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A B S T R A C T   

Background: Colorectal cancer (CRC) is a prevalent cause of death from malignant tumors. This 
study aimed to develop a nicotinamide adenine dinucleotide (NAD+) metabolism and immune- 
related prognostic signature, providing a theoretical foundation for prognosis and therapy in 
CRC patients. 
Methods: NAD + metabolism-related and immune-related subtypes of CRC patients were identi-
fied by consistent clustering. Differentially expressed genes (DEGs) between the two subtypes of 
CRC were identified by overlapping. A risk signature was constructed using univariate Cox and 
least absolute shrinkage and selection operator (LASSO) regression analyses. Independent prog-
nostic predictors were authenticated by Cox analysis. Gene set variation analysis (GSVA) and 
single-sample gene set enrichment analysis (ssGSEA) were applied to investigate the connection 
between the prognostic signature and the immune microenvironment. Chemotherapy drug 
sensitivity and immunotherapy responsiveness were projected using the ‘pRRophetic’ package 
and Tumor Immune Dysfunction and Exclusion (TIDE) website. The Human Protein Atlas (HPA) 
database was used to assess the protein expression of prognostic genes in CRC and normal tissues. 
Results: Using bioinformatics methods, three prognostic genes related to immune-related NAD +
metabolism were identified, and the results were used to establish and verify a prognostic 
signature related to immune-related NAD + metabolism in CRC patients. Cox regression analysis 
confirmed that the risk score was a reliable independent prognostic predictor. GSVA and ssGSEA 
indicated that the prognostic signature was associated with the immune microenvironment. TIDE 
analysis suggested that the signature might act as an immunotherapy predictor. Chemotherapy 
sensitivity analysis revealed that COMP was correlated with chemotherapy sensitivity in CRC 
patients and might be a potential therapeutic target. 
Conclusion: This study identified NAD + metabolism-immune-related prognostic genes (MOGAT2, 
COMP, and DNASE1L3) and developed a prognostic signature for CRC prognosis, which is sig-
nificant for clinical prognosis prediction and treatment strategy decisions for CRC patients.  
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1. Introduction 

Colorectal cancer (CRC) is a prevalent malignant tumor globally and ranks as the second leading cause of cancer-related deaths. Its 
incidence and mortality rates continue to rise each year [1]. The most commonly observed type is adenocarcinoma, with squamous cell 
carcinoma, adenosquamous carcinoma, spindle cell carcinoma, and undifferentiated carcinoma occurring less frequently [2]. The 
primary treatment approaches for CRC include preoperative chemoradiotherapy or combined radiotherapy and chemotherapy 
following radical surgery in the early stages, chemotherapy in tandem with targeted therapy or immunotherapy in the middle and late 
stages, or neoadjuvant therapy [3]. Nonetheless, the overall survival rate for CRC patients remains considerably low, primarily due to 
tumor progression involving invasion and metastasis. With advancements in biotechnology, biomarkers can be employed to guide 
prognosis and treatment decisions, facilitating tailored treatment options to enhance patients’ quality of life [4]. Consequently, early 
diagnosis and intervention play a pivotal role in reducing the incidence rate and improving the cure rate. Therefore, the identification 
of novel prognostic markers and models is of utmost importance. This is not only critical for improving patient prognosis but also 
crucial for providing patients with accurate treatment strategies. 

Nicotinamide adenine dinucleotide [5] is an important metabolite and coenzyme that facilitates redox reactions in various 
metabolic pathways and cellular processes. It plays a central role in energy metabolism [6]. Studies have indicated that increased 
levels of NAD in CRC tissue can reduce reactive oxygen species levels, maintain cell stemness, and decrease the sensitivity of CRC cells 
to chemotherapy, thus impacting tumor growth [7]. Furthermore, NAD anabolism can enhance aging-associated secretory phenotypes, 
which in turn promote breast tumorigenesis [8]. In terms of tumor immunotherapy, nicotinamide adenine dinucleotide (NAD+) 
metabolism helps maintain inducible PD-L1 expression, drives tumor immune evasion, and sustains the activity and expression of the 
methylcytosine dioxygenase Tet1, mainly through α-ketoglutarate (α-KG). This ultimately reduces resistance to anti-PD-L1 antibody 
immunosuppressants [9]. Consequently, further exploration of the role of NAD + -related genes in the occurrence and progression of 
CRC is needed. 

The immune system plays a crucial role in recognizing and eliminating tumors. The development, recurrence, and metastasis of 
tumors are closely associated with immune dysfunction, particularly abnormalities in cellular immune function, in which T cells are 
key players. Colorectal carcinogenesis is influenced by genetic and epigenetic alterations in tumor cells, as well as tumor-host in-
teractions. Notably, robust lymphocyte responses observed in CRC tissues, characterized by high densities of CD3+ T cells and T-cell 
subsets, are frequently associated with positive clinical results. This finding underscores the central role of T-cell-mediated immunity 
in suppressing tumor progression [10,11]. Additionally, a study [12] demonstrated that the abundance of tumor-infiltrating T cells 
correlated with specific molecular features of CRC. However, the association between NAD + -related genes and tumor immunity in the 
occurrence and progression of CRC requires further investigation. 

To address these gaps in knowledge, this study used bioinformatics methods to identify NAD + metabolism- and immune-related 
subtypes in CRC patients. Subsequently, prognostic features related to NAD + metabolism and immunity were developed for CRC 
patients, with the aim of predicting patient prognosis and informing clinical treatment decisions. These findings offer insights into the 
associations among NAD + metabolism, immunity, and the mechanisms influencing the occurrence and progression of CRC. 

2. Materials and methods 

2.1. Dataset and gene source 

We integrated transcriptomic data and clinical information from The Cancer Genome Atlas-Colorectal Cancer (TCGA-CRC) dataset, 
which consisted of 380 CRC tissue samples and 51 normal tissue samples. This integration was carried out using the UCSC database 
(http://xena.ucsc.edu/). Among these samples, 372 CRC samples were included in consensus clustering and survival analysis because 
they contained complete survival time records. In addition, we used two additional CRC datasets, GSE17538 and GSE115261, which 
were extracted from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The GSE17538 dataset, 
which included 232 CRC samples with survival information, was used to validate our prognostic signature. The GSE115261 dataset, 
consisting of transcriptomic data from 10 CRC samples and 10 normal samples, was utilized for the validation of the expression of 
prognostic genes. 

To identify NAD + metabolism-related genes (NMRGs), we mined data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database (pathway: hsa00760, Nicotinate and nicotinamide metabolism) (https://www.genome.jp/kegg/pathway.html) and 
the Reactome database (pathway: R-HSA-196807, Nicotinate metabolism) (https://reactome.org/). Immune-related genes (IRGs) 
were identified from the ImmPort database (https://immport.niaid.nih.gov). 

2.2. Consensus clustering 

For consensus clustering, we used the ’ConsensusClusterPlus’ package [13] to classify the 372 CRC patients in the TCGA-CRC 
cohort based on the expression of NMRGs or IRGs. The parameters were set as follows: maxK = 6, reps = 1000, pItem = 0.8, clus-
terAlg = ‘pam’, distance = ‘canberra’, and innerLinkage = ‘complete’. 
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2.3. Identification of differentially expressed genes (DEGs) 

We identified the differentially expressed genes (DEGs) through the ‘limma’ package (version 3.48.3 [14] based on the following 
threshold values: p value < 0.05 and |log2FoldChange| > 1. 

2.4. Functional annotation analysis 

We used the R package ‘clusterProfiler’ (version 4.0.5) [15] for Gene Ontology (GO) and KEGG enrichment analysis. GO terms were 
categorized into cellular component [3], molecular function (MF), and biological process (BP) terms. The significance criterion was an 
adjusted p value ≤ 0.05. 

2.5. Creation of a prognostic signature related to immune-related NAD + metabolism in CRC 

The TCGA-CRC dataset included a total of 372 patients whose survival information was available. Through randomization (ratio 
7:3), the data were divided into a training set (n = 261) and a testing set (n = 111). In the training set, we performed univariate Cox 
analysis using the ‘survminer’ package (version 0.4.9) and least absolute shrinkage and selection operator (LASSO) regression analysis 
using the ‘glmnet’ package (version 4.0–2) to identify NAD + metabolism-immune-relevant prognostic genes. The RiskScore =
∑n

1coef (genei)×expression (genei) formula was used to separate patients into high-risk and low-risk subgroups based on the coef-
ficient obtained by LASSO and the optimal threshold calculated using the surv_cutpoint function. We evaluated the predictive effi-
ciency of the prognostic signature by analyzing Kaplan‒Meier (K‒M) curves, Receiver Operating Characteristic (ROC) analysis, and 
risk curves. 

2.6. Relevance analysis of the gene signature and clinical parameters 

Risk scores for the different clinical feature subgroups were compared with the Wilcoxon test (two groups) or Kruskal‒Wallis test 
(more than two groups). 

2.7. Independent prognostic analysis and nomogram construction 

Risk score and clinical characteristic factors were included in the Cox analysis (univariate Cox and multivariate Cox) to determine 
independent prognostic predictors. A nomogram integrating the independent prognostic predictors was constructed using the R 
language ‘rms’ to predict survival at 1, 3 and 5 years in CRC patients. The calibration curves were employed to assess the precision of 
the prediction. 

2.8. Correlation analysis of the prognostic signature and tumor immunity 

The scores of the 13 immune-related pathways in the two risk subgroups were calculated by the gene set variation analysis (GSVA) 
algorithm [16]. The scores of 24 types of infiltrating immune cells for each sample in the two risk subgroups were assessed by the 
single-sample gene set enrichment analysis (ssGSEA) algorithm [17]. The correlation between prognostic genes and immune cells was 
measured through the TIMER database (https://cistrome.shinyapps.io/timer/). 

2.9. Therapy analysis based on the prognostic signature 

We inferred and assessed the sensitivity of the two risk subgroups to immune checkpoint inhibitor [18] therapy using the TIDE 
algorithm [19]. Furthermore, using the ‘pRRophetic’ R package [20], we computed the half maximal inhibitory concentration (IC50) 
values for each patient in the two risk subgroups to analyze the correlation between prognostic genes and chemotherapy drug 
sensitivity. 

Table 1 
Primer sequences for qPCR.  

Primer Sequences 

MOGAT2 For CTGTTACTGCGGAACCGAAAG 
MOGAT2 Rev CCATGAAAGAGTGGGAGGGAG 
DNASE1L3 For CGTGAAACACCGCTGGAAGG 
DNASE1L3 Rev TTGGGAACAACAGAACTGACGATT 
COMP For CCGAGTCCGCTGTATCAACA 
COMP Rev TATGTTGCCCGGTCTCACAC 
GAPDH For CCCATCACCATCTTCCAGG 
GAPDH Rev CATCACGCCACAGTTTCCC  
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2.10. Analysis and verification of the expression of prognostic genes 

We initially observed a discrepancy in the expression of prognostic genes in CRC and normal samples in the external dataset 
GSE115261. Box-line plots illustrating this discrepancy were created using the ‘ggpubr’ package (version 0.4.0). To further determine 
the protein expression levels of prognostic genes in normal and CRC tissues, we utilized immunohistochemistry images from the 
Human Protein Atlas (HPA) database. We obtained human normal colonic epithelial cells (CCD814) and three human CRC cell lines 
(HCT-116, LOVO, and SW480) from iCell Bioscience, Inc. (Shanghai, China). The cells were incubated at 37 ◦C in an atmosphere of 5 % 
CO2. Total RNA was extracted from the four cell lines in the logarithmic growth phase using TRIzol Reagent following the instructions 
from Ambion (USA). Total RNA was then reverse transcribed into cDNA using the SweScript First-Strand cDNA Synthesis Kit from 
Servicebio (China). qPCR was subsequently performed using 2 × Universal Blue SYBR Green qPCR Master Mix according to the 
manufacturer’s directions (Servicebio, China). The sequences of primers used for qPCR are displayed in Table 1. The expression levels 
were normalized to those of the internal reference gene GAPDH and calculated using the 2− ΔΔCt method [21]. 

2.11. Statistical analysis 

A Venn diagram was generated using the Jvenn website (http://jvenn.toulouse.inra.fr/app/example.html) [22]. All bioinformatics 
analyses were performed using R language. The Wilcoxon test (for two groups) or Kruskal‒Wallis test (for more than two groups) was 
used to compare the data from different groups. 

3. Results 

3.1. Recognition of NAD + metabolism-related and immune-related subtypes of CRC 

Based on the expression of 35 NMRGs (Supplementary Table 1) detected in the TCGA-CRC dataset, we categorized the 372 CRC 
patients in the TCGA-CRC dataset into three NAD + metabolism-related subtypes through consensus clustering Fig. 1A and B). Survival 
analysis revealed significant differences in survival between cluster 1 and cluster 3 (p value = 0.029) (Fig. 1C and D). Furthermore, we 
classified these 372 CRC patients into three immune-related subtypes based on the expression of 1057 IRGs detected in the TCGA-CRC 
dataset (Fig. 1E and F). K‒M curves revealed significant differences in survival between the three immune-related subtypes, with more 
pronounced survival disparities between cluster 1 and cluster 2 (p value = 0.00071) (Fig. 1G and H). 

3.2. Identification of NAD + metabolism- and immune-related DEGs 

Hence, we identified 55 DEGs between NAD + metabolism-related cluster 3 and cluster 1 (cluster 3 vs cluster 1). Among these 
DEGs, 2 genes were upregulated and 53 genes were downregulated in cluster 3 at the expression level Fig. 2A and B). Moreover, we 
discovered 706 DEGs between immune-related cluster 2 and cluster 1 (cluster 2 vs cluster 1). These DEGs consisted of 49 upregulated 
genes and 657 downregulated genes in cluster 2 Fig. 2C and D). Furthermore, we identified 4795 DEGs between CRC and normal 
samples in the TCGA-CRC dataset (tumor vs normal). Among these DEGs, 1577 genes were upregulated, and 3218 genes were 
downregulated (Fig. 2E and F). By intersecting these three sets of DEGs, we obtained 36 common genes related to NAD + metabolism 
and immune function (Fig. 2G–Table 2). 

To investigate the functions of these 36 genes, we performed functional enrichment analysis. Tables 3 and 4 revealed 48 GO terms 
(21 BP terms, 11 CC terms, and 16 MF terms) and 3 KEGG pathways. We visualized the top 5 items for each GO category in a bubble 
diagram (Fig. 2H). GO analysis indicated that these genes are involved in immune-related processes, ion transport, digestion, and 
glycosylation (Fig. 2H–Table 3). KEGG pathway analysis revealed the involvement of these genes in “pancreatic secretion,” “nitrogen 
metabolism,” and “fat digestion and absorption” Fig. 2I–Table 4). 

3.3. The NAD + metabolism-immune-related prognostic signature for CRC 

To identify NAD + metabolism-immune-related genes associated with the overall survival (OS) of CRC patients, we conducted 
univariate Cox analysis using the 36 genes in the training set. Four genes were found to be significantly associated with OS in CRC 
patients (p value < 0.05). Among these genes, COMP was identified as a risk factor for CRC prognosis (hazard ratio (HR) > 1), whereas 
MOGAT2, DNASE1L3, and CEACAM7 were protective factors (HR < 1) (Fig. 3A). The four genes were further analyzed using LASSO 
analysis. Fig. 3B and C demonstrates that when the lambda min was 0.01, the optimal number of genes determined was three. 

Fig. 1. Recognition of nicotinamide adenine dinucleotide (NAD+) metabolism-related and immune-related subtypes of colorectal cancer (CRC). (A) 
Consensus matrix heatmap depicting consensus values for each cluster (k) for NAD + metabolism-related subtypes. Clustering according to a 
consensus at K = 3. (B) Delta area plot reflecting the relative changes in the area under the cumulative distribution function (CDF) curve for the 
NAD + metabolism-related subtypes. (C) Survival curves of CRC patients with three clusters of NAD + metabolism-related subtypes. (D) Survival 
curves of patients with CRC stratified according to the NAD + metabolism-related subtypes in cluster 1 and cluster 3. (E) Consensus matrix heatmap 
depicting consensus values for each cluster (k) for immune-related subtypes. Clustering according to a consensus at K = 3. (F) Delta area plot 
reflecting the relative changes in the area under the CDF curve for immune-related subtypes. (G) Survival curves of CRC patients with three clusters 
of immune-related subtypes. (H) Survival curves of CRC patients with immune-related subtypes in cluster 1 and cluster 2. 
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Consequently, MOGAT2, DNASE1L3, and COMP were selected as the three optimal NAD + metabolism-immune-relevant prognostic 
genes for establishing a prognostic signature. Subsequently, we derived a prognostic signature using the following formula: 
RiskScore = (-0.05458234)× expression (MOGAT2)+ (-0.08772365)× expression. 

(DNASE1L3)+ 0.05830732× expression (COMP). Using this formula, we computed the risk score for each CRC patient in the 
training set and classified them into two risk subgroups (high-risk and low-risk) using the optimal cutoff value (Fig. 3D). Principal 
component analysis (PCA) revealed a clear distinction between the high- and low-risk groups based on the expression of the three 
prognostic genes (Supplementary Fig. 1A). The Kaplan‒Meier curve demonstrated that patients at greater risk had significantly poorer 
survival than those at lower risk (Fig. 3E). ROC curves were plotted to assess the predictive efficiency of the signature. The area under 
the curve (AUC) values for OS in the training set were all greater than 0.6 (1-, 3-, and 5-year), indicating decent accuracy (Fig. 3F). 
Fig. 3D displays the distribution of the ranked risk score and survival status for each patient in the training set. Survival status revealed 
that as the risk score increased, patients had a relatively greater risk of death. The expression heatmap showed that COMP was highly 
expressed in patients with higher risk scores, whereas DNASE1L3 and MOGAT2 were highly expressed in patients with lower risk scores 
(Fig. 3D). To further validate the applicability and reliability of the risk signature, the above analysis was also conducted in the testing 
set and external validation set (GSE17538). A consistent trend was observed in the testing set and external validation set (Fig. 3G-L, 
Supplementary Fig. 1B-C. These results indicate that the NAD + metabolism-immune-related prognostic signature serves as a valid 
survival predictor for CRC patients. 

Fig. 2. Identification of differentially expressed genes (DEGs) related to NAD + metabolism and immune responses (A) Volcano plot of DEGs 
between NAD + metabolism-related cluster 3 and cluster 1. (B) Heatmap of DEGs between NAD + metabolism-related cluster 3 and cluster 1. (C) 
Volcano plot of DEGs between immune-related cluster 2 and cluster 1. (D) Heatmap of DEGs between immune-related cluster 2 and cluster 1. (E) 
Volcano plot of DEGs between CRC and normal samples in The Cancer Genome Atlas-Colorectal Cancer (TCGA-CRC) dataset. (F) Heatmap of DEGs 
between CRC and normal samples in the TCGA-CRC dataset. (G) Candidate genes were obtained from the Venn diagram of NAD + metabolic DEGs, 
immune-related DEGs and CRC DEGs. (H) Gene Ontology (GO) enrichment pathway of candidate genes. (I) Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment pathway of candidate genes. 

Table 2 
The list of NAD + metabolism and immune-related differentially expressed genes (DEGs) in colorectal cancer (CRC).  

Symbol logFC AveExpr t P.Value adj.P.Val B 

IGJ − 3.75E+00 9.94E+00 − 1.27E+01 4.30E-29 1.63E-26 5.54E+01 
DNASE1L3 − 2.65E+00 3.80E+00 − 1.10E+01 2.77E-23 3.79E-21 4.22E+01 
DMBT1 − 3.43E+00 9.94E+00 − 8.55E+00 1.10E-15 5.90E-14 2.50E+01 
ITLN1 − 3.76E+00 6.26E+00 − 8.11E+00 2.06E-14 9.72E-13 2.21E+01 
CLCA4 − 3.29E+00 5.07E+00 − 7.83E+00 1.30E-13 5.69E-12 2.03E+01 
PLAC8 − 1.88E+00 8.49E+00 − 7.83E+00 1.30E-13 5.70E-12 2.03E+01 
CLCA1 − 3.87E+00 7.65E+00 − 7.78E+00 1.83E-13 7.88E-12 2.00E+01 
FCGBP − 2.61E+00 1.18E+01 − 7.50E+00 1.08E-12 4.29E-11 1.82E+01 
MUC4 − 2.36E+00 9.27E+00 − 7.43E+00 1.59E-12 6.18E-11 1.79E+01 
PLA2G2A − 2.85E+00 9.29E+00 − 7.41E+00 1.85E-12 7.13E-11 1.77E+01 
B3GNT6 − 2.79E+00 4.87E+00 − 7.29E+00 3.88E-12 1.44E-10 1.70E+01 
HEPACAM2 − 2.40E+00 5.81E+00 − 6.93E+00 3.45E-11 1.09E-09 1.48E+01 
DUOXA2 − 2.42E+00 7.54E+00 − 6.66E+00 1.62E-10 4.75E-09 1.33E+01 
DHRS9 − 2.07E+00 6.38E+00 − 6.56E+00 3.02E-10 8.46E-09 1.27E+01 
SPINK4 − 2.77E+00 7.41E+00 − 6.51E+00 4.00E-10 1.10E-08 1.25E+01 
MUC2 − 3.03E+00 1.11E+01 − 6.45E+00 5.55E-10 1.50E-08 1.21E+01 
ZG16 − 2.77E+00 5.45E+00 − 6.38E+00 8.23E-10 2.17E-08 1.18E+01 
SLC6A14 − 2.05E+00 6.83E+00 − 6.34E+00 1.04E-09 2.71E-08 1.15E+01 
BEST2 − 1.96E+00 3.01E+00 − 6.31E+00 1.22E-09 3.14E-08 1.14E+01 
CA4 − 2.51E+00 4.44E+00 − 6.29E+00 1.35E-09 3.45E-08 1.13E+01 
CA1 − 2.48E+00 3.34E+00 − 6.07E+00 4.49E-09 1.05E-07 1.01E+01 
FAM55A − 2.07E+00 6.46E+00 − 6.03E+00 5.69E-09 1.32E-07 9.88E+00 
C6orf105 − 1.72E+00 6.49E+00 − 6.00E+00 6.64E-09 1.52E-07 9.73E+00 
SI − 2.25E+00 5.09E+00 − 5.92E+00 1.03E-08 2.25E-07 9.31E+00 
MS4A12 − 2.22E+00 4.04E+00 − 5.86E+00 1.43E-08 3.04E-07 8.99E+00 
PIGR − 2.58E+00 1.38E+01 − 5.86E+00 1.44E-08 3.06E-07 8.98E+00 
CEACAM7 − 1.91E+00 9.83E+00 − 5.47E+00 1.06E-07 1.85E-06 7.05E+00 
REG1B − 2.61E+00 4.79E+00 − 5.41E+00 1.43E-07 2.44E-06 6.76E+00 
REG1A − 2.85E+00 8.18E+00 − 5.38E+00 1.71E-07 2.89E-06 6.59E+00 
B4GALNT2 − 1.72E+00 2.99E+00 − 5.11E+00 6.37E-07 9.42E-06 5.32E+00 
CHGA − 1.81E+00 4.13E+00 − 4.78E+00 2.90E-06 3.58E-05 3.87E+00 
MOGAT2 − 1.19E+00 5.53E+00 − 4.30E+00 2.39E-05 2.26E-04 1.86E+00 
VSIG2 − 1.43E+00 6.73E+00 − 3.61E+00 3.67E-04 2.27E-03 − 7.18E-01 
SLC26A3 − 1.49E+00 9.28E+00 − 3.51E+00 5.34E-04 3.09E-03 − 1.07E+00 
FAM55D − 1.30E+00 7.02E+00 − 3.24E+00 1.36E-03 6.69E-03 − 1.93E+00 
COMP 1.19E+00 5.63E+00 3.40E+00 7.84E-04 4.24E-03 − 1.43E+00  
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Table 3 
The Gene Ontology (GO) enrichment results of NAD + metabolism- and immune-related DEGs.  

ONTOLOGY ID Description GeneRatio BgRatio pvalue p. 
adjust 

qvalue geneID 

BP GO:0019730 antimicrobial humoral response 6/28 142/ 
18862 

5.38E- 
08 

2.64E- 
05 

2.05E- 
05 

CHGA/ITLN1/REG1A/ 
PLA2G2A/REG1B/ 
DMBT1 

BP GO:1902476 chloride transmembrane transport 4/28 96/ 
18862 

1.17E- 
05 

1.90E- 
03 

1.48E- 
03 

CLCA4/BEST2/ 
SLC26A3/CLCA1 

BP GO:0050830 defense response to Gram-positive 
bacterium 

4/28 98/ 
18862 

1.27E- 
05 

1.90E- 
03 

1.48E- 
03 

CHGA/ZG16/ 
PLA2G2A/DMBT1 

BP GO:0006959 humoral immune response 6/28 380/ 
18862 

1.66E- 
05 

1.90E- 
03 

1.48E- 
03 

CHGA/ITLN1/REG1A/ 
PLA2G2A/REG1B/ 
DMBT1 

BP GO:0006821 chloride transport 4/28 109/ 
18862 

1.94E- 
05 

1.90E- 
03 

1.48E- 
03 

CLCA4/BEST2/ 
SLC26A3/CLCA1 

BP GO:0098661 inorganic anion transmembrane 
transport 

4/28 120/ 
18862 

2.83E- 
05 

2.31E- 
03 

1.80E- 
03 

CLCA4/BEST2/ 
SLC26A3/CLCA1 

BP GO:0015701 bicarbonate transport 3/28 43/ 
18862 

3.47E- 
05 

2.43E- 
03 

1.89E- 
03 

CA1/CA4/SLC26A3 

BP GO:0007586 digestion 4/28 138/ 
18862 

4.90E- 
05 

3.00E- 
03 

2.33E- 
03 

MOGAT2/SI/MUC4/ 
MUC2 

BP GO:0016266 O-glycan processing 3/28 61/ 
18862 

9.95E- 
05 

5.42E- 
03 

4.20E- 
03 

B3GNT6/MUC4/MUC2 

BP GO:0015698 inorganic anion transport 4/28 171/ 
18862 

1.13E- 
04 

5.52E- 
03 

4.28E- 
03 

CLCA4/BEST2/ 
SLC26A3/CLCA1 

BP GO:0042742 defense response to bacterium 5/28 344/ 
18862 

1.36E- 
04 

6.08E- 
03 

4.71E- 
03 

CHGA/ZG16/PLAC8/ 
PLA2G2A/DMBT1 

BP GO:0015711 organic anion transport 5/28 376/ 
18862 

2.06E- 
04 

8.43E- 
03 

6.54E- 
03 

CA1/CA4/SLC26A3/ 
SLC6A14/PLA2G2A 

BP GO:0022600 digestive system process 3/28 99/ 
18862 

4.18E- 
04 

1.43E- 
02 

1.11E- 
02 

MOGAT2/MUC4/ 
MUC2 

BP GO:0006486 protein glycosylation 4/28 250/ 
18862 

4.80E- 
04 

1.43E- 
02 

1.11E- 
02 

B4GALNT2/B3GNT6/ 
MUC4/MUC2 

BP GO:0043413 macromolecule glycosylation 4/28 250/ 
18862 

4.80E- 
04 

1.43E- 
02 

1.11E- 
02 

B4GALNT2/B3GNT6/ 
MUC4/MUC2 

BP GO:0030277 maintenance of gastrointestinal 
epithelium 

2/28 22/ 
18862 

4.82E- 
04 

1.43E- 
02 

1.11E- 
02 

MUC4/MUC2 

BP GO:0006493 protein O-linked glycosylation 3/28 105/ 
18862 

4.96E- 
04 

1.43E- 
02 

1.11E- 
02 

B3GNT6/MUC4/MUC2 

BP GO:0070085 glycosylation 4/28 263/ 
18862 

5.81E- 
04 

1.58E- 
02 

1.23E- 
02 

B4GALNT2/B3GNT6/ 
MUC4/MUC2 

BP GO:0010669 epithelial structure maintenance 2/28 29/ 
18862 

8.42E- 
04 

2.17E- 
02 

1.68E- 
02 

MUC4/MUC2 

BP GO:0006730 one-carbon metabolic process 2/28 40/ 
18862 

1.60E- 
03 

3.79E- 
02 

2.94E- 
02 

CA1/CA4 

BP GO:0009101 glycoprotein biosynthetic process 4/28 347/ 
18862 

1.63E- 
03 

3.79E- 
02 

2.94E- 
02 

B4GALNT2/B3GNT6/ 
MUC4/MUC2 

CC GO:0042588 zymogen granule 4/32 13/ 
19520 

4.21E- 
09 

3.28E- 
07 

2.44E- 
07 

ZG16/CLCA1/REG1A/ 
DMBT1 

CC GO:0042589 zymogen granule membrane 3/32 10/ 
19520 

4.76E- 
07 

1.86E- 
05 

1.38E- 
05 

ZG16/CLCA1/DMBT1 

CC GO:0005903 brush border 4/32 101/ 
19520 

2.17E- 
05 

5.65E- 
04 

4.19E- 
04 

CA4/SLC26A3/SI/ 
ITLN1 

CC GO:0045177 apical part of cell 6/32 414/ 
19520 

4.98E- 
05 

9.72E- 
04 

7.21E- 
04 

CA4/CLCA4/ 
SLC26A3/CEACAM7/ 
SI/DUOXA2 

CC GO:0098862 cluster of actin-based cell projections 4/32 156/ 
19520 

1.19E- 
04 

1.43E- 
03 

1.06E- 
03 

CA4/SLC26A3/SI/ 
ITLN1 

CC GO:0031526 brush border membrane 3/32 59/ 
19520 

1.22E- 
04 

1.43E- 
03 

1.06E- 
03 

CA4/SLC26A3/ITLN1 

CC GO:0030667 secretory granule membrane 5/32 305/ 
19520 

1.28E- 
04 

1.43E- 
03 

1.06E- 
03 

CA4/ZG16/CLCA1/ 
PIGR/DMBT1 

CC GO:0016324 apical plasma membrane 5/32 351/ 
19520 

2.47E- 
04 

2.41E- 
03 

1.79E- 
03 

CA4/CLCA4/ 
SLC26A3/CEACAM7/ 
SI 

CC GO:0005796 Golgi lumen 3/32 102/ 
19520 

6.15E- 
04 

5.33E- 
03 

3.96E- 
03 

ZG16/MUC4/MUC2 

CC GO:0031253 cell projection membrane 4/32 337/ 
19520 

2.14E- 
03 

1.67E- 
02 

1.24E- 
02 

CA4/SLC26A3/ITLN1/ 
REG1A 

(continued on next page) 
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3.4. Relativity analysis of clinical parameters and the NAD + metabolism-immune-relevant prognostic signature 

To explore the associations between the NAD + metabolism-immune-related prognostic signature and clinical factors, we 
compared the risk scores of patients in different clinical subgroups. As shown in Fig. 4A-F, the NAD + metabolism-immune-related risk 
score was correlated with pathologic T stage, pathologic N stage, and stage (p value < 0.05) but was not correlated with age, sex, or 
pathologic M stage. 

3.5. The nomogram containing the NAD + metabolism-immune-relevant risk score as an independent prognostic predictor 

Cox analysis (univariate Cox and multivariate Cox) revealed that the risk score, pathologic T stage, and pathologic M stage were 
independent predictors of prognosis for CRC patients Fig. 5A-B, p value < 0.05). A nomogram incorporating these independent 
prognostic predictors was generated Fig. 5C). The C-index of the nomogram was 0.7582962, and calibration curves demonstrated the 
satisfactory performance of the nomogram in predicting survival at 1, 3, and 5 years for CRC patients (Fig. 5D). 

3.6. Association of the NAD + metabolism-immune-related prognostic signature with the immune microenvironment 

The GSVA algorithm demonstrated that patients in the low-risk subgroup had higher scores for immune-related pathways, such as 
APC coinhibition, CCR, MHC class I, and T-cell costimulation Fig. 6A). Using the ssGSEA algorithm, we calculated the fraction of each 

Table 3 (continued ) 

ONTOLOGY ID Description GeneRatio BgRatio pvalue p. 
adjust 

qvalue geneID 

CC GO:0031225 anchored component of membrane 3/32 170/ 
19520 

2.67E- 
03 

1.90E- 
02 

1.41E- 
02 

CA4/CEACAM7/ITLN1 

MF GO:0070492 oligosaccharide binding 3/29 16/ 
18337 

1.96E- 
06 

1.53E- 
04 

8.12E- 
05 

ITLN1/REG1A/REG1B 

MF GO:0042834 peptidoglycan binding 3/29 18/ 
18337 

2.86E- 
06 

1.53E- 
04 

8.12E- 
05 

ZG16/REG1A/REG1B 

MF GO:0015108 chloride transmembrane transporter 
activity 

4/29 101/ 
18337 

1.85E- 
05 

6.61E- 
04 

3.51E- 
04 

CLCA4/BEST2/ 
SLC26A3/CLCA1 

MF GO:0030246 carbohydrate binding 5/29 267/ 
18337 

5.62E- 
05 

1.50E- 
03 

7.99E- 
04 

ZG16/SI/ITLN1/ 
REG1A/REG1B 

MF GO:0015103 inorganic anion transmembrane 
transporter activity 

4/29 145/ 
18337 

7.64E- 
05 

1.63E- 
03 

8.68E- 
04 

CLCA4/BEST2/ 
SLC26A3/CLCA1 

MF GO:0005254 chloride channel activity 3/29 74/ 
18337 

2.14E- 
04 

3.32E- 
03 

1.76E- 
03 

CLCA4/BEST2/CLCA1 

MF GO:0004089 carbonate dehydratase activity 2/29 14/ 
18337 

2.17E- 
04 

3.32E- 
03 

1.76E- 
03 

CA1/CA4 

MF GO:0005229 intracellular calcium activated chloride 
channel activity 

2/29 16/ 
18337 

2.86E- 
04 

3.40E- 
03 

1.81E- 
03 

CLCA4/CLCA1 

MF GO:0061778 intracellular chloride channel activity 2/29 16/ 
18337 

2.86E- 
04 

3.40E- 
03 

1.81E- 
03 

CLCA4/CLCA1 

MF GO:0005253 anion channel activity 3/29 86/ 
18337 

3.33E- 
04 

3.57E- 
03 

1.89E- 
03 

CLCA4/BEST2/CLCA1 

MF GO:0005539 glycosaminoglycan binding 4/29 228/ 
18337 

4.33E- 
04 

4.21E- 
03 

2.24E- 
03 

ZG16/COMP/REG1A/ 
REG1B 

MF GO:0008509 anion transmembrane transporter 
activity 

5/29 459/ 
18337 

6.95E- 
04 

6.20E- 
03 

3.29E- 
03 

CLCA4/BEST2/ 
SLC26A3/CLCA1/ 
SLC6A14 

MF GO:0022839 ion gated channel activity 2/29 42/ 
18337 

2.00E- 
03 

1.65E- 
02 

8.74E- 
03 

CLCA4/CLCA1 

MF GO:0008376 acetylgalactosaminyltransferase 
activity 

2/29 47/ 
18337 

2.50E- 
03 

1.91E- 
02 

1.01E- 
02 

B4GALNT2/B3GNT6 

MF GO:0016836 hydro-lyase activity 2/29 64/ 
18337 

4.58E- 
03 

3.27E- 
02 

1.74E- 
02 

CA1/CA4 

MF GO:0016835 carbon-oxygen lyase activity 2/29 79/ 
18337 

6.90E- 
03 

4.61E- 
02 

2.45E- 
02 

CA1/CA4  

Table 4 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results of NAD + metabolism- and immune-related DEGs.  

KEGG ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID  

hsa04972 Pancreatic secretion 4.54E+04 102/8149 3.75E-05 1.13E-03 9.08E-04 22802/1811/1179/5320  
hsa00910 Nitrogen metabolism 4.53E+04 17/8149 4.83E-04 7.25E-03 5.85E-03 759/762  
hsa04975 Fat digestion and absorption 4.53E+04 43/8149 3.11E-03 3.11E-02 2.51E-02 80168/5320  
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immune infiltration cell for samples in both risk subgroups. As shown in Fig. 6B, the fractions of macrophages, neutrophils, NK cells, 
Tems, Tgds, and Th1 cells were increased in patients with higher risk scores, whereas the fractions of aDCs, B cells, eosinophils, T cells, 
and Th17 cells were increased in patients with lower risk scores. To further investigate the associations between prognostic genes and 
immune cells in CRC, we utilized the TIMER database Fig. 6C–E). Based on thresholds of |cor| > 0.3 and p < 0.05, we found that COMP 
was notably positively correlated with CD4+ T cells and macrophages Fig. 6C), whereas DNASE1L3 was significantly positively 
correlated with B cells (Fig. 6D). 

3.7. Association of the NAD + metabolism-immune-related prognostic signature with therapy 

The immune checkpoint molecule HAVCR2 was found to be expressed at higher levels in patients with higher risk scores Fig. 6F). 
According to the TIDE results, patients in the low-risk group might respond better to immunotherapy than patients in the high-risk 
group Fig. 6G and H). We also investigated the correlation between prognostic genes and sensitivity to chemotherapy drugs (IC50 
values) using the ‘pRRophetic’ package. We observed that COMP was associated with multiple drugs, including bryostatin.1, camp-
tothecin, cytarabine, dasatinib, pazopanib, and shikonin (Fig. 7). 

3.8. The expression of NAD + metabolism-immune-related prognostic genes 

In the TCGA-CRC dataset, MOGAT2 and DNASE1L3 were downregulated, whereas COMP showed elevated expression in CRC 
tissues compared to normal tissues Fig. 8A). We further confirmed these expression trends in the external validation set GSE115261 
Fig. 8B). To determine the changes in the expression of prognostic genes at the protein level, we obtained immunohistochemistry 
images from the HPA database. Unfortunately, we did not detect immunohistochemical results for COMP in CRC. However, we found 
that the protein expression of DNASE1L3 and MOGAT2 was lower in CRC tissues than in normal tissues Fig. 9A and B). We also 
analyzed the mRNA expression of prognostic genes in human normal colonic epithelial cells (CCD814) and three human CRC cell lines 

Fig. 3. The NAD + metabolism-immune-relevant prognostic signature for CRC. (A) Univariate forest plot of the correlation between prognostic gene 
expression and overall survival (OS) in CRC patients. (B) Deviance plot of partial likelihood determined by least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis. (C) Graph of the gene coefficients. The abscissa is log(Lambda), and the ordinate is the coefficient 
corresponding to the gene. Risk curve, scatter plot, model gene expression heatmap, Kaplan‒Meier (K–M) survival analysis and receiver operating 
characteristic (ROC) curve of patients with high or low risk in different sets. (D–F) Training set. (G–I) Test set. (J–L) External verification set. 

Fig. 4. Risk score analysis of different clinicopathological features. The distribution of risk scores between high- and low-risk patients was stratified 
according to (A) age, (B) sex, (C) pathological T stage, (D) pathological M stage, (E) pathological N stage and (F) stage. 
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(HCT-116, LOVO, and SW480). Consistent with the results from public databases, COMP was upregulated in HCT-116, LOVO, and 
SW480 cells, whereas DNASE1L3 was downregulated in LOVO and SW480 cells (Fig. 10 A-C). However, the expression of MOGAT2 in 
the cell lines was inconsistent with that in the tissue samples, possibly due to the complexity of the tumor tissue. 

4. Discussion 

CRC is the third most prevalent malignant tumor globally, accounting for approximately one-tenth of all cancer patients, with an 
estimated one million new cases reported annually worldwide. It is also a prominent contributor to cancer-related deaths, accounting 
for 9.2 % of deaths [23]. The primary cause of death in CRC patients is the occurrence of distant metastasis. Patients without distant 
metastasis exhibit a 5-year survival rate of 80–90 %, whereas those with distant metastasis have a significantly lower rate of 10–20 %. 
During tumor cell proliferation, a substantial energy supply is needed, which mainly involves the production of mitochondrial 
acetyl-CoA from glucose. This raw material is then subjected to oxidation reactions via the citric acid cycle under the influence of 
NAD+/NADH, resulting in ATP production. These metabolic processes provide energy for tumor cell proliferation [24]. NAD +
metabolism is also involved in the regulation of diverse biological functions, including immune regulation and aging [18,25]. Immune 
T cells have been found to be closely associated with the occurrence, development, metastasis, and invasion of tumor cells as immune 
recognition improves. NAD+ is capable of regulating the expression of the tumor immune checkpoint PD-L1 through epigenetic 
modification. This, in turn, promotes the secretion of IFNγ by T cells and facilitates tumor immune evasion. Sirt1, an NAD + metabolic 
enzyme, can activate cytokine secretion in antigen-presenting cells by regulating the acetylation of IRF1. Consequently, PD-L1 
expression is promoted, and tumor immunity is mediated [10,26]. The immune microenvironment and immune components 

Fig. 5. TCGA-CRC independent prognosis forest map. (A) Univariate Cox analyses. The red diamond squares on the transverse lines indicate the 
hazard ratio (HR), and the blue transverse lines indicate the 95 % confidence interval (CI). (B) Multivariate Cox analyses. (C) Independent prognosis 
model nomogram. Nomograms that integrate the prediction of the probability of patient survival for 1-, 3- or 5-year OS. (D) Calibration curves of the 
nomogram for predicting survival outcomes at 1, 3, and 5 years. The 45-degree line represents the ideal prediction. 
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significantly impact the prognosis of cancer patients during the adaptive response to antitumor therapy [27]. However, the precise 
mechanisms through which NAD + metabolism regulates immune function in CRC remain unclear. Hence, we established a robust 
prognostic model for CRC based on NAD + metabolism and immune-related genes. This was accomplished through thorough bioin-
formatics analysis, immune checkpoint analysis, immune therapy response prediction, immune infiltration analysis, chemotherapy 
drug sensitivity analysis, and qRT‒PCR validation. Our objective was to investigate the mechanisms underlying the association be-
tween NAD + metabolism and immune function in CRC. 

Fig. 6. Association of the NAD + metabolism-immune-related prognostic signature with the immune microenvironment. (A) Differences in 13 
immune-related pathways in the high-to low-risk groups. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant. (B) Differences in the levels of 
24 kinds of tumor-infiltrating immune cells (TIICs). (C–E) Correlations between gene expression and immune cells. The expression of COMP (C), 
DNASE1L3 (D), and MOGAT2 (E) correlated with that of six immune cell types. (F) Comparison of immune checkpoint expression between the high- 
and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant. (G–H) Analysis of tumor immune dysfunction and 
exclusion (TIDE) scores in the high- and low-risk groups. (G) Comparison of the results of the rank sum test of the TIDE score. (H) Is the number of 
people in the high-low-expression group who responded to immunotherapy and those who did not respond. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Association of the NAD + metabolism-immune-related prognostic signature with therapy The red dots are positively correlated, and the blue 
dots are negatively correlated. 
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First, a total of 36 DEGs related to NAD + metabolism and immunity were identified in CRC through differential expression 
analysis. These DEGs included CA1, MS4A12, CA4, CHGA, and CLCA4, among others. In CRC, the downregulation of CA1 and 
upregulation of ANXA4 promote the accumulation of ANXA4 on the cell membrane. Furthermore, CA1 expression is associated with 

Fig. 8. Expression levels of prognostic genes in the TCGA and validation sets GSE115261. (A) TCGA-CRC. (B) GSE115261. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 9. Protein expression levels of prognostic characteristic genes in the Human Protein Atlas (HPA) database. (A) DNASE1L3. (B) MOGAT2.  

Fig. 10. mRNA expression levels of NAD + metabolic immune-related prognostic genes in CCD814, HCT-116, LOVO and SW480 cells. (A) 
MOGAT2. (B) DNASE1L3. (C) COMP. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant. 
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the malignant proliferation, development, differentiation, and metastasis of cancer cells [28,29]. MS4A12 is a specific 
storage-operated calcium channel (SOC) in the colon that facilitates Ca2+ influx through epidermal growth factor (EGF). This promotes 
chloride nitrogen metabolism, cell proliferation, and cell motility but significantly impairs chemotactic invasion [30,31]. The CLCA4 
protein is expressed in secretory epithelial cells of the small intestine and affects chloride ion transmission, cell apoptosis, cell cycle 
control, and tumor metastasis [32]. 

Three genes related to NAD + metabolism and immunity were subsequently identified as prognostic genes. This was determined 
through univariate Cox and LASSO regression analyses. The identified genes were MOGAT2, DNASE1L3, and COMP. MOGAT2 is a gene 
involved in fatty acid synthesis and is predominantly expressed in the human small intestine, liver, and white fat. It serves as a key rate- 
limiting enzyme for triglyceride synthesis in the small intestine. A study by Valerie [5] demonstrated that increased expression of 
adipogenic genes, including MOGAT2, promotes adipogenesis, proliferation, and the inflammatory response in hepatocellular carci-
noma (HCC) mice, leading to liver proliferation and steatosis. Additionally, MOGAT2 has been identified as a gene with double 
methylation in inflammatory breast cancer [33]. This study provides the first evidence that MOGAT2 is a relevant prognostic gene in 
CRC. 

Recombinant deoxyribonuclease I-like protein 3 (DNASE1L3) is a highly expressed secreted enzyme that plays a crucial role in 
regulating DNA and chromatin autoimmunity. It has been observed that DNASE1L3 can degrade the extracellular chromatin of 
apoptotic bodies. Studies have shown that mutations in DNASE1L3 are closely associated with the phenotype of lupus [34]. Moreover, 
there is evidence linking DNASE1L3 deficiency to inflammatory bowel disease [34]. 

Recent research has suggested that DNASE1L3 is involved in cell apoptosis, proliferation, invasion, and metastasis. It has emerged 
as a potential prognostic biomarker in lung adenocarcinoma and colon cancer studies, although its specific mechanism of action re-
mains unclear [35,36]. Notably, Han’s study [37] highlighted the regulatory effect of DNASE1L3 in HCC. DNASE1L3 is expressed in the 
endoplasmic reticulum, and it is secreted from the cell. Following apoptosis induction, its endoplasmic reticulum-targeted gene 
sequence is cleaved and translocated to the nucleus. DNASE1L3 also acts as a plasma nuclease in the digestive cycle, aiding in the 
evasion of phagocytosis after apoptosis. 

In the context of HCC, Li [38] discovered that DNASE1L3 negatively regulates disease. By binding to β-chain proteins, DNASE1L3 
inhibits their nuclear translocation, thereby restraining the proliferation and metastasis of HCC cells. Mechanistically, DNASE1L3 
promotes β-ubiquitination-related degradation of catenin and disrupts the recruitment of the β-catenin disruption complex. Conse-
quently, downstream targets such as c-Myc, P21, and P27 are inhibited, effectively controlling the cell cycle and EMT signaling. 
Research by SUN [39] further supports these findings by demonstrating that DNASE1L3 significantly reduces HCC cell proliferation, 
colony formation, migration, and invasion in vitro. It also inhibited the formation of subcutaneous tumors in nude mice in vivo. In a 
mouse model, overexpression of DNASE1L3 inhibited AKT/NRASV12-induced liver cancer, whereas DNASE1L3 deficiency exacer-
bated DEN/CCl-induced liver cancer in DNASE1L3 mice. Systemic analysis revealed that DNASE1L3 impairs HCC cell cycle progression 
by interacting with CDK2 and inhibiting CDK2-stimulated E2F1 activity. C-terminal deletion of DNASE1L3 reduces its interaction with 
CDK2 and eliminates its inhibitory effect on HCC. 

Furthermore, Li [40] established a mouse model of colon cancer and demonstrated that the absence of DNASE1L3 in the tumor 
microenvironment is associated with tumor occurrence and development. Additionally, it enhances antitumor immunity. 

Cartilage oligomeric matrix protein (COMP) is an extracellular matrix protein that plays a crucial role in cellular phenotype 
regulation during histogenesis and remodeling. Recent research has focused on investigating the involvement of COMP in various 
diseases, such as liver fibrosis and pulmonary fibrosis [41,42]. In the context of colon cancer-related diseases, experimental studies 
have confirmed that the overexpression of COMP is associated with the carcinogenic effects of colon cancer, as well as with the 
infiltration of CAFs and M2 macrophages [43]. In liver malignancies, Li [44] discovered that the COMP/CD36 signaling pathway leads 
to the phosphorylation of ERK and AKT, resulting in the upregulation of markers associated with EMT, including MMP-2/9, Slug, and 
Twist, in HCC cells. This, in turn, influences tumor development. Furthermore, Blom’s research [45] revealed a positive correlation 
between COMP expression and TNM stage and tumor differentiation. Additionally, a negative correlation has been identified between 
COMP expression and the presence of PD-L1 on tumor cells and immune cells. Tumor fibrosis is associated with high levels of COMP 
expression in the extracellular matrix, and tumors with dense fibrosis and elevated COMP expression exhibit less infiltration of immune 
cells. Moreover, Dakhova [46] demonstrated that knockdown of the COMP gene affects the expression of genes associated with the 
reactive matrix in prostate stromal cell lines, leading to a decrease in tumor cell development. Our study indicated that CRC patients 
with elevated COMP expression have significantly shorter OS than those with low COMP expression. Furthermore, we observed 
reduced T-cell infiltration in tumors with high COMP expression. Notably, we also conducted qRT‒PCR experiments to validate the 
expression of MOGAT2, DNASE1L3, and COMP in CRC cells, confirming their significant difference in expression between human colon 
cancer cells (HCT116 and SW480) and normal colon epithelial cells (CCD814). However, no difference was observed in LOVO cells. 
These findings suggest that MOGAT2, DNASE1L3, and COMP may play a role in cell apoptosis, proliferation, invasion, and metastasis in 
CRC, providing potential clinical prognostic markers for this disease. 

In addition, we observed significant differences in 11 types of immune cells (aDCs, B cells, eosinophils, macrophages, neutrophils, 
NK cells, T cells, Tem cells, Tgd cells, Th1 cells, and Th17 cells) between the CRC and control groups. We also identified four immune 
pathways (APC coinhibition, CCR, MHC class I, and T-cell costimulation pathways) that exhibited significant differences. Hence, it is 
reasonable to speculate that MOGAT2, DNASE1L3, and COMP may exert their effects on these 11 immune cells through the four 
immune signaling pathways mentioned above, ultimately regulating cell apoptosis, proliferation, invasion, and metastasis in CRC. 

By comparing the rank sum test results of TIDE scores, we obtained correlations between MOGAT2, DNASE1L3, and COMP model 
genes and IC50. Among them, we found that the correlations between COMP and AG.014699, AMG.706, AP.24534, AZD6482, 
AZD7762, CCT007093, GDC0941, GSK26962A, midostaurin, NU.7441, pazopanib, and PD.0332991 were less than − 0.6, indicating a 
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significant strong negative correlation. Based on the results of the immunotherapy and chemotherapy sensitivity analyses, MOGAT2, 
DNASE1L3, and COMP inhibited the occurrence and development of CRC. Therefore, these three prognostic genes play a crucial role in 
the clinical treatment of patients. Interfering with MOGAT2, DNASE1L3, and COMP can regulate the development of tumors and 
improve patient quality of life. Additionally, this study provides new insights for the development of COMP-related chemotherapy 
drugs for the clinical treatment of CRC. 

This study has several notable advantages. First, we employed various analytical methods, including differential gene expression 
analysis, enrichment analysis, Cox analysis, and the LASSO algorithm, and validated the results using multiple datasets to ensure 
accuracy and reliability. Second, we established and clinically validated a prognostic model, highlighting the significance and 
effectiveness of the model genes in determining CRC prognosis. Finally, by analyzing immune cells and pathways, we revealed immune 
mechanisms relevant to CRC prognosis, offering new perspectives for personalized treatment. Overall, this study excelled in meth-
odology, results, and clinical applications, providing valuable implications for the treatment and prognosis improvement of CRC 
patients. However, there are several limitations to consider. First, the number of clinical samples collected in our study was limited, 
and future validation will require a larger sample size. Second, additional in vitro experiments were not conducted to validate the 
potential mechanisms of CRC identified in this study, necessitating further experimental validation of the study’s findings. 

5. Conclusion 

In summary, this study revealed that NAD + metabolism and immune-related genes (MOGAT2, DNASE1L3, and COMP) are 
associated with CRC prognosis. Additionally, a prognostic signature based on NAD + metabolism and immune-related factors was 
developed for stratifying the survival risk of CRC patients. These findings provide valuable insights for future investigations on NAD +
metabolism, immune-related prognostic characteristics, and the potential to minimize unnecessary steps and economic losses in 
experimental research. Moving forward, further exploration of the underlying mechanisms involving the three identified genes 
(MOGAT2, DNASE1L3, and COMP) in the progression of CRC is warranted. However, it is important to note that this study is retro-
spective and relies on public database data. To effectively apply the analysis results and prognostic models, more clinical samples and 
extensive data support and validation are necessary. Moreover, additional experimental research is required to fully understand the 
mechanisms of action of the identified genes related to NAD + metabolism and immune-related prognosis. 
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TCGA-CRC The Cancer Genome Atlas-Colorectal Cancer 
GEO Gene Expression Omnibus 
NMRGs NAD + metabolism-related genes 
KEGG Kyoto Encyclopedia of Genes and Genomes 
IRGs immune-related genes 
DEGs differentially expressed genes 
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CC cellular component 
MF molecular function 
BP biological process 
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K‒M Kaplan‒Meier 
ICI immune checkpoint inhibitor 
IC50 half maximal inhibitory concentration 
OS overall survival 
HR hazard ratio 
AUC area under curve 
PCA principal component analysis 
SOCs storage-operated calcium channels 
EGF epidermal growth factor 
MOGAT2 monoacylglycerol O-acyltransferase 2 
HCC hepatocellular carcinoma 
DNASE1L3 deoxyribonuclease I-like protein 3 
COMP cartilage oligomeric matrix protein 
CI confidence interval 
CDF cumulative distribution function 
SE standard. 
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B. Gibier, E. Chopin, I. Rouvet, D. Goncalves, N. Fabien, G.I. Rice, G. Lesca, A. Labalme, P. Romagnani, T. Walzer, S. Viel, M. Perret, Y.J. Crow, T. Avčin, 
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