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Abstract: Background: Maladaptive neuroplasticity-related learned response in substance use disor-
der (SUD) can be ameliorated using noninvasive brain stimulation (NIBS); however, inter-individual
variability needs to be addressed for clinical translation. Objective: Our first objective was to de-
velop a hypothesis for NIBS for learned response in SUD based on a competing neurobehavioral
decision systems model. The next objective was to develop the theory by conducting a computational
simulation of NIBS of the cortico-cerebello-thalamo-cortical (CCTC) loop in cannabis use disorder
(CUD)-related dysfunctional “cue-reactivity”—a construct closely related to “craving”—that is a
core symptom. Our third objective was to test the feasibility of a neuroimaging-guided rational
NIBS approach in healthy humans. Methods: “Cue-reactivity” can be measured using behavioral
paradigms and portable neuroimaging, including functional near-infrared spectroscopy (fNIRS) and
electroencephalogram (EEG) metrics of sensorimotor gating. Therefore, we conducted a computa-
tional simulation of NIBS, including transcranial direct current stimulation (tDCS) and transcranial
alternating current stimulation (tACS) of the cerebellar cortex and deep cerebellar nuclei (DCN) of
the CCTC loop for its postulated effects on fNIRS and EEG metrics. We also developed a rational
neuroimaging-guided NIBS approach for the cerebellar lobule (VII) and prefrontal cortex based
on a healthy human study. Results: Simulation of cerebellar tDCS induced gamma oscillations in
the cerebral cortex, while transcranial temporal interference stimulation induced a gamma-to-beta
frequency shift. A preliminary healthy human study (N = 10) found that 2 mA cerebellar tDCS
evoked similar oxyhemoglobin (HbO) response in the range of 5 × 10−6 M across the cerebellum
and PFC brain regions (α = 0.01); however, infra-slow (0.01–0.10 Hz) prefrontal cortex HbO-driven
phase–amplitude-coupled (PAC; 4 Hz, ±2 mA (max)) cerebellar tACS evoked HbO levels in the
range of 10−7 M that were statistically different (α = 0.01) across these brain regions. Conclusion:
Our healthy human study showed the feasibility of fNIRS of cerebellum and PFC and closed-loop
fNIRS-driven ctACS at 4 Hz, which may facilitate cerebellar cognitive function via the frontoparietal
network. Future work needs to combine fNIRS with EEG for multi-modal imaging for closed-loop
NIBS during operant conditioning.

Keywords: functional near-infrared spectroscopy; electroencephalogram; cortico-cerebello-thalamo-
cortical loop; transcranial electrical stimulation; transcranial magnetic stimulation

1. Introduction

In a neurobiological framework, the transition from misusing addictive drugs to
substance use disorder (SUD) is increasingly shown to be related to neuroplastic changes
in the structures and functions that promote and sustain SUD, including addiction—the
most severe form of SUD [1]. The onset, development, and maintenance of SUD shows
dysfunction in three main areas of the brain: the basal ganglia, the extended amygdala,
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and the prefrontal cortex [1]. Brain dysfunction can trigger different behavioral aspects
of SUD, including substance-seeking triggered by substance-associated cues, reduced
sensitivity to reward and heightened activation of brain stress systems, and reduced
executive control. Adolescence is a critical “at-risk period” for all addictive drugs, including
alcohol and cannabis, during which neuroplastic changes due to a less potent drug may
facilitate substance-seeking of a more potent addictive drug. The differential nature of
the interactions that occur between substance use and brain structure maturation across
adolescence and into young adulthood has been highlighted in a recent work [2].

Cannabis is the most widely cultivated, trafficked, and abused illicit [3]. In 2018, an es-
timated 192 million people aged 15–64 used cannabis for nonmedical purposes globally [4].
The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated that,
across the globe, there were more than 22.1 million people with cannabis dependence [5].
Moreover, the same study calculated that cannabis dependence could account for 646,000
disability-adjusted life years globally. Significantly, cannabis dependence mainly affects
young adults (20–24 years) and has a significant negative impact on these individuals’
growth and productivity and on the societies and nations to which they belong [4]. In
addition to dependence syndrome, cannabis use is associated with an increased risk of
psychosis [6], cognitive dysfunction, academic problems, and roadside accidents [7]. A
review showed a consistent association between cannabis use and lower educational attain-
ment and increased reported use of other illicit drugs [8]. In the United States, cannabis
use disorder (CUD) is an escalating problem in young adults due to legalization [9], the
National Survey on Drug Use and Health having reported an increased prevalence from
5.1% in 2015 to 5.9% in 2018 in 18–25-year-olds [10].

The psychoactive effects are primarily due to the type 1 cannabinoid receptor (CB1),
the cannabinoid binding protein that is highly expressed in the cerebellar cortex [11]. CB1
is primarily found in the molecular layer of the most abundant synapse type in the cere-
bellum [11] that can shape the spike activity of cerebellar Purkinje cells [12]. Moreover,
granule cell-to-Purkinje cell synaptic transmission can trigger endocannabinoid release [13],
which may be important for information processing by cerebellar molecular layer interneu-
rons [14]. This suggests that endocannabinoids could be essential to neurocognitive aspects
of cerebellar function [11,13,15], and CB1 receptor downregulation in long-term chronic
cannabis use may promote CUD [16]. Accumulating evidence also suggests cerebellar
modulation of reward circuitry and social behavior via direct cerebellar innervation of
the ventral tegmental area (VTA), including dopamine cell bodies (A1) in the VTA [17].
VTA dopamine (DA) signaling in the nucleus accumbens (NAc) and the medial prefrontal
cortex (MPFC) [18] plays a crucial role in motivated behavior and cognition. Cerebellar
neuropathological changes can result in aberrant dopaminergic activity in the NAc and
MPFC [18,19], leading to dysfunctional behavior and cognition. Here, CUD-related cerebel-
lar dysfunction is postulated to have a role in an aberrant dopaminergic activity that can
include reward-related behaviors, information processing, and cognitive control [11,13,15].
In this hypothesis and theory article based on prior methodological developments [20], we
present an application of portable neuroimaging-guided noninvasive brain stimulation of
the cortico-cerebello-thalamo-cortical loop in CUD.

2. Hypothesis 1: Cerebellar Brain Inhibition in a Competing Neurobehavioral
Decision Systems Model

Research on repetitive transcranial magnetic stimulation (rTMS) for the treatment of
substance dependence has shown encouraging results so far, especially concerning reduc-
ing drug cravings and improving cognitive outcomes [21–23]. However, NIBS’s effect is
only transient and fades rapidly after treatment termination [23]. Craving is postulated as
the failure of the normal inhibitory processes mediated by prefrontal cortex (PFC) regions
to control reward processes mediated by the limbic system [24]. Although neuroimaging
studies have implicated diverse PFC regions including dorsolateral prefrontal cortex [25],
the right inferior frontal cortex has been implicated by human lesion mapping [26]. There-
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fore, excitatory rTMS to the executive control network [25] or inhibitory rTMS to the reward
network can be postulated to result in decreased craving. Indeed, the left DLPFC is the
most frequent anatomical target in clinical studies, followed by the right DLPFC [22]. Here,
excitatory rTMS at the left DLPFC (not right DLPFC) has shown activation of the executive
control network to reduce cravings in substance use disorders [27]. Figure 1 shows the
cerebellocortical circuit for the competing neurobehavioral decision systems (CNDS) ap-
proach to planning NIBS intervention, which depends on the delineation of the functional
organization of the prefrontal cortex [28] for portable neuroimaging-guided closed-loop
NIBS [29]. Here, the activation of the executive control network via DLPFC is for the
relative inhibition of the frontal–striatal circuits involved in limbic (amygdala, nucleus
accumbens, ventral pallidum, and related structures) reward. In contrast, activation of
the ventrolateral prefrontal cortex (VLPFC) can facilitate the cognitive control of attention
and memory processing [30]—the ventral attention network. Here, the inferior frontal
gyrus (IFG) in the VLPFC [31] is postulated to be crucial for memory retrieval (IFG pars
orbitalis) [32] and post-retrieval control processes for amplifying inhibition downstream
from the subthalamic nucleus [33] when substance-seeking is triggered by immediate
attentional focus on substance-associated cues [34]. The dysfunctional response inhibition
system for attentional focus on stimuli following substance-associated cues is postulated to
trigger “automatic” goal-directed substance-seeking behavior where distinct neural circuits
are responsible for the acquisition (during drug misuse) and “automatic” performance of
the “learned” behavior (in SUD, addiction). Goal-directed behaviors are driven by brain
structures, including the medial prefrontal and orbitofrontal cortices, hippocampus, and
ventral and dorsomedial striatum, while sensorimotor cortices and the dorsolateral stria-
tum mediate automatized/reflexive behavior. Within this brain network, the dorsomedial
striatum (DMS) receives excitatory inputs from the PFC, whereas the dorsolateral striatum
(DLS) primarily receives inputs from the sensorimotor and premotor cortices. In primates,
the caudate nucleus and the putamen correspond to the DMS and DLS in rodents, where
DLS has been shown to mediate stimulus–response habits [35]. This network mapping
can be related to habitual performance, i.e., when the response is no longer flexible or
adaptive [36]. Animal studies have shown distinct DMS and DLS activity patterns during
the early acquisition stage that become similar during an automatized performance [36].
Extinction learning may enable learning of new contingencies via inhibition of the automa-
tized response that will require facilitation of the inhibitory connections from the PFC to the
subcortical regions to enable cognitive flexibility [37,38]. Here, a cortical–dorsomedial stri-
atal circuit starting from the PFC is responsible for acquiring goal-directed actions, while a
cortical–ventral striatal circuit mediates the performance [35]. Therefore, it is hypothesized
that the response inhibition system can be facilitated by the activation of IFG for proactive
control of attentional focus on stimuli [34,39] during cue-exposure therapy [40]. Then, a
decrease in ventral striatum activity has been shown to correlate with treatment effects [41].

In this hypothesis and theory paper, we review cerebellar NIBS to reduce “craving”—a
core symptom of any substance use disorder; however, defining “craving” is challeng-
ing [22]. Therefore, “cue-reactivity” is used as a closely related construct that can be
measured using behavioral paradigms and imaging metrics (e.g., electroencephalogram,
functional brain imaging, eye-tracking/pupilometry, heart rate) [22]. Besides the medial
prefrontal cortex (MPFC) and cingulate cortex, which may predict relapse across multiple
substances [22], we postulate that the cerebellum may also modulate the allocation of atten-
tional resources [42] to cue stimuli relevant in “cue-reactivity.” Specifically, the default mode
network, based in the ventromedial prefrontal cortex (vmPFC) and posterior cingulate cor-
tex (PCC) [43], may directly modulate “cue-reactivity” in relapse for task-positive networks
for substance-seeking. Whole-brain network studies show that the cerebellum and striatum
are functionally connected with the cortical regions of the default mode network [44],
which need further elucidation. Recent work has found that the frontoparietal network is
disproportionately expanded in the cerebellum compared to the cortex [45], and a recent
meta-analysis showed altered activation of the frontoparietal network, the ventral attention
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network, and the cerebellum during response inhibition tasks using non-addiction-related
stimuli in adults with addiction [46]. Therefore, cerebellar NIBS may facilitate attentive
executive function [42] in the Posnerian model to reduce “cue-reactivity.” Here, portable
imaging metrics, including eye-tracking [47], electroencephalogram (EEG) [48], and func-
tional near-infrared spectroscopy (fNIRS) [49], can provide insights into NIBS effects during
a “cue-reactivity” test that is feasible in point-of-care settings than functional magnetic
resonance imaging (fMRI) [50]. For example, EEG delta power has been postulated to be
linked to increased activity of the dopaminergic brain reward system [51] and increased
craving [52], so reduced EEG delta power can be related to therapeutic benefit.
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Figure 1. Cerebellocortical circuit. The cerebellum sends its output through the superior cerebellar
peduncle, the contralateral red nucleus, and ventral anterior/ventral lateral nucleus of the thalamus
to various cerebral areas, including the motor cortex, the prefrontal cortex, the parietal cortex, and
the temporal cortex. Recent work has found that the frontoparietal network is disproportionately
expanded in the cerebellum compared to the cortex. Transcranial cerebellar stimulation can affect the
integration of sensory and cortical signals at the cerebellar cortex (Purkinje cells) as well as the deep
cerebellar nuclei through which the cerebellum delivers its output to the cerebral cortex. (created
using BioRender.com).

Multi-modal portable fNIRS–EEG joint imaging [53] is postulated to capture the
subject-specific response for dosing NIBS. Here, inhibition of the reward network is postu-
lated to be achieved by cerebellar rTMS [54] via cerebellar innervation of dopamine cell
bodies in the VTA (Carta et al., 2019) [17]. Low-intensity rTMS is proposed to primarily
affect the Purkinje cells in the cerebellum [55] via GABA-mediated inhibition of the deep
cerebellar nuclei (DCN) in the fronto-cerebellar circuit [56]. Here, we augmented the CNDS
theory [57,58] with recent evidence from neuroimaging studies of the fronto-cerebellar
circuit, which interacts with the brain’s default mode network and is relevant in cognitive
functions [19], and showed that cognitive control [59] may be diminished in the addicted
brain along with memory, reward/saliency, and motivation/drive components [60]. Here,
it may be possible to exert a longer-term effect via cerebellar NIBS because of its broader
connections with the memory circuit and its role in habit formation [60]. Animal studies
have shown a cerebellar contribution to extinction learning where the motor memory
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preserved in the cerebellum needs to be inhibited by the forebrain structures via the amyg-
dala complex [61]. Therefore, neuroplastic changes in the cerebellum are postulated to be
crucial for long-term therapeutic effects by reducing cerebellar “addiction” memory (lobule
VIIb [60]). Indeed, a human study showed a detrimental impact of anodal cerebellar tDCS
on the performance and timing of learned motor responses; however, extinction learning
was not affected during the acquisition phase [62]. Here, cerebellar tDCS effects on motor
learning can provide essential insights since motor symptoms can also be a characteristic
of the disorder [63]. Based on these prior works, we suggest lobule VII (including Crus I,
Crus II, and lobule VIIb)- specific cerebellar NIBS [64,65] to facilitate extinction learning
toward substance-related cues in CUD. Here, cerebellar brain inhibition (CBI) is used in
neurophysiological studies to characterize the inhibitory activity of the cerebellar cortex
in the dentato-thalamo-cortical pathway [66]. Therefore, we first investigated the “knee”
in the recruitment of the cerebellar primary motor cortex (M1) connection, or the CBI
recruitment curve, at different intensities of the cerebellar TMS conditioning stimulus based
on computational modeling and published experimental results [67].

3. Theory 1: Computational Modeling and Simulation of Cerebellar Brain
Inhibition Measure

The head model for computational modeling and simulation was created based on
structural magnetic resonance images (MRI) from our prior work on the cerebellar lobule’s
optimal stimulation (CLOS) pipeline (Rezaee and Dutta, 2019) [64]. Figure 2 shows the
neuroimaging-guided NIBS pipeline using a subject-specific head model from the SPM12
segmentation algorithm (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ accessed
on 30 December 2021) in MATLAB (Mathworks Inc., Portola Valley, CA, USA). The CLOS
pipeline can use a realistic volumetric approach to simulate a transcranial electric stim-
ulation (ROAST) pipeline [68] or SimNIBS [69] for finite element analysis of the electric
field for electrode or coil optimization [64,70]. Lobule-specific cerebellar NIBS is crucial,
since human functional neuroimaging has shown segregated fronto-cerebellar circuits [71],
e.g., DLPFC-correlated activity was shown to span cerebellar Crus I/II lobules in its lateral
and ventral extent. In contrast, MPFC-correlated activity spanned the cerebellar Crus
I lobule. Here, Crus I preferentially correlated with MPFC, while Crus II preferentially
correlated with DLPFC. Then, lobule-specific rTMS will require a neuroimaging-guided
individualized approach for the delivery of cerebellar NIBS (details are provided in the
Supplementary Materials based on our prior work [64]). Here, posterior cerebellar hemi-
sphere structures, such as hemispheric lobule VI and Crus I, are significant in addiction [60]
to be targeted with cerebellar NIBS [64].

The left panel of Figure 3 shows the CBI recruitment curve at different intensities of the
cerebellar TMS conditioning stimulus based on our prior work [67]. The conditioning TMS
intensity was reduced in 5% steps below the brainstem motor threshold (BST) up to −25%.
BST was determined by corticospinal tract activation by single-pulse TMS with the double-
cone coil placed over the inion. The left panel of Figure 3 also shows the computed mean
electric field (EF) at Crus II and the dentate nucleus (DN), normalized by the maximum,
at various conditioning TMS intensities (−5%, −10%, −15%, −20%, −25% BST). A “knee”
was noticed around −15% BST when the CBI recruitment curve slope became flatter for
further increase in the conditioning TMS intensity (i.e., a change point). This is postulated
to be due to the stimulation of the DN (which is excitatory, shown by a blue marker in
Figure 3) in addition to the Purkinje cells (which are inhibitory, shown by a red marker in
Figure 3), resulting in a slower increase in CBI with increasing conditioning TMS intensity.
The right panel shows the computed mean electric field (V/m) at Crus II and DN using
CLOS [64], where the horizontal line denotes the DN mean electric field (V/m) at −15%
BST, which is postulated to be the electric field (EF) threshold for DN activation. Here, all
the mean EF (V/m) values at Crus II, which resulted in CBI (see left panel of Figure 3),
were higher than the EF threshold for DN activation.

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Figure 3. (Left) panel shows the change in cerebellar brain inhibition (CBI) from a neurophysiological
study and change in normalized (by maximum) electric field strength at Crus II and dentate nuclei
(DN) with the change in the intensity of the transcranial magnetic stimulation (TMS) as a percentage
less than the brain stem threshold (BST). (Right) panel shows the electric field strength (V/m) at
Crus II and dentate nuclei (DN) with the change in the intensity of the TMS as a percentage less
than the BST. It is postulated that −15% less than the BST (dashed line in the right panel) is the TMS
intensity at which the DN begin to be activated by the TMS (as represented by the change in the slope
described by the dashed and dash–dot lines in the left panel).

Motor-evoked potentials (MEPs) cannot be generated at the non-motor areas, so
lobule-specific cerebellar NIBS can be combined with portable fNIRS–EEG joint imag-
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ing [20,53,72,73] to identify individual NIBS dose–response relationships (as well as non-
responders) (Rezaee et al., 2020b) [74]. In a feasibility study [74], we have shown that the
combination of fNIRS and EEG would allow for noninvasive and simultaneous assessment
of cerebral response to bilateral deep ctDCS of the dentate nucleus and cerebellar lobules
VII–IX. Here, ctDCS was optimized for targeting the dentate nucleus [75] that stimulated
the anterior and posterior lobes of the cerebellum, including cerebellar hemispheric lob-
ules Crus I–Crus II and the dentate nucleus, which was postulated to modulate cerebrum
activity in a different way to ctDCS of the posterior lobes of the cerebellum consisting of
the hemispheric lobules VIIb–IX. The inset in Figure 1 shows the cerebellocortical circuit
where cerebellar NIBS can be targeted not only at the cerebellar cortex (including Purkinje
cells, which integrate sensory and cortical information [76] but also at the dentate nuclei,
through which the cerebellum delivers its vast amount of output to the cerebral cortex [77].

4. Hypothesis 2: Cannabis Use-Related Dysrhythmia in the Cerebellocortical Circuit
and Psychotic Disorder

Recent studies have shown thalamocortical dysrhythmia in patients with schizophre-
nia spectrum disorder and individuals at high clinical risk for psychosis [78], which may be
related to cannabis use in vulnerable individuals [79]. It is hypothesized that ameliorating
maladaptive neuroplasticity in the cerebellum using NIBS will be crucial in CUD, since
brain-wide AKT1 and FGFR1 gene expressions show hotspots in the cerebellum, as shown
in Figure 4 (from https://neurosynth.org/ accessed on 30 December 2021), which makes it
relevant for progression to psychotic disorder, especially with genetic predisposition [52].
In fact, the AKT1 genotype has been shown to influence the risk of psychosis, especially
in young cannabis users [80]. Additionally, an altered function of fibroblast growth factor
receptor (FGFR) signaling can be associated [81] where FGFR uses the endocannabinoid
signaling system during neurodevelopment [82]. FGF7 and FGF22 have been shown to dif-
ferentially promote the formation of inhibitory or excitatory presynaptic terminals [83] that
may play a role in E/I balance [84]. FGFR1 possesses mechanisms to activate the AKT sig-
naling pathway, which is relevant in the neurodevelopment of schizophrenia [85]. Protein
kinase AKT1’s role in dopamine neurotransmission has been implicated in schizophre-
nia and psychosis [86]. FGF21 has been found to regulate sweet and alcohol preference
correlated with reductions in dopamine concentrations in the nucleus accumbens, which
coordinates reward behavior [87]. Interestingly, excitation/inhibition (E/I) balance is dis-
rupted in schizophrenia [84], also based on a ‘phase zero’ brain organoid study [88], which
can affect the neurodevelopment of the prefrontal cortex [89] (and cerebellum [84]), leading
to propensity for substance abuse [90] in adolescence. In the cerebellum, the only output
from the cerebellar cortex is represented by the inhibitory GABAergic Purkinje cells [91],
while CB1 receptors are mainly expressed in the presynaptic terminals of granule cell
molecular layer interneurons and climbing fibers that synapse onto Purkinje cells. CB1
receptor activity is required for long-term plasticity at parallel fiber–Purkinje cell synapses
relevant for cerebellar learning. CB2 receptors in Purkinje cells may mainly participate
in pathophysiological responses to exogenous cannabinoid compounds that can inhibit
GABA receptor-mediated currents, potentially causing cerebellar dysfunction [92]. This
will reduce the inhibitory tone in the cerebellum that can be investigated based on the
effects on the primary motor cortex, i.e., CBI, which can be impaired in CUD [93] and
schizophrenia [63].

Abnormal cerebellar volume also reflects genetic risk of addiction [60] where the
E/I balance in the cerebellum during neurodevelopment may be facilitated with NIBS.
Then, in CUD, it is postulated that PC modulation of DCN may get dysfunctional, which
can be related to increased risk of psychosis and schizophrenia with familial/genetic risk
factors [6,94,95])—a positive feedback cycle. For example, increased CB1 expression [11,13]
in the molecular layer [11] can shape the spike activity of Purkinje cells [12]. Additionally,
a decrease in Purkinje cell density [96] can lead to dysrhythmia in the cortico-cerebello-
thalamo-cortical (CCTC) loop, and increasing residual Purkinje cell excitability with NIBS

https://neurosynth.org/
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may ameliorate that dysrhythmia. Here, dysrhythmia in the CCTC loop as an extension
to thalamocortical dysrhythmia [97] is postulated in CUD. In this hypothesis and theory
paper, we further hypothesize that cerebellar NIBS can facilitate the amelioration of CUD-
related dysrhythmia in the CCTC loop as an adjuvant treatment to operant conditioning
(shown feasible in maladaptive motor control [98]) in a visual cue-reactivity paradigm
using a virtual reality (VR) interface. Specifically, transcranial electrical stimulation (tES),
a NIBS modality, is translatable to low-cost (<$150) mobile devices, allowing remote
delivery of cerebellar NIBS in conjunction with VR-based cognitive operant conditioning
in a low-resource home-based setting [99]. Therefore, we have established methods for
portable neuroimaging-guided noninvasive brain stimulation that is presented for rational
dosing of cerebellar NIBS [20] in CUD based on the insights gained from neuroimaging
research on the cerebellum and addiction [60]. In this hypothesis and theory paper, we
also investigated the transcranial temporal interference stimulation (tTIS) approach [100]
using computational modeling and simulation of a CCTC loop model [101], which is
presented next.
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5. Theory 2: Computational Modeling and Simulation of tTIS-Based Amelioration of
Dysrhythmia in the Cortico-Cerebello-Thalamo-Cortical Loop

Prior work [102] has identified a gamma-to-beta frequency shift as a marker of sensory
gating that was found to be deficient in schizophrenia. Additionally, previous results have
shown that gamma and beta frequency oscillations occur in the neocortex in response
to sensory stimuli over various modalities [103]. Therefore, portable neuroimaging of
the cerebellar tES response with combined fNIRS–EEG can guide tES dosing based on
general linear modeling of dose–response relationships [74]. Here, we computationally
investigated a tTIS approach [100] for cerebellar tES using a CCTC loop model [101] that

https://neurosynth.org/
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took the average firing rates of the Purkinje cells (PCs) and deep cerebellar neurons (DCNs)
to be 63 Hz and 56.6 Hz, respectively. For computational modeling of thalamocortical basal
ganglia with the cerebellum [104], we selected f2–f1 = 63 Hz for the amplitude modulation
of DCN by tTIS [105] (see Figure 5; further details are included in the Supplementary
Materials). The thalamocortical basal ganglia model with the cerebellum [104] integrated
two thalamic populations, the excitatory ventralis intermedius (Vim) nucleus and the in-
hibitory reticular nucleus (nRT), with an excitatory population of the deep cerebellar nuclei
(DCN), an excitatory population representing the subthalamic nucleus (STN), and two
inhibitory populations representing the external part of the globus pallidus (GPe) and the
internal part of the globus pallidus (GPi), as shown in Figure 5. The model consisted of
seven first-order coupled differential equations that simulated the gamma-band oscillations
(>30 Hz) for a constant external input to the DCN (details in the Supplementary Materials).
Here, a gamma-to-beta frequency shift can be considered a marker of sensory gating [103]
that is postulated to be underpinned by cerebellum–hippocampal interactions [106,107].
Cerebellum–hippocampal connections have been found via the ventrolateral and laterodor-
sal thalamus in mice [108] and need further investigation in humans. However, for our
computational simulation based on a published model [104], we postulated an effect of
cerebellar tES on gamma-to-beta frequency shift as a marker of sensory gating triggered by
substance-associated cues in VR, where interactions between sensory and motor cortices
can be modulated by the cerebellum [109]. While ctDCS of the DCN induced gamma oscil-
lations (top panel of Figure 6), the bottom panel of Figure 6 shows that tTIS of the DCN at
63 Hz amplitude modulation could lead to gamma-to-beta frequency shifts. Here, gamma
frequency oscillations at the cortex can be generated with constant input (i.e., tDCS [74,75])
to the DCN, while tTIS of DCN at 63 Hz beats frequency (burst stimulation) led to beta
frequency oscillations at the cortex (computational modeling details are included in the
Supplementary Materials).
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Figure 6. Computational modeling of thalamocortical basal ganglia with the cerebellum [104]. Top
plot shows the cortical gamma frequency oscillations (in dark blue color) with a constant external
input (transcranial direct current stimulation) to the deep cerebellar nuclei. The top plot also shows
the oscillations in other components of thalamocortical basal ganglia model with the cerebellum—
the excitatory ventralis intermedius (Vim) nucleus and the inhibitory reticular nucleus (nRT), an
excitatory population of the deep cerebellar nuclei (DCN), an excitatory population representing
the subthalamic nucleus (STN), and two inhibitory populations representing the external part of
the globus pallidus (GPe) and the internal part of the globus pallidus (GPi). Bottom plot shows the
transition of the cortical oscillations to beta frequency with tTIS of DCN at a 63 Hz.

6. Hypothesis 3: Portable Neuroimaging-Guided NIBS to Reduce
Inter-Individual Variability

Inter-individual differences in cerebellar NIBS effects on cerebrum activity are pos-
tulated to be measured by fNIRS–EEG joint imaging covering the prefrontal cortex, the
primary motor cortex, and the supplementary motor area based on our prior work on
healthy humans and stroke survivors [20]. Here, fMRI studies [71] have shown distinct
PFC regions functionally connected to the multiple areas of the human cerebellum, e.g.,
Crus I with the MPFC, Crus II with the DLPFC. We propose a novel approach using latent
variables from fNIRS and EEG [74] using a general linear model (GLM) [110] to study
the effects of ctDCS. This was based on our prior work that showed that ctDCS electrode
montages could be optimized to stimulate different parts or lobules of the cerebellum [64].



Brain Sci. 2022, 12, 445 11 of 23

Specifically, we found [74] that bilateral ctDCS of combined anterior and posterior lobes of
the cerebellum, including cerebellar hemispheric lobules Crus I–Crus II and the dentate
nucleus, resulted in increased canonical scores of oxyhemoglobin (O2Hb) concentration
changes as well as an increased canonical EEG score from the pre-ctDCS baseline at the
contralateral (to the anode) PFC. In contrast, bilateral ctDCS of the hemispheric lobules
VIIb–IX resulted in a small decrease in the canonical scores of O2Hb concentration changes
and EEG from the pre-ctDCS baseline at the contralateral (to the anode) PFC from the
pre-ctDCS baseline. Here, distinct areas of the PFC are functionally connected to lobule
VII of the cerebellum [48], i.e., Crus I with the MPFC, Crus II with the DLPFC, ventral
VIIB with the anterior prefrontal cortex (APFC). However, lesion heterogeneity led to inter-
individual variability in the post-stroke fNIRS–EEG response [74], which accounted for the
interindividual differences in ctDCS effects. Addressing heterogeneity is also important in
CUD, since inter-individual genetic variations influence cerebellar volume [60] that affects
electric field distribution [70].

7. Theory 3: Portable Neuroimaging-Guided Subject-Specific NIBS Application

It is crucial to individualize NIBS treatment where an open-source realistic volumetric
approach to simulate a transcranial electric stimulation (ROAST) pipeline [68] can provide
the electrode montage with ‘maximal focality’ optimization criteria to target response
inhibition brain activation with a 4 × 1 high-definition (HD) tDCS montage [111] (see
Figure 7). In our prior work, we have optimized bipolar ctDCS montages for lower-
limb motor representations and dentate nuclei in stroke survivors [75]. Here, motor
representations are dual, whereas non-motor representations (attentional/executive and
default-mode) are triadic in each cerebellar cortical hemisphere (lobules VI–Crus I; lobules
Crus II–VIIB; lobules IX–X) [112]. Three functional domains were found in the cerebellar
cortex, i.e., the functional gradients in the cerebellum, where the Crus I–II intersection is the
intersection of the first and second default-mode representations [112]. Viral tracing studies
in nonhuman primates have shown Crus I–II to have projections only to the prefrontal
cortex [113]. Furthermore, functional MRI studies have shown Crus I connectivity with
the MPFC and Crus II connectivity with the DLPFC [71]. Therefore, in this computational
modeling and simulation study, we optimized bilateral electrode montage for non-motor
representation in the cerebellar hemisphere, namely, the lobules VI–CrusI/II–VIIb, using a
CLOS pipeline [64].
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Figure 8 shows the results from CLOS optimization for maximum electric field strength
at the non-motor representation, right lobules VI–CrusI/II–VIIb [64] based on a spatially
unbiased atlas template (SUIT) of the human cerebellum [114] (see Figure 8a). Figure 8b
shows that the optimized electric field strength in SUIT is focused (>0.2151 V/m) at the
CrusI/II–VIIb lobules, where 2 mA at OI2 and −2 mA at E145 were found to be optimal
(see Figure 8c). Then, optimized cerebellar lobular and subsectional electric field strength
showed that the deep nuclei received comparable electric field strength to the cerebellar
cortex (see Figure 8d). Figure 8e shows the feasibility of the fNIRS HbO-based brain
activation measure at the VLPFC, including the inferior frontal gyrus [29], which was
targeted with 4 × 1 HD-tDCS, as shown in Figure 8f, to facilitate ventral attentional control
processes during VR-based extinction learning by amplifying downstream inhibition from
the subthalamic nucleus for sensory gating [115].
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Figure 8. (a) A spatially unbiased atlas template (SUIT) of the human cerebellum and the ct-
DCS/ctACS targets shown with orange arrows for the cerebellar lobule’s optimal stimulation (CLOS).
(b) The electric field (V/m) strength in SUIT results from CLOS. (c) Electrode location results from
CLOS for 2 mA ctDCS/ctACS. (d) The cerebellar lobular and subsectional electric field (V/m) results
from CLOS. (e) fNIRS HbO (in M) brain activation at the inferior frontal gyrus, which can be targeted
with HD-tDCS. (f) HD-tDCS montage to facilitate downstream inhibition from the subthalamic
nucleus when substance-associated cues trigger attention.
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8. Hypothesis 4: Portable Neuroimaging for Online Monitoring and Driving
Cerebellar NIBS

Our computational modeling [116] showed the feasibility of evaluating the acute
effects during the first 150 s of primary motor cortex tDCS in healthy humans using a
fNIRS-based measure of blood volume. Additionally, in prior work [74], we found a linear
relationship between electric field distribution and the HbO response using GLM analysis of
variance (ANOVA). Therefore, we postulated that fNIRS of the cerebellum and the cerebrum
can be used to monitor the effects of NIBS on the cortico-cerebello-thalamo-cortical loop.
This was based on the SPM12 segmented head model and freely available Monte Carlo
photon transport software (tMCimg) in the AtlasViewer [117] that were used to compute
the fNIRS sensitivity profile [72]. Here, we aim for online monitoring and driving cerebellar
NIBS to address dysfunctional sensory/sensorimotor gating, including prepulse inhibition,
found to be deficient in cases of chronic cannabis use [118] and schizophrenia [119]. Our
proposed fNIRS application for driving cerebellar NIBS was based on Marek et al. [45],
who found that cerebellar blood oxygen level-dependent imaging signals temporally lag in
the cortex, where infra-slow activity (0.01–0.10 Hz) and delta band (0.5–4 Hz) activity are
propagated in opposite directions between the cerebellum and cerebral cortex. Therefore,
tES with transcranial direct current stimulation (tDCS) and transcranial alternating current
stimulation (tACS) were investigated for neuromodulation of the cerebellum and cerebral
cortex to establish the following closed-loop NIBS theory.

9. Theory 4: fNIRS-Driven Cerebellar NIBS

We conducted a feasibility test of fNIRS in young and healthy subjects to drive
(phase–amplitude-coupled) cerebellar tACS (ctACS) at 4 Hz using endogenous infra-slow
(0.01–0.10 Hz) PFC oxyhemoglobin concentration changes (HbO). Figure 9 shows the fNIRS
sensitivity profile for the frontal cortex (left panel of Figure 9) and cerebellum (right panel
of Figure 9) for a specific optode montage (confirmed with fOLD [120]. We found from our
MRI-based head model in AtlasViewer that fNIRS sensitivity was mainly at Crus I–II of
the cerebellum. Here, we postulated immediate NIBS effects on blood volume (measured
by fNIRS) [116]. Furthermore, we postulated the feasibility of the prefrontal cortex (PFC)
phase–amplitude-coupled closed-loop cerebellar tACS, as shown in Figure 10. Here, fNIRS-
driven 4 Hz ctACS at ±2 mA (max) is expected to facilitate cerebellar brain inhibition [121]
better than 2 mA cerebellar tDCS (ctDCS), that was evaluated based on fNIRS imaging [74].
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Figure 9. (Left) fNIRS sensitivity profile, where sources were positioned at AF7, AF3, AF8, AF4, and
the detector was placed at the FPz. (Right) fNIRS sensitivity profile, where sources were positioned
at PO7, PO9, PO8, and PO10, and the detector was placed at the Iz.
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Figure 10. Illustration of the PFC phase–amplitude-coupled cerebellar tACS approach. Phase of the
infra-slow (0.01–0.10 Hz) oxyhemoglobin (O2Hb) oscillations at the left PFC driving the amplitude of
the 4 Hz cerebellar tACS optimized for targeting the lobules VI–CrusI/II–VIIb.

Ten young and healthy right-handed subjects (8 males and 2 females, 21–25 years of
age) volunteered for this study [122]. The session consisted of a block design of 2.5 min
baseline, ctDCS/ctACS for a period of 5 min, and 2.5 min post-intervention measures.
In this healthy human study, fNIRS was conducted using NIRSPORT 2 (NIRx Medical
Technologies, Los Angeles, CA, USA). Our optode montage consisted of 12 long-separation
(~3.5 cm) sources, 3 long-separation detectors (LD), and 3 short-separation (<1 cm) detectors
(SD) that covered the PFC (4S, 1LD, 1SD), sensorimotor cortex (4S, 1LD, 1SD), and CER (4S,
1LD, 1SD). This long-separation optode montage was selected to match our low-channel
count montage (Octamon+, Artinis Medical Systems, Netherlands) used in the stroke study
where fNIRS sources were positioned at AF7, AF3, AF8, AF4, CP4, FC4, CP3, and FC3,
and the two detectors were placed at the Cz and FPz with a source–detector distance
of around 35 mm [74]. For CER fNIRS in this healthy human study, our fNIRS sources
were positioned at PO7, PO9, PO8, and PO10, and the detector was placed at Iz, based
on the fNIRS Optodes’ Location Decider (fOLD) [120]. Here, tES applied low currents
around 2 mA that generated cortical electric fields less than 1 V/m [123], which has shown
entrainment effects in the case of tACS [124]. We propose combined fNIRS and EEG to
monitor and dose tES, including entrainment effects, based on prior works [53,72–74].

We used ctDCS/ctACS electrode montage for non-motor representation, i.e., lobules
VI–CrusI/II–VIIb, using EEG locations [75]. The amplitude of the 4 Hz ctACS with opti-
mized montage was driven by the phase of the infra-slow (0.01–0.10 Hz) HbO oscillations
at the left PFC, found using the Hilbert transform for the analytic signal using a 60 s sliding
window (see Figure 10). The maximum tACS amplitude was set at ±2 mA in the Starstim
8 tES device (Neuroelectrics). We compared ctACS and ctDCS effects based on fNIRS
oxyhemoglobin concentration changes (HbO) at the prefrontal cortex (PFC) and cerebellum
(CER). The session consisted of a block design of 3 min rest and a ctDCS/ctACS duration of
5 min, which was chosen based on prior works that showed significant increases in cortical
excitability [125,126] and cerebral blood flow changes [127]. Our PFC optode montage
covered MPFC and partly the DLPFC and VLPFC, as shown in the left panel of Figure 10.
This is important, since the Crus I–II intersection is the intersection of the first and the
second default-mode representations [112].

The fNIRS data processing was conducted using the open-source HOMER3 tool-
box [128] in MATLAB (Mathworks Inc., USA). The raw optical intensity signal was first
converted into optical density (function: hmrR_Intensity2OD), then motion artifact detec-
tion and correction were conducted using a hybrid method based on the spline interpolation
method and Savitzky–Golay filtering (function: hmrR_MotionCorrectSplineSG) [129] using
default parameters. Then, bandpass filtering was conducted (function: hmrR_BandpassFilt:
Bandpass_Filter_OpticalDensity) within 0.01–0.1 Hz, followed by conversion to oxyhe-
moglobin (HbO) and deoxyhemoglobin (HHb) concentration (function: hmrR_OD2Conc).
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Finally, the hemodynamic response function (HRF) was computed using the general linear
model (GLM) (function: hmrR_GLM_new) with short separation regression performed
with the nearest short separation channel. GLM determined the HRF during the stimu-
lation period from the resting state using ordinary least squares [130] with a consecutive
sequence of Gaussian functions (stdev = 0.5, step = 0.5). Figure 11a shows the box-plot
of post-intervention HbO change, where 2 mA ctDCS evoked similar HbO change across
brain regions (α = 0.01). However, ±2 mA (max) phase–amplitude-coupled ctACS evoked
HbO was lower but still statistically different (α = 0.01) across those brain regions, as shown
in Figure 11b. Moreover, increasing the fNIRS-driven ctACS current to ±4 mA increased
HbO response in the 10−6 M range, which may affect the deep cerebellar nuclei (DCN)
due to higher electric field strength. The HbO responses are shown in the Supplementary
Materials.
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10. Discussion

Our hypothesis and theory paper has presented computational modeling and simu-
lation results for portable neuroimaging-guided NIBS, including cerebellar tTIS in CUD.
Computational modeling of the cerebrocerebellar connections of the afferent pathway
(cerebello-thalamo-cortical) and the efferent pathway (cortico-ponto-cerebellar), as shown
in Figure 1, is described in the Supplementary Materials. Here, the dysfunctional bidirec-
tional interactions between DLPFC and the cerebellum can lead to dysrhythmia, affecting
sensory gating which may be ameliorated by cerebellar tES, as shown by the simulation
in Figure 6. Therefore, tTIS needs to be explored in future studies for specificity in tar-
geting the cerebellar cortex versus the DCN (see Figure 1), where NIBS intervention can
be important in the early stages of CUD which disrupts gamma band brain activity [131].
Here, reduced gamma waves in CUD is postulated to play a causal role in the develop-
ment of psychosis [6] in certain genotypes with expression in the cerebellum, as shown
in Figure 4. The neurobiological substrate can be ∆(9)-tetrahydrocannabinol (THC) [131],
the main psychoactive constituent of cannabis, where chronic administration was found
to produce significant reductions in prepulse inhibition (PPI) that resemble PPI patterns
in schizophrenia [132]. However, cannabidiol in cannabis can have opposite effects on
PPI [133], which may be related to the antagonist of the human CB2 receptor [134,135]).
In cannabis use-related psychotic disorders, we postulate a role of dysrhythmia of the
CCTC loop (as an extension of thalamocortical dysrhythmia [97]) in sensorimotor gating,
including negative and positive symptoms due to dysfunction in the cerebellar cortex
circuit. Here, we postulate that cerebellar NIBS may ameliorate maladaptive plasticity as
an adjuvant treatment to cue-reactivity training, where cerebellar maladaptive plasticity
may promote cannabis use-related psychotic disorders in vulnerable individuals [79].
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A key feature of psychotic disorders is the involvement of subcortical dopaminergic
dysfunction [136]. Here, fundamental invasive neuroimaging studies in animal models can
confirm the change of the cerebellar brain connection using cerebellar TMS-evoked dose
responses for the dopaminergic circuits based on a multi-modal approach [137–142] by in-
corporating extracellular electrophysiology and fast-scan cyclic voltammetry (FSCV) [143]
(tip diameter, ~1µm). Simultaneous multi-modal monitoring would incorporate (i) a local
view (<100 µm) of rapid changes in dopamine (DA) concentration (≤10 ms), which will
exert rTMS effects on VTA DA regulation in the MPFC and nucleus accumbens (NAc)
subregions, and (ii) simultaneous electrophysiological data at the the VTA, NAc, and MPFC
over multiple spatial scales spanning individual neuronal spiking, population ensemble
activity, and local field potential (LFP) oscillations [18]. However, TMS-based neuromodu-
lation approaches are not amenable to home-based settings, so tES should be investigated
as an adjuvant treatment, cerebellar tDCS of Purkinje cells and DCN having been shown to
be feasible [75]. In addition, cerebellar tACS has been shown to be feasible in modulating
motor behavior [144]; however, evidence for addiction medicine is limited [22]. Recently,
tES for deep brain stimulation has been shown to be feasible using temporally interfering
electric fields [105], so we performed a proof-of-concept computational simulation study
(results presented in Figure 6). Furthermore, NIBS of VLPFC, including IFG (see Figure 8),
can facilitate proactive attentional control [34,39] during cue-exposure therapy [40], which
needs to be evaluated in a future clinical study. Our hypothesis and theory paper has
presented experimental methodological approaches from prior works [20] for application
in the study of CUD in order to investigate neuroimaging-guided tES that can amelio-
rate CUD-related maladaptive plasticity and related dysfunctional cortical inhibition [93].
Furthermore, NIBS of the cerebellum in conjunction with the VLPFC (including IFG) is
proposed as an adjuvant treatment during cue-exposure therapy for operant conditioning
that may ameliorate chemical dependency and habit formation [145].

In this hypothesis and theory paper, we have also presented feasibility testing of
fNIRS of the cerebellum and PFC in healthy humans. We found HbO response to ctDCS
and ctACS using an optimized montage (targeting lobules VI–CrusI/II–VIIb). Specifically,
we found that 2 mA ctDCS evoked similar (α = 0.01) HbO responses across cerebellum
and PFC brain regions that may be related to the modulation of Purkinje cells as well as
deep cerebellar nuclei (see Figure 8d or Figure 11) [70]. Here, tDCS can have effects on
different cell populations that together will generate the effect, which will be difficult to
delineate [67] without computational modeling. Then, ctACS at the theta band frequency
can increase the inhibitory tone that the cerebellum exerts over the cerebrum due to
postulated selective recruitment of cerebellar granule cells and Golgi cells [121] which
may have better specificity than tDCS. This modulation of the parallel fiber–Purkinje cell
synapse is postulated to lead to the modulation of HbO activity at the PFC that can then
drive the ctACS via a phase–amplitude coupling in our PFC phase–amplitude-coupled
ctACS approach (see Figure 10). Here, adequate lag in the phase–amplitude coupling may
be necessary for causal elucidation of the cerebellum and PFC effects from the HbO time
series. However, we did not implement subject-specific lag for fNIRS-driven ctACS in this
preliminary study. Nevertheless, we found HbO change at the left PFC to be lower than at
the right PFC (see Figure 11b) during fNIRS-driven ctACS (with the phase of the infra-slow
HbO oscillations at the left PFC) that also resulted in a higher HbO change in the right than
in the left cerebellum that needs further investigation in conjunction with EEG measure of
prefrontal gamma activity. One limitation of our preliminary healthy human study is the
small sample size, which can undermine the generalizability of the outcomes.

11. Conclusions

In this hypothesis and theory paper, we developed a NIBS approach to ameliorate
learned ‘habitual’ stimulus–response association in SUD based on a competing neurobehav-
ioral decision systems model. Here, an adjunct treatment with NIBS along with VR-based
operant conditioning, e.g., cue exposure therapy, can address the dysfunctional response
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inhibition system. Specifically, the ventrolateral corticolimbic pathways may be more
relevant than fronto-parietal global attention network from PFC to the parietal lobule to
control attentional focus on stimuli during cue exposure therapy that can be facilitated
with IFG tDCS. Then, results from computational modeling highlighted the facilitatory
effects of deep cerebellar tDCS on the cortical gamma frequency oscillations that may be
reduced in individuals with early psychosis symptoms in CUD. Then, transcranial temporal
interference stimulation of deep cerebellar nuclei at 63 Hz can facilitate gamma-to-beta fre-
quency shift during VR-based operant conditioning where gamma-to-beta frequency shift
is a marker of sensory gating which may be reduced in individuals with early psychosis
symptoms in CUD. Here, positive modulation of the endogenous brain oscillations during
VR-based operant conditioning can be facilitated with closed-loop NIBS. Our preliminary
healthy human study showed the feasibility of fNIRS-driven ctACS where driving 4Hz
ctACS with the phase of the infra-slow HbO oscillations at the left PFC resulted in an
increased HbO change at the right PFC and cerebellum than the left PFC and cerebellum.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12040445/s1. Figure S1: An illustrative picture of tran-
scranial temporal interference stimulation (tTIS) approach where two tACS sources with frequencies
fl = l kHz and f2 = 1.063 kHz are combined for amplitude modulation at 0.063 kHz at the deep
cerebellar nuclei (DCN). Figure S2: Leadfield vector for PO9h at the 30 cerebellar lobules in the X,
Y, and Z directions. Figure S3: Leadfield vector for POI Oh at the 30 cerebellar lobules in the X, Y,
and Z directions. Figure S4: Leadfield vector for Exx8 at the 30 cerebellar lobules in the X, Y, and
Z directions. Figure S5: Leadfield vector for Exx7 at the 30 cerebellar lobules in the X, Y, and Z
directions.
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