
Zhao et al. BMC Genomics          (2020) 21:627 
https://doi.org/10.1186/s12864-020-07033-8

RESEARCH ARTICLE Open Access

Accurate prediction of DNA
N4-methylcytosine sites via boost-learning
various types of sequence features
Zhixun Zhao1 , Xiaocai Zhang1, Fang Chen2, Liang Fang3 and Jinyan Li1*

Abstract

Background: DNA N4-methylcytosine (4mC) is a critical epigenetic modification and has various roles in the
restriction-modification system. Due to the high cost of experimental laboratory detection, computational methods
using sequence characteristics and machine learning algorithms have been explored to identify 4mC sites from DNA
sequences. However, state-of-the-art methods have limited performance because of the lack of effective sequence
features and the ad hoc choice of learning algorithms to cope with this problem. This paper is aimed to propose new
sequence feature space and a machine learning algorithm with feature selection scheme to address the problem.

Results: The feature importance score distributions in datasets of six species are firstly reported and analyzed. Then
the impact of the feature selection on model performance is evaluated by independent testing on benchmark
datasets, where ACC and MCC measurements on the performance after feature selection increase by 2.3% to 9.7%
and 0.05 to 0.19, respectively. The proposed method is compared with three state-of-the-art predictors using
independent test and 10-fold cross-validations, and our method outperforms in all datasets, especially improving the
ACC by 3.02% to 7.89% and MCC by 0.06 to 0.15 in the independent test. Two detailed case studies by the proposed
method have confirmed the excellent overall performance and correctly identified 24 of 26 4mC sites from the
C.elegans gene, and 126 out of 137 4mC sites from the D.melanogaster gene.

Conclusions: The results show that the proposed feature space and learning algorithm with feature selection can
improve the performance of DNA 4mC prediction on the benchmark datasets. The two case studies prove the
effectiveness of our method in practical situations.
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Background
As an essential epigenetic modification, DNA basemethy-
lation expands the DNA content and plays crucial roles in
regulating various cellular processes [1–3]. According to
the location where a methylated group occurs in the DNA
sequence, there are many kinds of DNA base methylation.
For example, 5-Methylcytosine (5mC), N6-methyladenine
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(6mA) and N4-methylcytosine (4mC) are the most com-
mon types [4–6]. 5mC occurs at the C5-position of cyto-
sine and is the dominant methylation type in eukaryotic
genomes, actively involved in differentiation, gene expres-
sion, genomic imprinting, preservation of chromosome
stability, aging, suppression of repetitive element, and X
chromosome inactivation [7–10]. In prokaryotes, 6mA
and 4mC constitute the majority of DNA base methyla-
tions [11]. 6mA occurs at the N6-position of adenine and
is a marker in gene regulation, development, DNA repli-
cation, repair, and expression [12–14]. 4mC happens at
the N4-amino group of cytosine and participates in the
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restriction-modification system that provides a bacterial
immune response against occupying DNA, DNA repair,
expression, or replication [15–17]. Compared with the
studies for 5mC and 6mA, biological functions of 4mC are
much investigated due to the lack of sufficient detection
methods.
The precise location of the DNA base methylation

was a hard problem in the past for a long time. It
is not affordable to locate the DNA 5mC on a large
scale until the whole-genome bisulfite sequencing, and
the next-generation sequencing techniques were devel-
oped [18, 19]. The detection of 6mA and 4mC in
the level of whole-genome became available after the
single-molecule real-time sequencing (SMRT) technol-
ogy was introduced [4, 20]. Then a next-generation
sequencing method called 4mC-Tet-assisted-bisulphite-
sequencing and another method based on engineered
transcription-activator like effectors were developed for
4mC identification [21]. However, the experimental meth-
ods were of high cost and cannot identify 4mC sites
with time efficiency. Recently, the rapid development of
machine learning algorithms provides a promising com-
putational approach to address classification problems
in bioinformatics, and researchers have explored using
computational methods to identify 4mC sites from DNA
sequences.
Collecting data from public SMRT sequencing experi-

ments, Ye et al built the first DNA 6mA and 4mC database
named MethSMRT for 156 species [22]. Chen et al [23]
proposed an SVM based prediction model iDNA4mC
using the nucleotide chemical property and sequential
nucleotide frequency features. Recently, 4mCPred and
4mcPred-SVM were developed to improve the site pre-
diction performance [24, 25]. In 4mCPred, He et al used
two new features PSTNP and EIIP with a simple feature
selection. Wei et al built 4mcPred-SVM with four kinds
of sequence features and a two-step feature optimiza-
tion. Recently, some other predictors have been developed
to identified 4mC site in the DNA sequence for Mouse
[26, 27], Escherichia coli [28], Rosaceae [29] and so
on [30, 31].
The core idea of the previous research is to trans-

form 4mC-contained DNA sequences into various kinds
of features as the input of the machine learning algo-
rithms.However, these features are not adequate to make
the prediction methods to achieve excellent perfor-
mance. Through the analysis on the sequence logos,
we observe that the adjacent nucleotides’ characteristics
are potentially essential. Thus we extract the contigu-
ous nucleotides sequence characteristics like k-nucleotide
frequency, k-spectrum nucleotide pair frequency, and
PseDNC as features to describe the sequences. Besides,
two global sequence features, one-hot binary and
sequential nucleotide frequency, are also merged into

our feature space. As global features have the complete
information of DNA sequence and the local features can
underline specific sequence patterns, the combined fea-
ture space is highly expected to improve the prediction
performance.
Since feature selection can reduce the feature space

dimension and the modelling complexities [32], the exist-
ing 4mC prediction methods, including 4mCPred and
4mCPred_SVM, employed a feature selection scheme
based on the F-score and sequential forward search (SFS)
strategy [24, 25]. Although the F-score can evaluate the
feature importance according to the relevance between
the feature and label, the performance of the selected
feature subset was still under-realized. In this paper, we
propose an embedded feature selection scheme, in which
features are ranked with the feature importance scores
derived by the XGBoost classifier training process. Sup-
ported by information entropy theory, the feature impor-
tance here is more meaningful than F-score. Then lower-
ranked features are removed one by one, each round with
a cross-validation assessment on the performance of the
selected feature subset.
The flowchart of our approach is shown in Fig. 1 where

the new sequence feature space and feature selection
scheme are depicted for DNA 4mC site prediction. First,
the DNA sequence is encoded into five kinds of features,
a total of 292 dimensions. Second, an XGBoost machine
is trained and the feature importance scores from the
training are used to rank all the features. Last, an SVM-
based prediction model is built, and the parameters are
optimized with 10-fold cross-validation.
In the results section, we analyze the feature impor-

tance in our feature space and show that feature
selection improves the model performance signifi-
cantly in the independent test. Besides, we compare
the proposed method with three state-of-art methods,
iDNA4mC, 4mCPred, and 4mCPred_SVM in indepen-
dent test and 10-fold cross-validation on benchmark
datasets, and the proposed method achieves much bet-
ter performance. Two detailed case studies for 4mC
site prediction on the dlk-1 and DSCAM genes partly
prove the effectiveness of our approach in practical
situations.

Results
This section reports the feature importance scores
obtained from the XGBoost machine and analyzes the
influence of the feature selection on prediction perfor-
mance. Then three state-of-the-art predictors are com-
pared with the proposed method in the independent test
and 10-fold cross-validation on benchmark datasets. At
last, we present results from two case studies which were
conducted to identify the 4mC sites in the C.elegans and
D.melanogaster genes.
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Fig. 1 Framework of proposed model construction

Feature importance analysis
As stated, five types of sequence features are created to
constitute a 292-dimensional feature space. Among the
292 dimensions, OHB is from D1 to D164; SNF is from
D165 to D205; KNF is from D206 to 225; KSNPF is from
D226 to 273 and PseDNC is from D274 to D292. The
feature importance scores are obtained from the training
process of the XGBoost machine. The importance score
distributions for all the datasets are illustrated in Fig. 2.
Top 30 feature dimensions are reported in Table S2 of
Additional File 1 and feature importance scores of all the
feature dimensions are in Additional File 2.
It is understood that each feature dimension has distinct

importance scores in different species. OHB and PseDNC
features have relatively high average scores in all species.
In particular, OHB features have the highest average score
in C.elegans, D.melanogaster and A.thaliana. KSNPF fea-
ture not only gets a high importance score in A.thaliana,
E.coli and G.subterraneus like KNF features, but also has
the highest average score in G.pickeringii. SNF feature just
stands out in E.coli. The features’ importance score ranges
from 0 to 50 and some feature dimensions’ scores are such
low that they are less important in the classification and
may have noise effects on model performance. Thus, the

feature selection before the training is potentially useful to
improve model accuracy.

Impact of feature selection on classification
We first evaluate the model performance via independent
test without feature selection before model training. Then
the independent test is carried out with feature selec-
tion, where the benchmark datasets divisions and SVM
parameters are kept the same. Table 1 and Fig. 3 show
the independent test performance before and after feature
selection.
The independent test after feature selection improves

the model performance in all the species. In C.elegans,
feature selection improved Sn, Sp, ACC and MCC by
7.54%, 3.85%, 7.74% and 0.16. In D.melanogaster, the
model performance has the most considerable improve-
ment by 10.17%, 9.32%, 9.74% and 0.19 for Sn, Sp, ACC
and MCC, respectively. For A.thaliana, Sp increased by
6.82% while ACC and MCC slightly increased by 2.27%
and 0.05. Besides, Sp, ACC and MCC improved by 9.23%,
7.7% and 0.14 in E.coli dataset. In G.subterraneus, the
metrics improvement is by 8.34% for Sn, 6.67% for Sp,
7.5% for ACC and 0.15 for MCC. As for G.pickeringii,
the performance is improved by 5.17%, 10.73%, 7.89% and
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Fig. 2 Sequence feature importance distribution

0.15 in terms of Sn, Sp, ACC and MCC with feature selec-
tion. From Fig. 4, it’s obvious that the AUCs after feature
selection become better in all the species. The most mas-
sive AUC growth exists in C.elegans by 0.06 and the least
growth is by 0.01 in A.thaliana. The results imply that the
proposed feature selection scheme enhances the perfor-
mance of the SVM model by selecting effective features
from the original feature space.

Comparison with state-of-the-art predictors
Three state-of-the-art DNA 4mC prediction methods,
iDNA4mC, 4mCPred, and 4mCPred_SVM are compared

Table 1 The independent test performance before and after
feature selection(Sn, Sp and ACC:%)

Datasets Selection Sn Sp ACC MCC

C.elegans before 82.69 75.00 78.85 0.58

after 94.23 78.85 86.53 0.74

D.melanogaster before 74.57 77.12 75.85 0.52

after 84.74 86.44 85.59 0.71

A.thaliana before 82.57 76.51 79.54 0.59

after 80.30 83.33 81.81 0.64

E.coli before 92.30 69.23 80.76 0.63

after 88.46 88.46 88.46 0.77

G.subterraneus before 83.33 75.00 79.17 0.59

after 91.67 81.67 86.67 0.74

G.pickeringii before 81.57 78.94 80.26 0.61

after 86.84 89.47 88.15 0.76

with the proposed method. The comparison was con-
ducted using the independent test and cross-validation
test on the benchmark datasets.
The independent test results by iDNA4mC and

4mCPred were reported in [24], and we cannot find
the independent test results of 4mCPred_SVM method.
Since 4mCPred_SVM only provides the final prediction
model, it’s not available to rebuild the independent test.
Thus, here we compare our method with iDNA4mC and
4mCPred in independent test under the same division
of training and testing data. The results of independent
test are presented in Table 2. Oour method outperforms
the other methods in all species. Generally, the proposed
method improves ACC from 3.02% to 7.89% and increases
MCC from 0.06 to 0.15. Especially, a significant improve-
ment of our approach can be observed in G.pickeringii
(improving Sn by 5.26%, Spby 10.52%, ACC by 7.89%, and
MCC by 0.15).
We performed a 10-fold cross-validation with the same

process as the existing methods. The cross-validation
results of the three state-of-the-art predictors were
reported in the publication of 4mCPred_SVM [25], where
the reported performance of 4mCPred has been modified
by solving the over-estimated problem. The summary of
cross-validations are illustrated in Table 3. Except for the
four evaluation metrics, we also list the sample count of
TP (True Positive), FN (False Negative), FP (False Posi-
tive) and TN (True Negative). As shown in the table, in
D.melanogaster, A.thaliana and Gpickeringii, our method
has the most TP and TN counts, increasing ACC by 0.7%
to 1.7% and MCC by 0.015 to 0.033. In G.subterraneus,
our method has the highest TN, improving more ACC
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Fig. 3 The ROC curves before and after feature selection

andMCC by 1% and 0.02% than 4mC_SVMwhich has the
second-best performance. Additionally, the TP and TN of
our method are not the highest in C.elegans and E.coli,
but our method slightly improve the ACC andMCC by 1%
and 0.02 in E.coli and has a comparative performance with
4mCPred, better than other two methods in C.elegans.
It’s clear that our method achieves better overall per-

formance than the existing predictors in independent and
cross-validation tests. The improvement of ACC indicates

that our method accurately identifies more 4mC sites and
the increase of MCC means that our method has more
balanced performance for classifying positive and nega-
tive samples. Therefore, our method is more effective to
identify DNA 4mC sites than the existing predictors.

Case studies
To confirm the effectiveness of our method to solve prac-
tical problems, two detailed case studies are conducted.

Fig. 4 The confidence of predicted label in case studies
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Table 2 Independent Test Results on Benchmark Datasets (Sn,
Sp and ACC:%)

Methods Datasets Sn Sp ACC MCC

C.elegans 80.77 73.08 76.92 0.54

D.melanogaster 74.58 77.97 76.27 0.53

iDNA4mC A.thaliana 80.3 77.27 78.79 0.58

E.coli 96.15 69.23 82.69 0.68

G.subterraneus 85.00 76.67 80.83 0.62

G.pickeringii 81.58 78.95 80.26 0.61

C.elegans 85.58 78.85 82.21 0.65

D.melanogaster 83.90 81.36 82.63 0.65

4mCPred A.thaliana 76.52 76.52 76.52 0.53

E.coli 84.62 80.77 82.69 0.65

G.subterraneus 91.67 75.00 83.33 0.68

G.pickeringii 86.84 68.42 77.63 0.56

C.elegans 94.23 78.85 86.53 0.74

D.melanogaster 84.74 86.44 85.59 0.71

this A.thaliana 80.30 83.33 81.81 0.64

study E.coli 88.46 88.46 88.46 0.77

G.subterraneus 91.67 81.67 86.67 0.74

G.pickeringii 86.84 89.47 88.15 0.76

C.elegans and D.melanogaster are model organisms
widely applied in human disease-related research works,
like Parkinson and human aging research investigations
[33–36]. As 4mC plays critical roles in DNA expres-
sion and replication in these models, we describe how
our method can help identify 4mC sites more accu-
rately in the related genes. We focus on the dlk-1 gene
which can promote mRNA stability and local transla-
tion in C.elegans [37], and on DSCAM gene which can
contribute to the specificity of neuronal connectivity in
D.melanogaster [38].
The 26 and 137 validated 4mC sites in dlk-1 and

DSCAM gene are collected from the MethSMRT
database. The collected 4mC-contained DNA sequences
are all 41-bit, that can be directly submitted into the web
tools of three state-of-the-art methods. The prediction
result are depicted in Fig. 4 and Table 4. Figure 4 shows the
label confidence predicted by these four predictors, where
the positive confidence refers that the corresponding site
is predicted to be 4mC site and the negative confidence
means the site is predicted to be a non-4mC site. As
shown in the figure, iDNA4mC achieves the worst per-
formance in both two cases, and half of the predictions
are incorrect in DSCAM gene. 4mCPred, 4mCPred_SVM
and the proposedmethod have similar performance in the
DSCAM gene case, while the results made by 4mCPred
and our proposed method on the dlk-1 gene are better
than 4mCPred_SVM.

More details of the prediction are presented in Table 4.
Since the testing data in the case study only contains
positive samples, there are only TP and FN counts in
the results. For the dlk-1 case, 4mCPred has only one
wrong prediction and the proposed method has made
two false predictions out of 26 samples, while iDNA4mC
and 4mCPred_SVM have 7 and 6 incorrect predictions
respectively. For the DSCAM case, there are 137 4mC
sites tested, and our proposed method has made 126
correct predictions (i.e., only 11 incorrect predictions).
4mCPred and 4mCPred_SVM have 16 and 15 false pre-
dictions, while iDNA4mC has made 67 false predictions.
More detailed results can be found at the supplementary
Additional file 3.

Discussion
To improve the performance, we have focused on choos-
ingmore efficient features for 4mC site prediction, includ-
ing extracting better sequence feature and feature selec-
tion before model learning. However, there are also some
limitations in the study: first,the feature are mostly from
the content of sequence, not the biological characters;
second, the size of training data is limited.
In the future, we will continue to optimize our feature

space with novel sequence features of important biologi-
cal characteristics. Furthermore, we will expand the size
of the benchmark datasets to enhance the model’s accu-
racy and generalization ability. Also, since the number of
4mC is much smaller than non-4mC sites in practical sit-
uations, the data imbalance will be considered in the next
research. At last, we will apply our method to solve other
sequence site prediction problems.

Conclusions
The 4mC site prediction is a typical sequence site classi-
fication problem. The state-of-the-art research work have
made some explorations, but their performance still needs
improvement. For this purpose, we propose to construct
a more effective feature space, integrating five types of
sequence features, and suggest to use a novel learning
algorithm with XGBoost based feature selection scheme.
The results show that the feature selection improves the
performance, and the prediction model outperforms the
other three existing predictors in the independent tests
and the cross-validations.

Methods
Based on the benchmark datasets, this paper proposed
a new sequence feature space and a machine learning
algorithm with feature selection scheme. In the sequence
encoding, five types of sequence features are integrated
to form a 292-dimension feature space, representing both
global and local sequence characteristics. Then a feature
selection scheme is applied, by which feature importance
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Table 3 Cross Validation Result on Benchmark Datasets (Sn, Sp and ACC:%; TP: true positive, FN: false negative, FP: false positive, TN:
true negative)

Datasets Methods Sn Sp ACC MCC TP FN FP TN

iDNA4mC 79.7 77.5 78.6 0.572 1328 316 349 1205

C.elegans 4mCPred 82.5 82.6 82.6 0.652 1282 272 270 1284

4mCPred_SVM 82.4 80.7 81.5 0.631 1280 274 300 1254

this study 84.9 80.4 82.6 0.653 1319 235 305 1249

iDNA4mC 83.3 79.1 81.2 0.625 1474 295 369 1400

D.melanogaster 4mCPred 82.4 82.1 82.2 0.646 1458 311 317 1452

4mCPred_SVM 83.8 82.2 83.0 0.661 1483 286 314 1455

this study 85.4 83.2 84.3 0.686 1510 259 297 1472

iDNA4mC 75.7 76.2 76.0 0.519 1498 480 471 1507

A.thaliana 4mCPred 75.5 78.0 76.8 0.536 1494 484 435 1543

4mCPred_SVM 77.8 79.6 78.7 0.573 1538 440 404 1574

this study 78.3 80.5 79.4 0.589 1549 429 385 1593

iDNA4mC 82.0 77.8 79.9 0.598 318 70 86 302

E.coli 4mCPred 81.9 83.2 82.6 0.655 318 70 65 302

4mCPred_SVM 85.8 80.7 83.3 0.666 333 51 67 321

this study 86.1 82.5 84.3 0.686 334 54 68 320

iDNA4mC 82.2 80.8 81.5 0.630 745 161 174 732

G.subterraneus 4mCPred 81.8 83.7 82.8 0.662 742 164 148 758

4mCPred_SVM 84.0 83.4 83.7 0.674 760 145 150 755

this study 83.6 85.7 84.7 0.694 757 148 129 776

iDNA4mC 82.4 83.8 83.1 0.663 469 100 92 477

G.pickeringii 4mCPred 85.0 81.0 83.0 0.668 484 85 108 461

4mCPred_SVM 86.3 85.8 86.0 0.721 491 78 81 488

this study 86.3 89.1 87.7 0.754 491 78 62 507

score derived from the training process of the XGBoost
machine is taken as the criterion of feature selection. Then
an SVM prediction model is trained under the selected
features and optimized by 10-fold cross-validation.

Benchmark datasets
From the DNA 4mC database MethSMRT, Chen et
al constructed the benchmark databases contain-
ing Caenorhabditis elegans (C.elegans), Drosophila
melanogaster (D.melanogaster), Arabidopsis thaliana
(A.thaliana), Escherichia coli (E.coli), Geoalkalibacter
subterraneus (G.subterraneus) and Geobacter pickeringii
(G.pickeringii) [23]. The benchmark datasets are obtained
from Chen’s work. According to the reference, the 41-
bit 4mC-centred DNA sequences were obtained from
MethSMRT with a Modification QV threshold of 30. The
CD-HIT software was used to remove the redundant pos-
itive samples. The same number of negative samples were
selected randomly to construct a balanced dataset. The
negative samples were also 41-bit cytosine-centered DNA
sequences and were not detected by SMRT. To compare

with the existing predictors, we use the same division
of the datasets for independent tests. The summary of
benchmark datasets is listed in Table 5.

Feature space construction
To visualize the difference between the positive and
negative sequences, the sequence logos of all the six

Table 4 4mC site identificaiton in case studies (TP: True Postive,;
FN: False Negative)

Case Methods Total TP FN

iDNA4mC 26 19 7

dlk-1 4mCPred 26 25 1

4mCPred_SVM 26 20 6

This study 26 24 2

iDNA4mC 137 70 67

DSCAM 4mCPred 137 121 16

4mCPred_SVM 137 122 15

This study 137 126 11
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Table 5 Summary of six benchmark datasets

Species Positive Sample Negative Sample Total

C.elegans 1554 1554 3108

D.melanogaster 1769 1769 3538

A.thaliana 1978 1978 3956

E.coli 388 388 776

G.subterraneus 906 906 1812

G.pickeringii 569 569 1138

species are plotted using the web tool ‘two sample logos’
[39]. See Fig. 5. It is clear that the sequence charac-
teristics are distinct among the six species; especially
positions near the 4mC sites exhibit different patterns
in positive and negative samples. In addition, the adja-
cent nucleotide and spectrum nucleotide across the
entire sequence have specific patterns in different label
groups. Thus an expanded feature space combining global
and local patterns is good to construct accurate mod-
els for all the species. Among the existing methods,
iDNA4mC only use nucleotide chemical property and fre-
quency feature, which cannot extract the local adjacent
nucleotide patterns; in 4mCPred and 4mCPred_SVM, the
features mainly focus on the trinucleotide or dinucleotide
nucleotide patterns, ignoring the spectrum nucleotide
patterns. In this study, the feature space covers five types
of features, one-hot 4-bit binary feature (OHB), sequen-
tial nucleotide frequency (SNF), k-nucleotide frequency

(KNF), k-spectrum nucleotide pair frequency (KSNPF)
and PseDNC. TheOHB and SNF feature possess the infor-
mation of the whole sequence and represent the global
sequential properties, while KNF, KSNPF, and PseDNC
features capture the local sequence patterns.

One-hot binary feature
The one-hot binary feature is the most widely used
sequence representation feature. It converts each of the
nucleotides in the DNA sequence into a 4-bit vector,
which contains only one ‘1’. The length of the OHB feature
is related to the number of nucleotide types and length of
the sequence. Since the DNA sample sequence here is 41-
bit and has four types of nucleotide, the one-hot binary
feature is 164 bits. The encoding rules in this study are as
follows: ‘A’-(1,0,0,0), ‘G’-(0,1,0,0), ‘T’-(0,0,1,0), ‘C’-(0,0,0,1).
From the rule, it is obvious that the OHB feature is sparser
than 2-bit or 3-bit binary features. But, the one-hot binary
feature makes it more reasonable to calculate the impor-
tance sore for each dimension in feature space and to
discover local motifs.

Sequential nucleotide frequency
The sequential nucleotide frequency, also known as
nucleotide density, is the frequency that the correspond-
ing nucleotide occurs before the current position. SNF is
commonly used together with the binary encoding feature
as a global density feature. For an n-bit long sequence, SNF
calculates n values for each position in the sequence and

Fig. 5 Sequence logos for DNA samples in the benchmark datasets
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produces an n-dimensional feature that starts with ‘1’. The
SNF feature di is defined as:

di = 1
|Si|

i∑

j=1
f (sj), f (sj) =

{
1 sj = si
0 sj �= si

(1)

where Si denotes the length of sequence before the cur-
rent position i and si is the nucleotide at position i. For
example, a sequence like ‘AACGTACT’ can be converted
into the SNF feature vector (1, 0.5, 0.33, 0.25, 0.2, 0.5, 0.28,
0.25).

k-nucleotide frequency
The k-nucleotide (k-mer) frequency is a classic concept
in DNA sequence encoding. KNF feature is the frequency
that adjacent k nucleotides occur in the whole sequence.
The length of the KNF feature vector is 4k, determined by
the parameter k. The calculation of KNF is as below:

F (n1n2...nk) = C (n1n2...nk)
S − k + 1

(2)

where n1n2...nk donates the adjacent k nucleotides and
ni ∈ (A, C, G, T). F and C is the feature value and total
count of the adjacent nucleotides, while S is the length
of sequence. When k = 1, the KNF is a vector like
(FA, FC , FG, FT ); when k =2, the KNF of a sequence is like
(FAA, FAC , FAG, FAT , FCA, FCC , FCG, FCT , FGA, FGC ,
FGG, FGT , FTA, FTC , FTG, FTT ) with a dimension of 42 =
16.

k-spectrum nucleotide pair frequency
The KSNPF feature depicts the sequence context by cal-
culating the frequency of k-spaced nucleotide pairs (e.g.,
AXXT is a two-spaced nucleotide pair, and CXXXG
is a three-spaced nucleotide pair). Like the adjacent
nucleotides pair above, the feature dimension of the
KSNPF is 16 for each k. The calculation of this feature is
as follows:

F (n1X...Xn2) = C (n1X...Xn2)
S − k − 1

(3)

where n1X...Xn2 donates the k-spaced nucleotides pair
and ni ∈ (A, C, G, T).

PseDNC
As an essential sequence feature, PseDNC combines
global and local structural properties and has been widely
used in sequence site prediction problems [40]. For a DNA
sequence, the PseDNC feature is a vector:

FPseDNC = [d1, d1, ...d16d16...d16+λ]T (4)

where,

dk =
⎧
⎨

⎩

fk∑16
i=1 fi+w

∑λ
j=1 θj

(1 ≤ k ≤ 16)
wθμ−16∑16

i=1 fi+w
∑λ

j=1 θj
(16 < k ≤ 16 + λ)

(5)

where fk denotes the normalized frequency of two adja-
cent nucleotide pairs; w is the weight factor, and θ is the
correlation factor of j-tier, representing the correlation of
all j-tier from the sequence. The definition of θ is:

θj = 1
L − j − 1

L−j−1∑

i=1
�i,i+j(j = 1, 2, ..., λ; λ < L) (6)

where � is the correlation function and given by:

�i,i+j = 1
μ

μ∑

u=1

[
Pu(RiRi+1) − Pu(RjRj+1)

]2 (7)

where μ is the length of sequence; Pu (RiRi+1) is the
numerical value of the u-th DNA local property for the
adjacent nucleotide pair RiRi+1 at position i. In this
study, PseDNC feature is computed by a python package
‘repDNA’ [41] and the λ value is default to 3. The names
of 38 DNA local properties utilized in the definitions here
are detailed in the supplementary Table S1 of Additional
File 1.

Feature selection scheme
Feature selection can reduce the dimension of feature
space and speed up the model training. A lot of feature
selection strategies have been employed in machine learn-
ing [42]. In particular, a filter feature selection scheme has
been used to improve the prediction performance. The fil-
ter feature selection scheme has two steps: first, F-score
is calculated for each dimension in feature space accord-
ing to the relevance between feature and label; second, a
selection strategy called SFS is adopted to ascertain the
feature subset. In this study, we proposed an embedded
feature selectionmethod also with two steps. However, we
rank features with importance scores produced from the
XGBoost training process [43] and select the top features
with cross-validations.
In our method, XGBoost is the predefined classifier to

analyze the feature importance. XGBoost has been proved
to be an efficient tool in data science. In the training pro-
cess, the XGBoost classifier calculates the feature impor-
tance score for each dimension based on the dimension
location and the split efficiency in the boosting tree. In this
study, XGBoost is implemented with a python package
‘xgboost′ of vision 0.90. The feature importance scores are
obtained through the function ‘get_score′. According to
the calculation method, the feature importance score has
5 types: ‘weight′, ‘gain′, ‘cover′, ‘total_weight′, ‘total_gain′
and here we use the default ‘weight′ importance score.
With the importance scores derived by the XGBoost

classifier, feature dimensions are ranked from the highest
to the lowest. Then the lower-ranked features are removed
from the feature space one by one, and the feature subset
performance is evaluated by 10-fold cross-validation with
a support vectormachine. The feature subset with the best
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performance is taken as the final feature space for 4mC
prediction.

Support vector machine
Support vector machine (SVM) is a popular machine
learning classifier and has been proved to be more effi-
cient than the other algorithms for DNA 4mC prediction
in the state-of-the-art researches [25]. In this study, SVM
is implemented by using the python package ‘scikit −
learn(vision0.22)′ [44]. The kernel function of the SVM
prediction model is set as a radial basis kernel function
(RBF). The hyperparameter C and γ are optimized by a
grid search with cross-validations and the search ranges
are listed below:

{
2−5 ≤ C ≤ 210 step = 2
2−15 ≤ γ ≤ 22 step = 2−1 (8)

With the output of the probability scores, the ROC curve
can be plotted. The threshold of probability score is set as
0.5 to obtain the predicted label. Here, we compare SVM
with other three traditional machine learning methods,
such as Random Forest, Naive Bayes and Neural Network,
and the results are reported in Table S3 of Additional
File 1.

Performance evaluation metrics
To compare with the existing predictors, the evalu-
ation metrics in this study are consistent with the
state-of-the-art methods, including Sensitivity(Sn), Speci-
ficity(Sp), Accuracy(ACC) and Matthews correlation
coefficient(MCC). The definitions of these four metrics
are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn = TP
TP+FN × 100%

Sp = TN
TN+FP × 100

Acc = TP+TN
TP+FN+TN+FP × 100

Mcc = TP×TN−FP×FN√
(TP+FN)(TP+FP)(TN+FN)(TN+FP)

(9)

Sn shows the model capability of identifying positive
samples, while Sp tells the capacity of classifying negative
samples; ACC is the prediction accuracy of all samples;
MCC evaluates the overall performance of a predictor.
In this study, the receiver operating characteristic(ROC)
curve is also used to analyze model performance. The
ROC curve is plotted in a coordinate graph where the x-
axis is the false positive rate(1-Sp) and the y-axis is the
true positive rate(Sn). The area under the curve(AUC)
evaluates the classification performance, and larger AUC
means better performance.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12864-020-07033-8.

Additional file 1: Supplementary tables. Table S1: The 38 physic-chemical
property in PseDNC feature calculation of repDNA package. Table S2: The
top 30 feature dimensions of feature importance score ranking in six
species.

Additional file 2: Feature importance scores. In Additional File 2, the
importance scores for each feature dimension are reported. The feature
scores are listed by the position number in all six species.s

Additional file 3: Case study results. In Additional File 3, the
4mC-contained DNA sequence and the prediction results of four
predictors are reported.
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