containing template was denatured

by heating it to 95°C for 3 min and then cooled down to 4 degrees

to allow the oligos hybridize to the template; (iii) gaps between

hybridized oligonucleotides were filled with the non-strand-displa-

cing Sulfolobus polymerase IV (NEB) and sealed with T4 DNA ligase

(NEB) and (iv) after degradation of the uracil-doped wild-type

strand using Uracil-DNA glycosylase (UDG) (NEB), the mutant

strand was amplified with attB-sites-containing primers and sub-

sequently transferred en masse to a donor vector by Gateway BP

reaction to generate a library of entry clones.

Synthesis of uracil-containing template

A 50 ll PCR reaction contained the following: 1 ng template DNA,

1× Taq buffer, 0.2 mM dNTPs-dTTP, 0.2 mM dUTP, 0.4 lM forward

and reverse oligos, and 1 U Hot Taq polymerase. Thermal cycler

conditions are as follows: 98°C for 30 s, 25 cycles of 98°C for 15 s,

60°C for 30 s, and 72°C for 1 min. A final extension was performed

at 72°C for 5 min. Uracilated amplicon was gel-purified using the

Minelute gel purification kit (Qiagen).

Phosphorylation of mutagenic oligos

Desalted oligos were purchased from Eurofins or Thermo Scientific.

The phosphorylation reaction is as follows: A 50 ll reaction contain-

ing 1× PNK buffer, 300 pmoles oligos, 1 mM ATP, and 10 U poly-

nucleotide kinase (NEB) was incubated at 37°C for 2 h. The reaction

was used directly in the subsequent POPCode reaction.

POPCode oligo annealing and fill-in

A 20 ll reaction containing 20 ng uracilated DNA, 0.15 lM phos-

phorylated oligo pool, and 1.5 lM 50-oligo was incubated at 95°C

for 3 min followed by immediate cooling to 4°C. A 30 ll reaction
containing 1× Taq DNA ligase buffer, 0.2 mM dNTPs, 2 U Sulfo-

lobus DNA polymerase IV (NEB), and 40 U Taq DNA ligase (NEB)

was added to the DNA and was incubated at 37°C for 2 h.

Degradation of wild-type template

1 ll fill-in reaction was added to a 20 ll reaction containing 1× UDG

buffer and 5 U Uracil-DNA glycosylase (NEB) and incubated at 37°C

for 2 h.

Amplification of mutagenized DNA. 1 ll UDG reaction was

added to a 50 ll reaction containing 1× Taq buffer, 0.2 mM dNTPs,

0.4 lM forward and reverse oligos, and 1 U Hot Taq polymerase.

Thermal cycler conditions are as follows: 98°C for 30 s, 25 cycles of

98°C for 15 s, 60°C for 30 s, and 72°C for 1 min. A final extension

was performed at 72°C for 5 min.

Single-nucleotide mutagenesis

Oxidized nucleotide PCR was performed as previously described by

(Mohan et al, 2011). Primers were designed to attach attB sites to

the product in preparation for Gateway cloning.

Preparation of oxidized nucleotides

A 100 lM dNTP mixture was incubated at 37°C with 5 mM FeSO4

for 10 min. Addition of 0.5 M mannitol was used to stop the

reaction. Oxidized nucleotides were prepared fresh for every PCR

reaction.

PCR in the presence of oxidized nucleotides

PCR reaction containing 1–5 ng template DNA, 1× Thermopol buffer

(Invitrogen), 1.5 mM MgCl2, 0.2 mM dNTP, 0.33 lM forward and

reverse primers containing attB sites, 1 U Taq polymerase was set

up during the nucleotide oxidation reaction. Oxidized nucleotides

were the last component added to the PCR reaction at a
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concentration of 0.1 mM (half the amount of regular dNTP). Ther-

mal cycler program: 95°C for 10 min, 30 cycles of 95°C for 1 min,

50°C for 1 min, 72°C for 1 min, final extension at 72°C for 10 min.

Mutagenized PCR product was visualized on a 1% agarose gel and

gel-extracted using a gel extraction kit (Qiagen). The gel-extracted

PCR product is the pooled mutagenesis product carrying attB sites

that is carried through to the KiloSeq stage.

Library generation

Generation of mutagenized pool of Entries

An en masse Gateway BP reaction containing 150 ng of pooled

mutagenesis PCR product carrying attB sites, 150 ng of pDONR223,

1 ll Gateway BP Clonase II Enzyme Mix (Invitrogen), 1× TE buffer

is prepared. This reaction is incubated overnight at room tempera-

ture and then transformed into E. coli aiming for the maximum

number of transformants (at least 100,000 CFUs) to keep complexity

high. Several colonies are picked at this stage for a quality control

check by Sanger sequencing, and the rest are put through a pooled

DNA extraction. The result is a pool of mutagenized PCR product

inserted into the entry vector pDONR223.

Generation of barcoded destination pools

Barcoded destination plasmids were generated as previously

reported (Yachie et al, 2016), but instead of being arrayed were

maintained as pools with high complexity. Briefly, a linear PCR

product containing two random 25 nucleotide “barcode” regions

flanked by loxP and lox2272 sites along with common linker

sequences for priming was combined with a gateway compatible

vector at a SacI restriction site through in vitro DNA assembly

(Gibson et al, 2009). This barcoded destination vector pool was

transformed into One Shot ccdB Survival T1R Competent Cells

(Invitrogen). The transformations were spread onto large round

LB+ampicillin petri plates for increased selection capacity, and pool

complexity was estimated from CFU counts. The plates were

combined into a single pool for plasmid DNA extraction by

maxiprep.

En masse Gateway LR reaction

An en masse Gateway LR reaction was used to transfer the mutage-

nized pool of entries into the barcoded destination pool. This reaction

takes place over 5 days. On Day 1, a 5 ll reaction containing 150 ng

of mutagenized ORF pool in pDONR223 backbone, 150 ng barcoded

pHYC expression vector pool, 1 ll LR Clonase II Enzyme Mix, 1× TE

buffer is prepared. The reaction is incubated at room temperature

overnight. Daily, from the second to the fifth day, add in a 5 ll
volume consisting of 150 ng barcoded pHYC expression vector, 1 ll
LR Clonase II Enzyme Mix, 1× TE buffer, incubating at room temper-

ature overnight each day. On Day 5, the final volume is 25 ll.

Transformations and colony picking

LR reactions were transformed into E. coli and plated to achieve a

density of 400–600 individual colonies per plate. A Biomatrix robot

(Biomatrix BM5-BC robot, S&P Robotics) was then used to automati-

cally pick and array 384 colonies per plate for a total of ~20,000

clones in ~52 plates per ORF of interest. Each colony at this stage

should contain a pHYC expression vector harboring a variant of the

ORF of interest and a unique barcode.

KiloSeq

For the BarSeq method, to establish the identity of each plasmid

barcode and its associated set of mutations in the target ORF we used

KiloSeq (Appendix Fig S10) (either carried out in our laboratory or

as a service from SeqWell Inc., Beverly, MA, USA). The first step is

to PCR-amplify a segment of the plasmid containing both ORF and

barcode locus. PCRs were carried out using the Hydrocycler 16 (LGC

Group, Ltd.), using primers with well-specific index sequences.

Amplicons from each plate were pooled and subjected to Nextera

“tagmentation” using Tn5 transposase to generate a library of ampli-

cons with random breaks to which the adapters have been ligated.

We then re-amplify those fragments to generate a library of ampli-

cons such that one end of each amplicon bears the well-specific tag

and the other “ladder” end bears the Nextera adapter. These libraries

can be re-amplified to introduce Illumina TruSeq adaptors, allowing

multiple plates of amplicons to be sequenced together. Paired-end

sequencing was carried out using Illumina NextSeq 500. In each pair

of reads, one read will reveal the well tag and the barcode locus,

whereas the other will contain a fragment of the mutant ORF, and

these fragments can be assembled into a contiguous sequence.

To perform demultiplexing, barcode identification and insert rese-

quencing, we developed a sequence analysis pipeline (see “Code and

data availability” section). In the first step, Illumina bcl2fastq is used

to demultiplex the reads at the plate level using the custom Nextera

indices. The resulting FASTQ files are then further demultiplexed

using the well-tags in a highly parallel fashion. This results in a folder

structure containing tens of thousands of individual FASTQ files

sorted by plate and well location. These are then further processed in

parallel to identify barcodes. Wells can sometimes contain more than

one clone (e.g., due to incomplete washing in the robotic pinning

process). Thus, barcode sequences are extracted from each read and

then clustered by edit distance to determine the set of barcodes in each

well. The associated paired reads for each barcodes are then further

split by barcode. Each barcode-specific set of ORF reads can then be

analyzed with respect to mutations. Bowtie2 software (Langmead &

Salzberg, 2012) is used to align reads to the ORF template, PCR dupli-

cates are removed, and nucleotide variants called using samtools

pileup (Li et al, 2009). Given limited read lengths, identification of

longer indels is not straightforward. A solution was found by extract-

ing depth of coverage tracks for each clone and normalizing them with

respect to average positional coverage across each 384-well plate,

applying an edge-detection algorithm to find sudden increases or

decreases within normalized coverage, indicating the presence under-

covered regions that can arise as a result of insertions or deletions.

After successful genotyping with KiloSeq, we determined the

subset of clones that (i) contained a minimum of one missense

mutation; (ii) did not contain any insertions or deletions; (iii) did

not contain mutations outside of the ORF; (iii) had unique barcodes;

(iv) had sufficient read coverage during KiloSeq to allow for confi-

dent genotyping. We re-arrayed this filtered subset of clones

(Biomatrix BM5-BC robot, S&P Robotics) into a condensed final

library of 40 plates containing 6,548 clones.

High-throughput yeast-based complementation screen

The yeast-based functional assays were established and validated in

our previous study (Sun et al, 2016). The mutant alleles of the yeast
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temperature-sensitive strains used in this study are ubc9-2, smt3-

331, thi80-ph, and cmd1-1. The high-throughput screen was

performed as follows: the POPCode generated mutant library was

transferred to the expression vector pHYCDest (Sun et al, 2016) by

en masse Gateway LR reactions followed by transformation into

NEB5a competent E. coli cells (New England Biolabs) and selection

for ampicillin resistance.

For the DMS-BarSeq approach, plasmids extracted from a pool of

6,548 barcoded and KiloSeq-validated mutant clones, together with

barcoded null and wild-type controls, were transformed into a

S. cerevisiae strain carrying a temperature-sensitive (ts) allele which

can be functionally complemented by the corresponding wild-type

human gene (Sun et al, 2016). Complexity for this transformation

was ~100,000 CFU. For the time series BarSeq screen, the pools

were grown separately at both non-selective (25°C) and selective

(38°C) temperatures in triplicates to be examined at five different

timepoints (0, 6, 12, 24, and 48 h) yielding 30 samples. For each

sample, plasmids were extracted from 10 ODU of cells and used as

templates for the downstream barcode PCR amplification. The

barcode loci were amplified for each library of plasmids with

primers carrying sample-specific tags and then sequenced on an Illu-

mina NextSeq 500.

For the DMS-TileSeq approach, plasmids extracted from a pool of

~100,000 clones were transformed into the corresponding S. cere-

visiae temperature-sensitive strain yielding around 1,000,000 total

transformants. Plasmids were prepared from two of 10 ODU of cells

and used as templates for the downstream tiling PCR (two replicates

of non-selective condition). Two of 40 ODU of cells were inoculated

into 200 ml medium and grown to full density with shaking at 36°C

and plasmids extracted from 10 ODU of each culture were used as

templates for the downstream tiling PCR (two replicates of selective

condition). In parallel, plasmid expressing the wild-type ORF was

transformed to the corresponding S. cerevisiae ts strain and grown

to full density under the selection. Plasmids were extracted from

two of 10 ODU of cells and used as templates for the downstream

tiling PCR (two replicates of wild-type control). For each plasmid

library, the tiling PCR was performed in two steps: (i) The targeted

region of the ORF was amplified with primers carrying a binding site

for Illumina sequencing adaptors; (ii) each first-step amplicon was

indexed with an Illumina sequencing adaptor in the second-step

PCR. We perform paired-end sequencing on the tiled regions across

the ORF.

Fitness scoring and refinement

For DMS-BarSeq, a computational pipeline was implemented to

identify and count individual sample tags and barcode combinations

within each read (see “Code and data availability” section). We then

calculate how much better (or worse) each clone grows compared

to the pool average, cumulatively across timepoints. To this end, we

first calculated the relative population size by dividing each clone’s

barcode count by the total number of barcodes in each condition.

We then calculated the estimated absolute population size for each

clone at each timepoint by multiplying the relative population size

with the estimated total number of cells on the respective plate at

the corresponding timepoint (obtained from OD measurements). We

then treat the hourly growth rate between each individual timepoint

compared to the pool average as an individual estimate of fitness,

all of which act cumulatively. Formally, this corresponds to the

following:

Let c
ðsÞ
i;tk

be the barcode count for clone i, timepoint tk at tempera-

ture s, then 8i 2 1 � i � Nji 2 Nf g ;8k 2 1 � k � 5jk 2 Nf g;
8s 2 25�; 37�f g

r
ðsÞ
i;tk

¼ c
ðsÞ
i;tkP
j c

ðsÞ
j;tk

P
ðsÞ
i;tk

¼ r
ðsÞ
i;tk

� PðsÞ�;tk

qðsÞi;tk
¼

ffiffiffiffiffiffiffiffiffiffiffi
P
ðsÞ
i;tk

P
ðsÞ
i;tk�1

ðtk�tk�1Þ

vuut

/ðsÞ
i;tk

¼ qðsÞi;tk

qðsÞ�;tk

/0
i;tk

¼ /ð37Þ�
i;tk

/ð25Þ�
�;tk

si ¼
Y
k

/0
i;tk

s0i ¼
si � snull
swt � snull

;

where r
ðsÞ
i;tk

is the relative population size for clone i, timepoint tk at

temperature s, PðsÞi;tk
is the absolute population size for clone i, time-

point tk at temperature s, qðsÞi;tk
is the measured hourly growth rate for

clone i, timepoint tk at temperature s, /ðsÞ
i;tk

is the fitness advantage

relative to the pool growth for clone i, timepoint tk at temperature s,
/0
i;tk

is the normalized relative fitness advantage for clone i, timepoint

tk, and si is the cumulative normalized relative fitness advantage for

clone i. Finally, s’i is the fitness score relative to the internal null and

wild-type controls, and this results in null-like mutants receiving a

score of zero and wild-type-like mutants receiving a score of one.

Given limited amounts of replicates, the empirical standard devi-

ations calculated for each clone or variant can be expected to be

imprecise. Baldi and Long (2001) have previously described a

method for Bayesian regularization or refinement of the standard

deviations which yield more robust estimates, leading to less classi-

fication error in statistical tests. Briefly, a prior estimate of the stan-

dard deviation is computed by linear regression based on the

number of barcodes in the permissive condition and the fitness

score. The prior is then combined with the empirical value using

Baldi and Long’s original formula

r2 ¼ vnr2
n

vn � 2
¼ v0r2

0 þ ðn� 1Þs2
v0 þ n� 2

where v0 represents the degrees of freedom assigned to the prior

estimate, r0 is the prior estimate resulting according to the regres-

sion, n represents the degrees of freedom for the empirical data

(i.e., the number of replicates), and s is the empirical standard devi-

ation. The methods were implemented as part of a larger DMS

analysis package (see “Code and data availability” section).

ª 2017 The Authors Molecular Systems Biology 13: 957 | 2017

Jochen Weile et al Atlas of functional missense variation Molecular Systems Biology

13



For DMS-TileSeq, raw sequencing reads were aligned to the refer-

ence ORF cDNA sequences using Bowtie-2 (Langmead & Salzberg,

2012) and a custom Perl script was used to parse and compare the

forward and reverse read alignment files to count the number of

co-occurrences of a codon change in both paired reads. Mutational

counts in each condition were normalized to sequencing depth at

the respective position. Variants for which the number of reads

in the non-permissive condition was within three standard devia-

tions of the read count in the wild-type control were considered

poorly measured and removed. Then, the normalized mutational

counts from the wild-type control libraries (control for sequencing

errors) were subtracted from the normalized mutational counts from

the non-selective and selective conditions, respectively. Finally, the

enrichment ratio was calculated for each variant based on the

adjusted mutational counts before and after selection.

Re-scaling of fitness metrics

The results from the barcoded and regional sequencing screens do

not scale linearly to each other. We used regression to find a

monotonic transformation function fðxÞ ¼ a � ex þ b � xþ c between

the two screens’ respective scales. The standard deviation is trans-

formed accordingly using a Taylor series-based approximation:

r0 ¼ r � a � el þ bð Þ. After both datasets have been brought to the

same scale, we can join corresponding data points using weighted

means, where the weight is inversely proportional to the Bayesian

regularized standard error. Output standard error was adjusted to

account for differences in input fitness values and increased

sample size:

w0 ¼ 1

1þ rð0Þ
�x

rð1Þ
�x

; w1 ¼ 1

1þ rð1Þ
�x

rð0Þ
�x

ljoint ¼ w0 � l0 þw1 � l1

r2
joint ¼ w0 � r2

0 þ l20
� �þ w1 � r2

1 þ l21
� �� l2joint

rðjointÞ
�x ¼ rjointffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

df0 þ df1
p

where l0 is the DMS-BarSeq value, r0 the associated standard devia-

tion, rð0Þ
�x the associated standard error, df0 the associated degrees of

freedom, l1 is the DMS-TileSeq value, r1 the associated standard

deviation, rð1Þ
�x the associated standard error, and df1 the associated

degrees of freedom. These steps were implemented as part of a larger

DMS analysis package (see “Code and data availability” section).

Imputation of missing data

Next, we aimed to find a machine-learning method that would allow

us to input the missing parts of the map. The first step toward this

was to gather suitable features. We first evaluated the most promis-

ing features using linear regression and then applied a random

forest model using all the available features.

The most important features were intrinsic, that is, directly

derived from unused information in the screen. These are the aver-

age fitness across variants at the same position; the average fitness

of multi-mutant clones that contain the variant of interest; the esti-

mated fitness according to a multiplicative model to infer mutant fit-

ness A using a double mutant AB and single mutant B. Another set

of features was computed from differences between various chemi-

cal properties of the wild-type and mutant amino acids. These prop-

erties include size, volume, polarity, charge, and hydropathy. A

third set of features is derived from the structural context of each

amino acid position. This includes secondary structure, solvent

accessibility, burial in interfaces with different interaction partners

and involvement in hydrogen bonds or salt bridges with interac-

tion partners. Secondary structures were calculated using Stride

(Frishman & Argos, 1995). Solvent accessibility and interface burial

were calculated using the GETAREA tool (Fraczkiewicz & Braun,

1998) on the following PDB entries: for UBE2I: 3UIP (Gareau et al,

2012); 4W5V (Boucher et al unpublished); 3KYD (Olsen et al,

2010); 2UYZ (Knipscheer et al, 2007); 4Y1L (Alontaga et al, 2015);

for SUMO1: 2G4D (Xu et al, 2006); 2IO2 (Reverter & Lima, 2006);

3KYD (Olsen et al, 2010); 3UIP (Gareau et al, 2012); 2ASQ (Song

et al, 2005); 4WJO (Cappadocia et al, 2015); 4WJQ (Cappadocia

et al, 2015); 1WYW (Baba et al, 2005); for calmodulin: 3G43

(Fallon et al, 2009); 4DJC (Sarhan et al, 2012); and for TPK1: 3S4Y

(Baker et al, 2001).

Hydrogen bond and salt bridge candidates were predicted using

OpenPyMol and evaluated for validity by manual inspection. Addi-

tional features used are the BLOSUM score for a given amino acid

change, the PROVEAN score, and the evolutionary conservation of the

amino acid position. Conservation was obtained by generating a multi-

ple alignment of direct functional orthologs across many eukaryotic

species using CLUSTAL (Sievers & Higgins, 2014), which was used

as input for AMAS (Livingstone & Barton, 1993). We then applied

the complete set of features in a random forest model using the R

package Random Forest (Breiman, 2001) version 4.6–12 with the

default settings for all hyperparameters (ntree = 500, mtry = nfeat/3,

replace = TRUE, sampsize = nobs, nodesize = 5, maxnodes = NULL,

nPerm = 1). These procedures were implemented as part of a larger

DMS analysis package (see “Code and data availability” section).

Refinement of low-confidence measurements

The machine learning predictions resulting generated above can

also be used to refine experimental measurements of lower confi-

dence. To this end, the corrected standard error associated with

each data point can be used to determine the weight of assigned to

the measurement.

w0 ¼ 1

1þ rð0Þ
�x

rð1Þ
�x

; w1 ¼ 1

1þ rð1Þ
�x

rð0Þ
�x

ljoint ¼ w0 � l0 þw1 � l1

r2
joint ¼ w0 � r2

0 þ l20
� �þ w1 � r2

1 þ l21
� �� l2joint

rðjointÞ
�x ¼ rjointffiffiffiffiffiffiffi

df0
p þ df1

where l0 is the measured value, r0 the associated standard devia-

tion, rð0Þ
�x the associated standard error, df0 the associated degrees of
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freedom, l1 is the Random Forest-predicted value, r1 the associated

standard deviation as approximated by cross-validation RMSD, rð1Þ
�x

the associated standard error, and df1 the associated virtual degrees

of freedom. The methods were implemented as part of a larger DMS

analysis package (see “Code and data availability” section).

Experimental validation by yeast spotting assays

To validate the reliability of the fitness scores obtained during the

screen, we selected three subsets of clones from our original UBE2I

variant library: (i) a set of clones carrying variants with functional

scores representing the full spectrum in the screen; (ii) a set of

clones carrying hypercomplementing variants in the screen; and (iii)

a set of clones carrying variants not present in the imputation train-

ing dataset. After genotype verification using Sanger sequencing,

each variant was transferred to the yeast expression plasmid

pHYCDest by Gateway technology and individually transformed into

the yeast ts mutant strain. Cells were grown to saturation in 96-well

cell culture plates at room temperature. Each culture was then

adjusted to an OD600 of 1.0 and serially diluted to 5�1, 5�2, 5�3,

5�4, 5�5, and 5�6. These cultures (5 ll of each) were then spotted

on SC-LEU plates as appropriate to maintain the plasmid and incu-

bated at either the permissive or non-permissive temperatures for

2 days. Each variant was assayed alongside negative and positive

controls for loss of complementation (expression of either the wild-

type human protein or a GFP control). Results were interpreted by

comparing the growth difference between the yeast strains express-

ing human genes and the corresponding control strain expressing

the GFP gene.

Quantification of spotting assay images (for Appendix Fig S3)

was performed as follows: Using blinded manual inspection, the

following scores were assigned: 0—no colonies visible; 0.25—colo-

nies visible up to the first dilution; 0.25—colonies visible up to the

second dilution; 0.75—colonies visible up to the third dilution; 1—

colonies visible up to the fourth dilution (a value of 1 was chosen as

this corresponds to growth in the wild-type control); 1.25—colonies

visible up to the fifth dilution; 1.5—colonies visible up to the sixth

dilution.

Assessing relationship of hyperactive complementation
to reversion

To examine whether changing amino acid residues into those

residues naturally occur in yeast were more likely to show hyperactive

complementation, we compared these cases to changes into residues

occurring in other species. The UBE2I amino acid sequence was

aligned to that of its orthologs in S. cerevisiae, D. discoideum, and

D. melanogaster using CLUSTAL (Sievers & Higgins, 2014). A custom

script was used to extract inter-species amino acid changes and look

up the corresponding complementation fitness values in the UBE2I

map. Distributions were plotted using the R package beeswarm

(Eklund, 2016). The methods were implemented as part of a larger

DMS analysis package (see “Code and data availability” section).

In vitro sumoylation comparison

Images from in vitro sumoylation assays performed for UBE2I vari-

ants by (Bernier-Villamor et al, 2002) were scored by visual

inspection while blinded to the underlying variant information.

Scores were then represented as a heatmap and compared comple-

mentation scores from the UBE2I map. The methods were imple-

mented as part of a larger DMS analysis package provided and also

available online at https://bitbucket.org/rothlabto/dmspipeline.

Phylogenetic comparison of different models for
hypercomplementation

We used the phydms software package (Bloom, 2017) to test three

different models relating the effect of complementation-enhancing

substitutions in SUMO1 and UBE2I to actual preference for the

substituted amino acid in a real biological context. Specifically,

using the substitution models described in (Bloom, 2017), we tested

three different ways of relating the evolutionary preference pr,a for

amino acid a at site r to the fitness score fr,a for this variant. In the

first model, pr,a = fr,a. In the second model, pr,a = min(fr,a, fr,wt)

where fr,wt is the fitness score for the wild-type amino acid at site r.

In the third model, pr,a = fr,a, if fr,a ≤ fr,wt and 1/fr,a otherwise. We

fit each of these models to the set of Ensembl homologs with at least

75% sequence identity to the human protein. As shown in

Appendix Table S1, in all cases the last model (which assigns low

preference to variants that strongly enhance activity) best fits the

sequences. The computer code that performs this analysis is avail-

able on GitHub at https://github.com/jbloomlab/AtlasPaper_

SUMO1_UBE2I_ExpCM.

Code and data availability

All code associated with this work can be checked out using

mercurial from the following repositories: (i) for the KiloSeq anal-

ysis pipeline: https://bitbucket.org/rothlabto/kiloseq; (ii) for the

POPCode oligo design tool: https://bitbucket.org/rothlabto/popc

odesuite; (iii) for the BarSeq sequence analysis pipeline: https://

bitbucket.org/rothlabto/screenpipeline; (iv) for the TileSeq

sequence analysis pipeline: https://bitbucket.org/rothlabto/tilese

q_package; (v) for all raw data and downstream analyses:

https://bitbucket.org/rothlabto/dmspipeline. Raw sequencing data

can be obtained from the NCBI Short Read Archive, accession

numbers SRP109101 (KiloSeq) and SRP109119 (DMS screens). All

final variant maps and associated data tables can be found in

Dataset EV1 and can be downloaded at http://dalai.mshri.on.ca/

~jweile/projects/dmsData/ or from the Biostudies database

(www.ebi.ac.uk/biostudies/), accession number S-BSST60. Origi-

nal data for the in vitro sumoylation analysis can be found in

Bernier-Villamor et al (2002).

Expanded View for this article is available online.
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