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Abstract The high-resolution scanning devices developed in recent decades provide biomedical volume
datasets that support the study of molecular structure and drug design. Isosurface analysis is an important
tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such
as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing
with complex structures, while deep learning-based approaches have high memory and computation costs
when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-
driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from
volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize
octree-based convolution to design a variational autoencoder model that learns the latent representations of
the shape. Finally, these latent representations are used for low-dimensional isosurface representation and
shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity
analysis, shape retrieval of real-world data, and comparison with existing methods.
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1 Introduction

The development of high-precision 3D scanning technology has enabled humans to observe objects at an
extremely fine scale over the past decade. For instance, the structure of apoferritin, obtained by cryogenic
electron microscopy (cryo-EM) at a 1.25 Å-resolution, provided unprecedented structural details (Yip et al.
2020). As of May 2021, the Electron Microscopy Data Bank (EMDB) (Lawson et al. 2016) provides more
than 15,000 electron microscopy data with different resolutions, offering rich resources for molecular
structure studies. These achievements are useful for biological data analysis, drug development, and disease
detection. Based on the meta-information on the data, researchers can explore and search the dataset (Liu
et al. 2019), but this is limited by the completeness of that information, whereas searching based on the
sample structure does not have this constraint and can help researchers to retrieve relevant data accurately.
Analysis and comprehension of the 3D shapes embedded in the scanned objects (e.g., classification and
retrieval) naturally becomes a key task.

Generating isosurfaces from scanning data (i.e., biomedical volume data) for subsequent 3D shape visual
analysis are a common workflow, and the key technique is to construct an effective representation of the
isosurfaces. Castillo-Barnes et al. (2020) leveraged morphological measurement-based isosurface analysis
to find new biomarkers in scanning data that related to Parkinson’s Disease. El-Baz et al. (2011) introduced
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the spherical harmonic approach to analyze 3D surfaces in computed tomography (CT) data for early
diagnosis of malignant lung nodules. These handcrafted features work well when the shape structure is
relatively simple, however, as the resolution continues to increase and the structure of the scanned object
becomes finer, it is increasingly challenging to manually design features that accurately characterize the
target structure.

To address the shortcomings of manual feature design, various data-driven approaches inspired by the
field of computer vision use 3D convolutional neural networks (3D CNNs) to automatically extract 3D
shape features. For instance, Han et al. (2018) proposed FlowNet, which represents a stream surface with a
binary volume and then automatically generates its feature vector with an autoencoder model, to assist with
stream surface selection. However, since 3D CNN operations have high memory costs (e.g., 11GB of
graphics memory in FlowNet can only handle data up to 643), most approaches require downsampling or
slicing to pre-process the data, which sacrifices the benefits of high-resolution volume data.

In this paper, to address the above issues, we propose IsoExplorer, an isosurface-driven framework that
facilitates 3D shape analysis of biomedical volume data. Specifically, we aim to automatically extract
probabilistic latent features (i.e., latent representation) for 3D shapes embedded in biomedical volume data.
The proposed framework comprises three steps: (1) To reduce the memory and computational cost, we first
separate the different isosurfaces into 3D shapes based on the connection relation. (2) We introduce the
octree-based CNN (O-CNN) (Wang et al. 2017a) to further improve the efficiency of the convolution
operations, and design a variational autoencoder model which has stochastics to learn the latent represen-
tation of each 3D shape in the probabilistic latent space. (3) We introduce low-dimensional isosurface
representation for isosurface similarity analysis, and locality-sensitive hashing (LSH) to store the latent
representations of 3D shapes for fast shape retrieval. To validate the effectiveness and usefulness of
IsoExplorer, we evaluate it with real-world cypo-EM, photon microscopy, and CT scanning data, and
compare it with other methods.

The main contributions of this paper are as follows.

• We design an isosurface-driven shape extraction approach based on isosurface generation and maximum
connected component partitioning, to explore the explicit shapes in biomedical volume data.

• We introduce a variational autoencoder model to learn the latent representation for each shape in
biomedical volume data and further utilize it for low-dimensional isosurface representation and shape
similarity measurement.

• We validate the effectiveness of IsoExplorer by performing isosurface similarity analysis and similar
shape retrieval within one volume/between different biomedical volumes using multiple datasets and
comparing with existing methods.

2 Related work

In this section, we draw on prior work on 3D shape analysis and deep learning for volume visualization.

2.1 3D shape analysis

3D shape analysis is widely used for various tasks, e.g., object recognition, shape retrieval, and comparative
analysis. The key technique to support these tasks is the shape description method, which produces a feature
vector for a given shape while maintaining invariance to translation, scaling, and rotation (Loncaric 1998).
There are two main kinds of shapes, i.e., line segments and surfaces, and the methods for generating feature
vectors for them can be classified as feature-based and data-driven approaches.

Feature-based approaches mainly leverage the topological and statistical information hidden in 3D
shapes to design a series of features to generate feature vectors. For 3D streamlines, Li et al. (2014)
designed a spatially sensitive bag-of-features for streamline similarity computation. Wang et al. (2017b)
further allowed users to define features of interest to find streamline segments with similar patterns. For 3D
surfaces, Shinagawa et al. (1991) proposed a manifold-based method that utilized a Reeb graph to encode a
shape. Zaharescu et al. (2009) proposed the 3D scale-invariant feature transform (SIFT) method to generate
local features. In addition, Tabia et al. (2014) introduced covariance matrices that can exploit the different
features from different modalities. For 3D scalar fields without explicit shapes, Thomas and Natarajan
(2011) utilized a contour tree to find symmetric structure. Bruckner and Möller (2010) quantified the
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similarity between isosurfaces from an information-theoretic perspective by mutual information. Further-
more, Wang et al. (2015) introduced 3D SIFT to facilitate user-defined pattern matching in 3D multi-field
scalar data.

Data-driven approaches benefit from machine learning techniques, and their primary aim is to analyze
large amounts of data to extract meaningful 3D shape information. Rostami et al. (2019) conducted a survey
on data-driven 3D shape descriptors, and classified them into shallow (e.g., clustering-based and opti-
mization-based) and deep (e.g., CNN-based and autoencoder-based) shapes from an algorithm perspective.
Gao et al. (2016) introduced the rotation-invariant mesh difference (RIMD) representation, which encodes
vertex positions and local rotations simultaneously, and further leveraged it for optimization-based surface
reconstruction. Xie et al. (2015) proposed DeepShape, a discriminative autoencoder model that imposed the
Fisher discrimination criterion, to generate high-level shape representations for shape retrieval. Han et al.
(2019) proposed a permutation voxelization strategy to convert 3D shapes into 3D voxels and learn their
hierarchical local features. Instead of extracting features directly from the 3D shape itself, Bai et al. (2017)
considered that users usually observe a 3D shape from different 2D viewpoints, and trained a CNN-based
model from projected images of the 3D shape to perform retrieval.

Among these methods, most of the state-of-the-art methods are based on deep learning (Rostami et al.
2019). As it is helpful to learn a task-independent latent representation of a shape for subsequent analysis,
we expect that these representations can accurately capture the information embedded in various complex
shapes, which is consistent with the goal of the autoencoder model, which minimizes reconstruction errors.
Thus, we design a variational autoencoder model, which is more robust to noise in the data and has more
structured latent space than the autoencoder model, to learn the latent representation of the shapes extracted
from volume data.

2.2 Deep learning for volume visualization

The burgeoning deep learning techniques provide powerful tools for visualization and visual analytics of
volume data. Typically, volume data can be visualized by direct volume rendering (DVR) or indirect
volume rendering (IVR). The former generates results based on ray-casting (Kruger and Westermann 2003)
and user-defined transfer functions, while the latter renders geometric primitives generated by fitting the
values to volume data (e.g., the Marching Cube algorithm (Lorensen and Cline 1987) for isosurface
generation).

Deep learning techniques have been applied to both DVR and IVR. For DVR, deep learning can exploit
the learned features to assist in parameter setting in the visualization. For example, Engel and Ropinski
(2021) proposed deep volumetric ambient occlusion (DVAO) that combines global unstructured information
and 3D CNN operations to compute volumetric ambient occlusion and thereby enhance the quality of
interactive DVR. Berger et al. (2018) leveraged a generative adversarial network (GAN) to learn a view-
invariant latent space and encode how transfer functions affected the rendered results to assist users in
transfer function design. Yang et al. (2019) proposed a CNN-based neural network model to evaluate the
score of a specific rendered image for viewpoint recommendation in DVR. He et al. (2019) designed
InSituNet with a GAN architecture to assist in exploring the parameter space in in-situ visualization. For
IVR, deep learning can help analyze geometric primitives obtained from volume data in multiple per-
spectives. For example, Cheng et al. (2018) proposed a CNN-based model to derive characteristic feature
vectors for voxels and then utilize them to generate a binarized volume for the Marching Cube algorithm.
Han et al. (2018) utilized a 3D CNN-based autoencoder model to learn dense representations of stream
surfaces and lines, and then used projection to assist with selection and clustering analysis. Weiss et al.
(2019) leveraged a frame-recurrent neural network to introduce super-resolution techniques to IVR,
reducing the amount of data samples required to render isosurfaces.

In addition, deep learning can be used for visual analysis between multiple volumes. Porter et al. (2019)
proposed an autoencoder model to learn a representation for each volume in a time-varying multivariate
dataset and then leveraged them for representative time step selection. Han et al. (2021) designed a GAN to
enable exploration of multivariate time-varying data in variable selection and translation analysis. Tkachev
et al. (2021) introduced a prediction model for spatiotemporal volume data, which can facilitate irregular
process detection and time step selection. These works incorporate deep learning effectively into the visual
analytics workflow of volume data. However, most of them can only handle data smaller than 1283 due to
GPU memory limitations, and thus require downsampling or slicing of the data. This leads to underuti-
lization of the information provided in volume data and a potential inability to accurately capture the 3D
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shapes embedded in the data. Therefore, we introduce maximum connected component partitioning in
isosurface generation and the O-CNN (Wang et al. 2017a) operations in the variational autoencoder model
to increase the size of volume data the model could handle within the GPU memory constraints.

3 IsoExplorer

A volume generated by scanning usually contains one or more objects, and each object comprises one or
more components. For example, brain data may contain multiple similar neurons, and each neuron can be
further subdivided into an axon and cell body. For any given biomedical volume, we aim to mine the hidden
shape and construct a suitable representation to encode its shape information. To achieve this, we design
IsoExplorer with three steps to assist in the analysis of 3D shapes hidden in volume data. As shown in Fig.1,
we first explore various shapes from the volume by isosurface-driven shape extraction. Then, we design a
variational autoencoder model to automatically learn how to generate a latent representation for each shape.
Due to self-supervised learning, no costly manual labeling is required for this model training process.
Finally, the low-dimensional isosurface representation is computed for isosurface similarity analysis and
locality-sensitive hashing is introduced to speed up the shape-retrieval process.

3.1 Isosurface-driven shape extraction

Isosurface generation is an important approach widely used for CT or cypo-EM data analysis, which allows
for the generation of anatomical structures from volume data. Given a threshold value, the isosurface
generation algorithm will extract the points with equal values from volume data and construct a triangular
mesh. However, the generated isosurface may contain multiple objects (e.g., multiple neurons), which do
not facilitate individual shape analysis and similar shape analysis between different volume data (e.g.,
comparing morphological differences between neurons with different functions). Moreover, the optimal
structures of different objects may be generated by different thresholds. Therefore, we design the first step of

Fig. 1 IsoExplorer workflow consisting of three steps: it first partitions the isosurfaces extracted from the volume data into
individual 3D shapes, then creates a latent representation for each shape, and finally leverages the representations to conduct
shape analysis
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IsoExplorer to extract 3D shapes from volume data by combining isosurface generation and maximum
connected component partitioning.

As shown in Fig. 2, given a volume, we first rescale the value of each voxel to [0, 255] and utilize the
Marching Cube algorithm (Lorensen and Cline 1987), which is widely used for isosurface generation, to
uniformly sample 255 isosurfaces. In addition, in view of the fact that each isosurface may contain more
than one object that may contain multiple disconnected components, we could naturally partition each
isosurface by its internal connectivity relations. That is, we treat spatially disconnected components of an
isosurface as distinct shapes by means of maximum connected component partitioning. For example, the
input volume shown in Fig. 2 contains one object, and Isosurface #1 is all internally connected, resulting in
a component that allows analysis of the object as a whole, while Isosurface #200 is further divided into four
components to facilitate local analysis.

Through this step, we obtain a set of 3D shapes from the volume data, and the space covered by the
shapes is usually smaller than the size of the input volume, which mitigates memory consumption. Due to
random errors in the scanning process, multiple tiny fragmented shapes may be generated, which affects
subsequent analysis. To solve this problem, shapes can be filtered out by setting a threshold for the number
of points. In our experiments, depending on the experimental datasets, we filter out shapes that contain less
than 1500 points.

3.2 Shape representation learning

3D feature descriptors are the key to shape analysis, they remain invariant to rotations and translations for
3D shapes and insensitive to minor variations. Previously handcrafted feature descriptors usually cannot
perform well on multiple datasets and tasks, and in recent years, state-of-the-art results have been achieved
by data-driven automatic feature descriptor extraction methods. Xiao et al. (2020) investigated these data-
driven approaches and classified them into groups such as voxel-based, image-based, and surface-based. The
image-based methods take depth images or a set of images as input and inevitably lose geometric details,
while voxel-based methods that take a volumetric grid as input have high computation costs and cannot
handle high-resolution data. These methods are not suitable for dealing with 3D shapes obtained from high-
resolution volume data. Surface-based methods take points or meshes (discretized forms of 3D shape) as
input, which can reduce unnecessary computation while achieving better results. Considering the existence
of random noise in the scanning process, the triangular mesh extracted from raw volume may have incorrect
connection relations in local regions. Therefore, we turn the 3D shapes into points and express the con-
nection relations between them implicitly in their properties, i.e., the normal vectors of points calculated

Fig. 2 Isosurface-driven shape extraction. Isosurfaces are generated from a volume, and each isosurface is further partitioned
into different components based on the connectivity
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from the face normal vectors of surrounding triangles. Concretely, we design the second step of IsoExplorer
to automatically learn the latent representation of 3D shapes by using points containing normal vector
attributes as the input.

3.2.1 Network architecture

Our design for 3D shape representation learning in IsoExplorer is inspired by the variational autoencoder
model (Kingma and Welling 2013). This model can be viewed as a variant of the autoencoder model
(Bengio 2009), in that its encoding distribution is regularized during training to ensure that its latent space
follows a priori distribution (e.g., Gaussian distribution). While the input in the autoencoder model is
encoded to a point in the latent space, the variational autoencoder model encodes the input to a distribution
over the latent space, which can handle noise well and prevent overfitting. To enhance the scalability of
IsoExplorer, we introduce the O-CNN operation (Wang et al. 2017a) in the network, which improves the
efficiency of convolution and reduces memory consumption.

O-CNN operations Traditional 3D CNN operations evolved from CNN operations widely used on
images, but cannot handle large volume data well due to the exponential increase in computational cost from
pixels to voxels. To make 3D CNN available for high-resolution data, Wang et al. (2017a) proposed
O-CNN, which leverages octrees to represent the 3D shapes and designs a series of operations on octrees
(e.g., 3D convolution, deconvolution, and pooling). This allows various 3D CNN structures to be efficiently
executed on the GPU with limited memory and computation costs.

In O-CNN, the input points are organized by an octree, which divides the input points into eight regions
according to their spatial locations. Each node contains a label and a property: the label indicates whether it
contains a point or not, and the property is the average normal of its contained points. As the depth of the
tree grows, it is divided more finely to describe the model more accurately, which also leads to greater
computational and memory consumption. In our experiments, we set the depth of the octree to 6 depending
on the experimental datasets.

Network structure As shown in Fig. 3, the variational autoencoder comprises two modules: (1) the
encoder takes points organized by an octree as input and encodes it into a distribution on the probabilistic
latent space, (2) the decoder takes the latent representation as input and reconstructs the points. We design
the convolutional block (Conv Block) and deconvolutional block (Deconv Block) to capture information
from the input data. In addition, inspired by He et al. (2016), we incorporate the residual block (Res Block)
with skip connection to increase the learning ability of the network and prevent degradation. In all the
internal layers, we use batch normalization (BN) (Ioffe and Szegedy 2015) that can reduce internal covariate
shift and rectified linear unit (Relu) (Nair and Hinton 2010) as the activation function to avoid gradient
vanishing and explosion. The variational autoencoder consists of the Conv block, Deconv block, and Res
block.

Fig. 3 Architecture of the variational autoencoder model in IsoExplorer. The model takes the points in the 3D shape as input
and proceeds through a series of convolution blocks, residual blocks and deconvolution blocks to finally reconstruct the input
points
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The encoder contains a Conv block with a kernel size of 3, four combinations of a Conv block with a
kernel size of 2 and a stride of 2 and a Res block, as well as two O-CNN layers with a kernel size of 1 to
output a mean vector and a deviation vector. The mean vector is generated without an activation function,
while the deviation vector uses the sigmoid as the activation function. We set the dimensionality L of both
vectors to 2048.

With the reparameterization method, we obtain the input needed for the decoder from the mean and
deviation vectors of the encoder output. The decoder contains four combinations of a Deconv block, with a
kernel size of 2 and a stride of 2, and a Res block, as well as a Res Block to output the reconstructed points
organized by an octree.

Specifically, the input 3D shape S is represented by a set of points
fðx1; y1; z1; nx1; ny1; nz1Þ; . . .; ðxs; ys; zs; nxs; nys; nzsÞg, where ðxi; yi; zi; nxi; nyi; nziÞ stands for the position
and normal of the i-th point, and s is the number of points. Then the O-CNN will construct an octree to
organize them for the variational autoencoder model. The encoder generates a mean vector M and a
deviation vector V. By sampling � from a normal distribution that obeys N(0, 1), we obtain the latent
representation Z ¼ M þ � � V. Then, the decoder takes this as input and reconstructs the input points
organized by an octree.

3.2.2 Loss functions

The following two kinds of losses are included in our model.
Reconstruction loss To allow the variational autoencoder to learn correctly how to construct the latent

representation of the input, the reconstruction loss is mainly calculated from the position and normal
information. For the position information, as the input and reconstructed points are organized by an octree,
octree nodes are labeled 1 if they contain points and 0 if they do not. We use softmax loss with two classes at
each level of the octree. For the normal information, since the properties of the nodes in the octree are the
mean of normals of the contained points, we use regression loss at each level.

Kullback–Leibler divergence (KLD) lossKullback and Leibler (1951). In the variational autoencoder, the
encoder is designed to map the input to the latent representation Z and we expect it to obey the standard
normal distribution of N(0, 1). To achieve this, we calculate the KLD loss from the mean vector M and the
deviation vector V generated by the encoder.

These two types of losses control the model from two aspects. The model is able to generate more
accurate reconstruction results when the reconstruction loss has a greater weighting, and to generate a more
structured latent space when the KLD loss has a greater weighting. Inspired by Higgins et al. (2017), in our
experiment, we set the weight of KLD loss to 0.1.

3.3 3D shape analysis

The learned 3D shape latent representations allow us to easily perform further analysis of shapes. One
scenario is users searching the virus database for shapes similar to those obtained from a current sample. In
this paper, we focus on isosurface similarity analysis and shape retrieval. Specifically, after the shape
representation learning, the 3D shape obtained by extracted from the volume dataset can be represented as a
set of latent representations fZ1; . . .;Zng, where Zi is the normalized latent representation of the i-th shape
and n is the number of shapes in the volume data.

Isosurface similarity analysis can provide users with an overall understanding of volume data (Tao et al.
2019). For volume data containing multiple complex shapes, directly learning the low-dimensional repre-
sentation of the entire isosurface requires a strong learning capability of the model, which results in huge
computational and memory requirements. Since shapes are obtained by splitting from isosurfaces, the low-
dimensional isosurface representation can be naturally obtained by combining the latent representation of
decomposed shapes. Because larger shapes should have a greater importance than smaller shapes, we
compute the low-dimensional isosurface representation by weighted summation. Then, we adopt cosine
similarity, which is commonly used in representation similarity measures, as the similarity between
isosurfaces.

Mathematically, the low-dimensional representation Ij of the j-th isosurface can be computed as:

Ij ¼
XN

i¼1

Zj
i � p

j
i

pjmax
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where Zj
i and pji is the latent representation and the number of points of the i-th shapes in the j-th isosurface,

and pjmax is the maximum number of points of all the shapes in the j-th isosurface.
Shape retrieval The key to shape retrieval is to measure the difference between shapes to recommend

those that are similar to the retrieval target. We use cosine similarity to calculate the similarity between two
shapes. However, shape retrieval in multiple volumes is usually not limited to a single volume dataset, but
also involves shape retrieval across volume datasets. As the number of 3D shapes grows from the number of
volumes contained in the dataset, it becomes unacceptably computationally expensive to compute simi-
larities for all shapes each time shape retrieval is performed. To speed up the efficiency of shape retrieval
and enhance scalability, we further introduce LSH (Leskovec et al. 2020) to help manage the latent rep-
resentations. It compresses latent representations into signatures and then calculates the hashing values.
Similar data will have similar hashing values, which greatly reduces computational effort.

Concretely, for cosine similarity, LSH first divides the space into two regions multiple times, inde-
pendently, using randomly selected hyperplanes. It then generates the corresponding signatures based on
where the latent representation of shapes is located in each division. Then, it hashes signatures into buckets,
with similar shapes in the same buckets.

4 Evaluation

In this section, we first introduce the dataset used to evaluate IsoExplorer and the training process of the
variational autoencoder, then describe the application of IsoExplorer in isosurface similarity analysis and
shape retrieval.

4.1 Dataset and network training

Dataset We use real-world CT scanning, photon microscopy, and cryo-EM datasets to evaluate
IsoExplorer. As listed in Table 1, these datasets are CT-Chest, Neurons (Klacansky 2017), SARS-CoV
Spike (Kirchdoerfer et al. 2018), MERS-CoV Spike (Park et al. 2019), H-CoV Spike (Park et al. 2019), PD-
CoV Spike (Shang et al. 2018), SARS-CoV-2 (Yao et al. 2020), SARS-CoV-2 Spike up (Melero et al.
2020), SARS-CoV-2 Spike down 1 (Yao et al. 2020), and SARS-CoV-2 Spike down 2 (Gobeil et al. 2021).
To simulate researchers searching in a shape database, we refer to the shapes extracted from SARS-CoV
Spike, MERS-CoV Spike, H-CoV Spike, PD-CoV Spike, and SARS-CoV-2 datasets jointly as CoVs
datasets. The last three datasets (SARS-CoV-2 Spike up, SARS-CoV-2 Spike down 1, and SARS-CoV-2
Spike down 2) are used to mimic the new scanning data obtained by searchers in the CoVs dataset. Thus, we
generate 10 shapes from each of the last three datasets for evaluation based on sampling around the
threshold values recommended by the authors.

Network training The variational autoencoder is implemented with TensorFlow, and the training process
is performed on the CT-Chest, Neurons, and CoVs datasets. We divide the first two datasets into training and
testing sets by a ratio of 7:3, while for the CoVs dataset, we first divide the sub-datasets it contains by the
same ratio, and then combine them into training and testing sets. We set the size of each batch to 16 and use
the stochastic gradient descent method. To avoid overfitting, for each input shape, we perform a random
rotation for data augmentation. In addition, we initialize the learning rate to 0.1 and apply a weight decay of

Table 1 Dataset overview

Dataset Dimension #Shapes

CT-Chest 384 � 384 � 240 3164
Neurons (Klacansky 2017) 1024 � 1024 � 314 8948
SARS-CoV Spike (Kirchdoerfer et al. 2018) 360 � 360 � 360 1171
MERS-CoV Spike (Park et al. 2019) 400 � 400 � 400 5159
H-CoV Spike (Park et al. 2019) 280 � 280 � 280 3149
PD-CoV Spike (Shang et al. 2018) 256 � 256 � 256 2868
SARS-CoV-2 (Yao et al. 2020) 512 � 512 � 512 3071
SARS-CoV-2 Spike up (Melero et al. 2020) 432 � 432 � 432 10
SARS-CoV-2 Spike down 1 (Yao et al. 2020) 256 � 256 � 256 10
SARS-CoV-2 Spike down 2 (Gobeil et al. 2021) 300 � 300 � 300 10
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0.005 to avoid overfitting. The network is trained on a NVIDIA 2080 Ti GPU with 50 epochs, each taking
about 15 min.

The reconstruction accuracies of the CT-Chest, Neurons and CoVs datasets on the training set are 0.87,
0.93 and 0.88, respectively, demonstrating that the variational autoencoder has the capability to learn a
suitable representation for shapes, while their reconstruction accuracies on the testing set are 0.85, 0.91 and
0.87, respectively, which indicates that the variational autoencoder is not overfitting. This shows that the
proposed model is able to capture the position and normal information of the input shape well and generate
appropriate latent representations for them, which is the basis for the subsequent analysis.

4.2 Application I: Isosurface similarity analysis

Similarity analysis of isosurfaces can help users uncover clustering patterns between isosurfaces and select
appropriate threshold values. We demonstrate the application of IsoExplorer for isosurface analysis with the
CT-Chest dataset. The dataset was generated by CT scanning of the human chest, as shown in Fig. 4a, which
illustrates that the human chest is principally composed of the skin, lungs, ribs, scapulae, and vertebrae.

By computing the similarity between pairs of different isosurfaces, we obtain a similarity matrix. In the
heat map shown in Fig. 4b, the darker color represents the higher degree of similarity, and one can see that
there are four main clusters represented in all the isosurfaces. In conjunction with the image rendered by the
ray-casting algorithm, it is evident that the color of the skin and the lungs are similar, in red. This
corresponds to the cluster formed by the isosurface, with a threshold less than 100, and the cluster could be
further divided into two highly similar internal sub-clusters with a threshold of 45, which corresponds to the
skin and lungs. Similarly, the ribs, spine, and scapulae included in the CT-Chest dataset are captured by
other clusters, whose correspondence is displayed in Fig. 4. These findings indicate that the low-dimen-
sional isosurface representation computed from the latent representations of shapes correctly encodes the
information it contains, and could provide users with a general overview of the data and aid in the design of
transfer functions.

4.3 Application II: Shape retrieval

Shape retrieval enables users to find similar shapes to the target of interest in volume data, which mainly
involves retrieval between the same or different volume data.

4.3.1 Shape retrieval within the same volume data

Shape retrieval within an individual data is effective for finding shapes similar to the desired ones within the
current dataset, and the search process incidentally provides analysis of morphology and occurrence

Fig. 4 Isosurface similarity analysis of the CT-Chest dataset. a The raw data visualized by the ray-casting algorithm.
b Isosurface similarity matrix visualized by the heat map
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patterns. In this case, we perform shape retrieval within the Neurons dataset, which contains a series of
marmoset primary visual cortical pyramidal neurons labeled by green fluorescent protein, imaged under
photon microscopy.

In Fig. 5a, the shape marked in red is the shape of interest (i.e., the target shape), and we list the three
shapes that are most similar to it in descending order of similarity. All the retrieval results are similar to the
target shape and are scattered on the isosurfaces with isovalues of 100, 136, and 176. This is a common
occurrence in the analysis of isosurfaces in volume data, i.e., each shape contained in the volume data may
have its own unique optimal isosurface threshold. Furthermore, Fig. 5b visualizes the entire dataset and
plots the position of these shapes. This reflects the characteristic of this dataset that neurons are all
composed of neuronal bodies and axons, which are mostly similar, and different shapes of neurons are
distinguished by their body size and axon length. Using shape retrieval in the same volume data, researchers
can automatically find results similar to the target shape from different isosurfaces, instead of manually
traversing the isosurfaces.

4.3.2 Shape retrieval between volume data

Shape retrieval between volume data can help users discover similar shapes embedded in various volume
data to gain insights. We use the CoVs dataset that contains data on various coronaviruses as a candidate set,
and then use the shapes generated from the SARS-CoV-2 Spike up and two SARS-CoV-2 Spike down

Fig. 5 Shape retrieval in the Neurons dataset. a The target shape with the retrieval results and b their positions in the dataset
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datasets as targets to retrieve similar shapes from the candidate set. All datasets were obtained by cryo-EM
scanning. SARS-CoV-2 is a novel coronavirus that resulted in a global pandemic beginning in 2020. As
shown in Fig. 6a, its molecular architecture consists of four main components, namely spikes, a membrane,
an envelope and nucleocapsid proteins (Yao et al. 2020). The spikes play an important role in membrane
fusion, and in the prefusion state, they can be divided into up and down conformations depending on the
orientation. Note that the target shapes extracted from the SARS-CoV-2 Spike up and two SARS-CoV-2
Spike down datasets does not appear in the training or testing process of the model.

For each of these three datasets, we generate a series of target shapes by sampling 10 isosurfaces around
the recommended values, and Fig. 6b presents the retrieval results generated by our method and by FlowNet
(Han et al. 2018) for the target shapes generated with the recommended values. FlowNet represents the
input shape as a binary volume, and subsequently uses a 3D CNN-based autoencoder to construct a
representation vector of dimension 1024. Due to limited GPU memory, we downsample the input shape and
generate a volume with a size of 513 as the input to FlowNet. By comparing the Top-1 search results, we
find that both IsoExplorer and FlowNet could correctly find similar target shapes from the CoVs dataset.
However, when comparing the Top-3 search results, FlowNet seems to confuse the two conformations of the
spike of SARS-CoV-2 as well as the spikes of other coronaviruses. This is mainly due to the need for
downsampling, which possibly ignores the local differences that occur in volume data and limits the
representational capabilities of the FlowNet. In addition, we perform a quantitative evaluation based on the
labels of the retrieved results and the target shape. In these three datasets, the averaged Top-5 accuracy of
IsoExplorer and FlowNet are 84% and 57%, respectively. Compared to traditional knowledge-driven 3D
descriptors, which focus on specific tasks (e.g., contour tree for symmetry analysis Thomas and Natarajan
2011, 3D SIFT for pattern matching Wang et al. 2015), data-driven 3D descriptors are more generic for
different tasks and require no or little knowledge about data (Rostami et al. 2019). During retrieval between
different volume data, users can establish connections between shapes scanned at different resolutions and
search the shape database for target shapes as keywords to find similar shapes.

In addition, during shape retrieval, the growth in the number of shapes will increase the retrieval time
because of the increase in the size and number of volume data. In contrast to linear search, LSH has a

Fig. 6 Shape retrieval the CoVs dataset. a The molecular architecture of SARA-CoV-2. b The target shapes and corresponding
retrieval results of IsoExplorer and FlowNet
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construction step before initial use, which takes 1.73s and 0.22s on the Neurons and CoVs datasets,
respectively. Table 2 illustrates the average time needed for 100 queries using LSH and linear search for
different numbers of retrieved shapes in the Neurons and CoVs datasets. We can find that the construction
time for LSH is only comparable to the time needed for a few linear searches, and after construction is
completed, LSH takes very little time compared to a linear search that requires scanning all the data each
time. This permits fast retrieval in a database containing numerous shapes.

4.4 Discussion

Through isosurface-driven shape extraction, we obtain various shapes hidden in volume datasets, which are
then captured by a variational autoencoder and encoded into latent representation for subsequent shape
analysis. We validate the effectiveness and usefulness of IsoExplorer by performing isosurface similarity
analysis and shape retrieval on a real dataset. With isosurface similarity analysis, users can obtain an
overview of volume data. With shape retrieval, users can construct connections between different isosur-
faces of the same resolution, or different volume data with different resolutions to find similar shapes. The
scalability, generalizability, and limitations of IsoExplorer are discussed below.

Scalability CNNs on volumes generally have a large number of parameters due to the dense convolution
operation. Thus, previous CNN-based methods cannot take the original volumes as the input due to limited
GPU memory. They have to downsample the high-resolution volumes into low-resolution volumes or crop
parts of the volumes for the training dataset. For example, FlowNet can only process volumes smaller than
643. Benefiting from the maximum connected component partitioning and the sparse convolution operation
of O-CNN, the proposed IsoExplorer can directly handle the original volumes to generate the representa-
tions for connected components of each isosurface. As a result, the scalability of IsoExplorer on volumes is
significantly enhanced, depending on the vertex number of connected components. In our experiments, the
largest connected component contains 1,354k points in 384 � 384 � 240 and consumes about 10.5GB of
GPU memory at a batch size of 4. In addition, geometry simplification techniques can be used to reduce the
number of points in connected components to further improve the scalability of IsoExplorer. From the data
scale perspective, the number of shapes used in our evaluation ranges from 3k to 15k, and the variational
autoencoder does not overfit under random rotation as data augmentation. For data containing few shapes,
less layers of variational autoencoder may be needed to reduce its complexity to prevent overfitting.
Meanwhile, we plan to further explore capturing more data from EMDB for training to simulate more
realistic research scenarios in the future.

Generalizability IsoExplorer based on self-supervised learning does not require additional labeling and
has been demonstrated on biomedical data via isosurface similarity analysis and shape retrieval. Domain
experts are usually interested in the boundaries of features in biomedical data, such as bones and cell walls.
These boundaries are represented well by the isosurfaces, which can be reconstructed from biomedical data.
For volumes in other domains, if the isosurface has a clear semantic meaning and a relatively complete
isosurface can be reconstructed from the volume, IsoExplorer can be also used to learn semantic repre-
sentations of connected components for feature analysis. In addition, for analytical tasks that are sensitive to
the relative position between individual components, it is also possible to learn low-dimensional repre-
sentations of isosurfaces without information loss by using the entire isosurface as input to the variational
autoencoder model. Note that this may significantly increase the size of the input and the required GPU
memory.

Limitations In the shape extraction stage, we apply uniform sampling to generate isosurfaces, which may
not have adequately accounted for certain intervals in the dataset. For data with known parameters, prior

Table 2 Comparison of per query time for linear search and LSH

#Retrieved shapes LSH time (sec) Linear search time (sec)

CoVs Neurons CoVs Neurons

1 0.013 0.0001 0.624 0.352
5 0.013 0.0001 0.613 0.360
10 0.013 0.0001 0.611 0.357
20 0.014 0.0001 0.613 0.352
40 0.014 0.0001 0.613 0.348
80 0.014 0.0001 0.612 0.353
160 0.014 0.0001 0.601 0.350
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knowledge can be incorporated during sampling of the isosurface to increase the number of shapes of
interest. Also, numerous tiny shapes may be generated in the noisy volume data, which increases the
difficulty of extracting the complete isosurfaces. In our implementation, we filter out shapes containing less
than 1500 points, and this is a hyperparameter that may cause shapes of interest to domain experts to be
incorrectly screened out. Thus, preprocessing operations (e.g., smoothing) are necessary when analyzing
noisy volumes. In addition, in the shape representation learning stage, we encode their connectivity relations
implicitly in the node normal vectors at input, rather than using the connectivity relations directly, an
approach which may introduce information loss and thus desensitize the model to tiny local changes. This
could be corrected by using a mesh-based model to consider the connectivity relationship.

5 Conclusion and future work

In this paper, we present IsoExplorer to help analyzing features of biomedical volume data by their shapes.
It partitions the isosurfaces generated from volume data into different shapes according to the connection
relationship and then encodes their geometric information with a variational autoencoder model for sub-
sequent analysis. IsoExplorer uses LSH to store the latent representations of shapes, providing users with a
quick way to retrieve them. We verify the effectiveness and usefulness of IsoExplorer by isosurface
similarity analysis and similar shape retrieval on real-world datasets and by comparison with other methods.

For future work, we plan to address the limitations of the current IsoExplorer and expand its application
in volume data shape analysis.
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