
Heliyon 10 (2024) e28874

Available online 29 March 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Differences of individual gray matter networks between MCI 
patients who converted to AD within 3 Years and nonconverters 

Baiwan Zhou , Yueqi Zhao , Xiaojia Wu * 

Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China   

A R T I C L E  I N F O   

Keywords: 
Mild cognitive impairment 
Conversion 
Neuroimaging 
Connectome 
Structural magnetic resonance imaging 
Gradient 
Topology 
Support vector machine 

A B S T R A C T   

Objective: Here we aimed to explore the differences in individual gray matter (GM) networks at 
baseline in mild cognitive impairment patients who converted to Alzheimer’s disease (AD) within 
3 years (MCI-C) and nonconverters (MCI-NC). 
Materials and methods: Data from 461 MCI patients (180 MCI-C and 281 MCI-NC) were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For each subject, a GM network 
was constructed using 3D-T1 imaging and the Kullback–Leibler divergence method. Gradient and 
topological analyses of individual GM networks were performed, and partial correlations were 
calculated to evaluate relationships among network properties, cognitive function, and apolipo
protein E (APOE) €4 alleles. Subsequently, a support vector machine (SVM) model was con
structed to discriminate the MCI-C and MCI-NC patients at baseline. 
Results: The gradient analysis revealed that the principal gradient score distribution was more 
compressed in the MCI-C group than in the MCI-NC group, with scores for the left lingual gyrus, 
right fusiform gyrus and left middle temporal gyrus being increased in the MCI-C group (p < 0.05, 
FDR corrected). The topological analysis showed significant differences in nodal efficiency in four 
nodes between the two groups. Furthermore, the regional gradient scores or nodal efficiency were 
found to be significantly related to the neuropsychological test scores, and the left middle tem
poral gyrus gradient scores were positively associated with the number of APOE €4 alleles (r =
0.192, p = 0.002). Ultimately, the SVM model achieved a balanced accuracy of 79.4% in clas
sifying MCI-C and MCI-NC patients (p < 0.001). 
Conclusion: The whole-brain GM network hierarchy in the MCI-C group was more compressed 
than that in the MCI-NC group, suggesting more serious cognitive impairments in the MCI-C 
group. The left middle temporal gyrus gradient scores were related to both cognitive function 
and APOE €4 alleles, thus serving as potential biomarkers distinguishing MCI-C from MCI-NC at 
baseline.   

1. Introduction 

Alzheimer’s disease (AD) is a progressive disease that imposes a heavy economic burden on the health care system [1]. Mild 
cognitive impairment (MCI) is considered the prodromal stage of AD and is characterized by cognitive changes in memory, language, 
or another mental function that can be detected by other individuals or clinical tests [2]. Although the global prevalence of MCI is as 
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high as 6.7–25.2% [3], and that the prevalence increased with age, it is often trivialized because it does not interfere with a person’s 
daily activities. However, in the long term, MCI requires individuals to remain vigilant; during a 3-year follow-up period, approxi
mately 30.9% of MCI patients will progress to AD, which is irreversible and lacks effective treatment options [4]. As such, it is 
imperative to identify biomarkers that can differentiate MCI patients who will convert to AD (MCI-C) from those who will not convert 
to AD (MCI-NC) as early as possible and to implement more aggressive preventive treatments to prevent further decline in cognitive 
functions. 

A recent study suggested that the decline of cognitive functions is related to disconnections of the whole brain network [5]. 
Notably, the connectome approach [6] can noninvasively investigate brain connections by characterizing brain anatomy as a complex 
network based on different modalities of magnetic resonance imaging (MRI), thus providing a vital tool for exploring biomarkers of 
cognitive impairment. Compared to functional networks based on resting-state functional MRI or white matter networks based on 
diffusion tensor imaging, gray matter (GM) networks based on structural MRI are more stable and convenient [7,8], and it has been 
reported to be related with impaired cognition and pathological biomarkers in the progression of AD [9,10]. Previously, GM networks 
have usually been constructed by calculating interregional morphological correlations to form a structural covariance network [11]; in 
this way, a single brain network for a given subject group could be constructed [12], but the individual network of each subject could 
not be examined and correlated with clinical variables. Therefore, Tijms et al. [13] developed a cube-based method to construct in
dividual morphological networks, but GM networks could not be normalized using this method; therefore, the network measures 
would be influenced by the size of individual subjects’ networks [14]. Thus, the Kullback–Leibler divergence-based similarity (KLS) 
method has been proposed to perform the normalization of GM networks [15–17] and has been successfully used in the connectome 
study of neurodegenerative disease [18] and cognitive impairment [19]. 

Topological properties are the most commonly used measures in the connectome approach; they can be used to investigate the 
segregation and integration of a complex network [20], alterations of topological properties of GM network in MCI patients have been 
extensively reported in previous studies [10,21,22], and differences of topological properties of GM network between MCI-C and 
MCI-NC have also been reported [23], the result suggested topological properties of GM network might have use in identifying MCI-C 
and MCI-NC patients; however, topological analysis overlooked the hierarchy of brain networks, previous studies have suggested that 
there is a principal gradient based on the differentiation of connectivity patterns in whole brain networks, ranging from within 
low-level sensory systems on the one end to the trans-modal default mode network (DMN) on the other end [24], gradient analysis may 
provide insights into how structural distribution of different neural system relate to complex cognitve function [25], and further our 
understanding of the neural changes associated with cognitive decline. Alterations of the principal gradient have been also reported to 
be closely related to cognitive decline [26] and mental disorders [27] in previous studies.Therefore, we hypothesize that combining 
gradient and topological analyses may yield a more comprehensive set of neuroimaging biomarkers for the early differentiation be
tween MCI-C and MCI-NC at the initial stage. 

In this study, we aimed to (1) explore the differences in individual GM networks between MCI-C and MCI-NC patients by combining 
gradient and topological analyses, (2) explore the relationship between the gradient and topological properties and the scores of 
neuropsychological tests and the number of apolipoprotein E (APOE) €4 alleles, which was the strongest genetic risk factor associated 
with AD [28], and (3) construct and validate a support vector machine (SVM) model to discriminate the MCI-C group from the MCI-NC 
group at baseline based on individual GM connectomes. 

2. Materials and methods 

2.1. Participants 

All data used in the current study were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni. 
usc.edu). The ADNI study was approved by an ethics standards committee for human experimentation at each institution. Written 
informed consent was obtained from all participants. 

Data from 461 MCI patients, i.e., 180 MCI patients converting to AD during a 3-year follow-up period and 281 MCI patients not 
converting to AD, were obtained from the ADNI database. The diagnosis of AD was made according to the criteria made by the National 
Institute of Neurological and Communicative Disorders and Stroke and Alzheimer’s Disease and Related Disorders Association. 

The demographic and neuropsychological data as well as APOE€4 allele data of all patients were obtained. Eight neuropsycho
logical scales were adopted to evaluate cognitive function; these included the Mini-Mental State Exam (MMSE), Montreal Cognitive 
Assessment (MoCA), several variants of the Rey Auditory Verbal Learning Test (RAVLT: RAVLT immediate recall, RAVLT learning, 
RAVLT forgetting, RAVLT percent forgetting), Alzheimer’s Disease Assessment Scale Cognitive subscale 11 (ADAS-Cog11) and Alz
heimer’s Disease Assessment Scale Cognitive subscale 13 (ADAS-Cog13). 

2.2. MRI data acquisition 

For each participant, three-dimensional T1 weighted imaging (3D-T1) was performed by volumetric three-dimensional magneti
zation-prepared rapid gradient-echo (3D-MPRAGE) or an equivalent scheme, with slightly different resolutions; this data was obtained 
from the ADNI database. Three different MR scanners were used in the acquisition of three-dimensional T1-weighted imaging. The MR 
images acquired using scanner 1 (Siemens Medical Solutions) were scanned with the following parameters: repetition time [TR]/echo 
time [TE] = 2300.0/3.0 msec and matrix = 240 × 256 × 176. The MR images acquired using scanner 2 (General Electric Healthcare) 
were scanned with the following parameters: TR/TE = 7.7–7.0/3.1–2.8 msec and matrix = 256 × 256 × 196. The MR images acquired 
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using scanner 3 (Philips Medical Systems) were scanned with the following parameters: TR/TE = 6.8/3.1 msec and matrix = 256 ×
256 × 170. 

More detailed information about the image acquisition procedures is available on the ADNI website (http://adni.loni.usc.edu/ 
methods/documents/). 

2.3. MRI data preprocessing 

The 3D T1-weighted images were preprocessed using the Diffeomorphic Anatomical Registration Through Exponentiated Lie 
Algebra (DARTEL) toolbox based on Statistical Parametric Mapping (SPM) version 12. Please see the supplemental materials for 
details. 

2.4. Construction of the GM brain network 

The nodes of the GM network were identified by using the Schaefer atlas with 400 regions [29], and the edges of the GM network 
were identified by using the KLS method. Finally, a 400 by 400 GM network was obtained for each individual subject. Please see the 
supplemental materials for details. 

2.5. Topological analysis 

This step was performed by using Gretna software version 2.0. Two network efficiency parameters [30], local efficiency (Eloc) and 
global efficiency (Eglob), and two nodal parameters, nodal degree [31] and nodal efficiency [32], were calculated to investigate the 
topological properties of individual GM networks. Please see the supplemental materials for details. 

2.6. Gradient analysis 

Gradient analysis was performed by using BrainSpace Toolbox [33]. Briefly, a group-level average connectivity matrix was first 
calculated based on the GM network of all subjects, and then ten group-level gradients were generated from the group-level average 
connectivity matrix. The parameters used for this step were set as follows, according to BrainSpace’s documentation and previous 
studies [34,35]: dimension reduction technique = diffusion embedding, kernel = normalized angle, sparsity = 0.9. Furthermore, 
individual-level gradients were calculated by using the same parameters based on the individual GM network for each subject, and 
then the individual-level gradients were aligned to the group-level gradients by using Procrustes rotation to increase comparability 
across gradients. Similar to a previous study [36], we only focused on the principal gradient, which explained 26% of the variance, to 
maximize interpretability of this study. Finally, the principal gradient was plotted in the cortex for visualization. Please see Ref. [33] 
for additional details. 

2.7. SVM model 

The SVM model was constructed based on LIBSVM [37] and the Scikit-Learn library [38], with the GM network matrix of each 
subject as inputs. The participants were first split into ten separate, nonoverlapping subgroups, and the proportion of patients with 
MCI-C and MCI-NC was kept constant within each division. In each iteration, one subgroup was chosen as the test set, and the 
remaining patients were designated as the training set. Within each training set, a 10-fold stratified nested cross-validation was 
performed to obtain the optimal soft margin parameter C, which controls the trade-off between reducing training errors and having a 
large separation margin. The grid search method was used to find the best value for this parameter among C = 10− 3, 10− 2, 10− 1, 10◦, 
101, 102, 103, and 104. The parameter with the highest performance was chosen for training the SVM models. After the training of SVM 
models, the performance of the SVM model was assessed by using 10-fold stratified cross-validation with three measures: mean 
balanced accuracy, sensitivity and specificity. To obtain meaningful confidence intervals and P values, we examined the statistical 
significance of the model with a random permutation test (1000 times). 

2.8. Statistical analysis 

For the demographic, clinical and neuropsychological data, the group differences in sex and the number of APOE ε4 alleles were 
evaluated by using chi-square tests, while the group differences in other variables were all evaluated by using two-sample t tests with 
an alpha threshold of 0.05. 

For network properties, ComBat [39] was first used to remove the inter-scanner variability, and then the gradient scores and to
pological properties between the MCI-C group and the MCI-NC group were compared by using two-sample t tests with a false discovery 
rate (FDR)-corrected alpha threshold of 0.05, with age as a covariate. 

Partial correlations were calculated with age as a covariate to evaluate relationships between the gradient scores and nodal effi
ciency of brain regions with significant group diversity and the scores of neuropsychological tests as well as the number of APOE €4 
alleles. 

B. Zhou et al.                                                                                                                                                                                                           

http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu/methods/documents/


Heliyon 10 (2024) e28874

4

3. Results 

3.1. Demographic and neuropsychological data and APOE €4 alleles 

Regarding the demographic data, the age of the MCI-C group was significantly higher than that of the MCI-NC group, while no 
significant differences in sex or years of education were found between the two groups. Regarding the proportion of individuals with 
APOE €4 alleles, the MCI-C group had a much higher proportion of individuals with APOE 4 alleles than the MCI-NC group. Regarding 
the neuropsychological data, more serious cognitive impairment was detected in the MCI-C group for all of the neuropsychological 
tests than in the MCI-NC group. Detailed information is shown in Table 1. 

3.2. Results of gradient analysis 

The principal gradient showed a similar gradient axis from the DMN to the sensory-motor network (SMN) and visual network (VN) 
in both the MCI-C and MCI-NC groups (with similar variance explained in the two groups, two-sample t-test, p = 0.704) (Fig. 1a). 
However, distribution of the principal gradient scores in MCI-C group was significantly different from MCI-NC group (Kolmogor
ov− Smirnov test, p = 0.031). Global histograms (Fig. 1b) and box plots (Fig. 1c) were used to visually describe the differences in the 
distribution of gradient scores between the two groups. In the global histogram, fewer extreme values and more mid-range values were 
found in MCI-C group, compared with MCI-NC group, and in the box plots, both interquartile range (the difference between the upper 
quartile and the lower quartile) and range (the difference between the maximum and minimum values) in MCI-C group were less than 
MCI-NC group. Both global histograms and box plots suggested that distribution of the principal gradient in the MCI-C group was more 
compressed than that in the MCI-NC group. At the nodal level, three nodes (ROI_4, left lingual gyrus; ROI_201, right fusiform gyrus; 
ROI_205, right fusiform gyrus) in the VN and one node (ROI_152, left middle temporal gyrus) in the DMN showed increased gradient 
scores in the MCI-C group compared with the MCI-NC group (p < 0.05, FDR corrected) (Fig. 1d). 

Moreover, the gradient scores of ROI_4 were significantly related with the MMSE (r = − 0.152, p = 0.017) and ADAS-Cog13 (r =
0.152, p = 0.017) scores, the gradient scores of ROI_152 were significantly related with the RAVLT immediate recall (r = − 0.218, p =
0.001), RAVLT percent forgetting (r = 0.166, p = 0.009), MoCA (r = − 0.216, p = 0.001), ADAS-Cog13 (r = 0.273, p < 0.001) and 
ADAS-Cog11 (r = 0.290, p < 0.001) scores, as well as the number of APOE €4 alleles (r = 0.192, p = 0.002), the gradient scores of 
ROI_201 were significantly related with the of MoCA (r = − 0.171, p = 0.007), ADAS-Cog13 (r = 0.176, p = 0.006) and ADAS-Cog11 (r 
= 0.178, p = 0.005) scores, and the gradient scores of ROI_205 were significantly related with the of RAVLT immediate recall score (r 
= − 0.163, p = 0.010) (Fig. 2). 

3.3. Results of topological analysis 

At the global level, no significant difference in Eloc or Eglob was detected between the two groups. At the nodal level, one node 
(ROI_40, left postcentral gyrus) in the SMN and two nodes (ROI_146, left anterior cingulate gyrus; ROI_358, right posterior cingulate 
gyrus) in the frontal parietal network (FPN) showed significantly decreased nodal efficiency, and one node (ROI_302, right temporal 
pole) in the ventral attention network (VAN) showed increased nodal efficiency in the MCI-C group compared with the MCI-NC group 
(p < 0.05, FDR corrected) (Fig. 3a). No significant difference in nodal degree was detected between the two groups. 

Table 1 
Demographic, neuropsychological and APOE €4 alleles data.a.  

Variables MCI-C MCI-NC P valueb 

Sample size 180 281 – 
Age (years)c 73.82 ± 7.13 71.99 ± 7.33 0.008 
Sex (M/F) 112/68 165/116 0.454 
Education (years) 15.87 ± 2.81 16.06 ± 2.74 0.285 
ADAS-Cog11 13.27 ± 4.68 8.78 ± 3.78 <0.001 
ADAS-Cog13 21.38 ± 6.32 14.05 ± 5.76 <0.001 
MMSE 26.78 ± 1.75 28.00 ± 1.69 <0.001 
RAVLT immediate recall 27.29 ± 6.55 37.58 ± 9.87 <0.001 
RAVLT learning 2.98 ± 2.27 4.64 ± 2.43 <0.001 
RAVLT forgetting 5.02 ± 2.28 4.58 ± 2.49 <0.001 
RAVLT percent forgetting 76.60 ± 28.09 53.11 ± 30.66 <0.001 
MoCA 25.95 ± 2.70 26.35 ± 2.41 <0.001 
Number of APOE €4 alleles (0, 1, 2) 58, 92, 30 165, 93, 23 <0.001 

Abbreviations: MCI-C = mild cognitive impairment patients who converted; MCI-NC = mild cognitive impairment patients who did not convert; 
ADAS-Cog = Alzheimer’s Disease Assessment Scale-Cognitive subscale; MMSE = Mini Mental State Examination; RAVLT = Rey Auditory Verbal 
Learning Test; MoCA = Montreal Cognitive Assessment; APOE = apolipoprotein E. 

a Data are presented as the mean ± standard deviation. 
b P values for sex and number of APOE €4 alleles were obtained by using chi-square tests, and p values for the other variables were obtained by using 

two-sample t-tests. 
c Age was defined at the time of MRI scanning. 
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Furthermore, the nodal efficiency of ROI_146 was significantly related to the RAVLT percent forgetting score (r = − 0.277, p =
0.027). The nodal efficiency of ROI_358 was significantly related to the RAVLT percent forgetting score (r = − 0.252, p = 0.044) 
(Fig. 3b). 

3.4. Performance of the SVM model 

In the classification of MCI-C and MCI-NC patients, we obtained a balanced accuracy of 79.4% (p < 0.001), and the sensitivity and 
specificity were 81.7% and 77.1%, respectively. 

4. Discussion 

In this study, we evaluated the differences in the GM network between the MCI-C and MCI-NC groups by combining gradient and 
topological analyses. In our gradient analysis, we found a similar principal gradient from the DMN to the SMN and VN in both the MCI- 
C and MCI-NC groups; this gradient was consistent with the principal gradient that was reported in a previous study [24]. However, the 
principal gradient in the MCI-C group was more compressed than that in the MCI-NC group, which suggested that the hierarchy of the 
GM network was more compressed in the MCI-C group. The hierarchy of the brain network was hypothesized to direct information 
flow throughout the brain, allowing sensory impulses to become progressively connected to other information and form more abstract 
representations [40], which is closely related to the general cognitive functioning [26]. Therefore, a more compressed hierarchy may 
be related to more serious cognitive impairment; this idea was consistent with the neuropsychological test scores measured in our 
study. At the nodal level, gradient scores of the left lingual gyrus, right fusiform gyrus and left middle temporal gyrus were increased in 
the MCI-C group, which were located at the two ends of the principal gradient. The lingual gyrus and fusiform gyrus both belong to the 
VN; the lingual gyrus is related to visual memory [41], and the fusiform gyrus is associated with face identification [42], both of which 
contribute to cognitive function [43,44]. The middle temporal gyrus belongs to the DMN and is associated with event representations 
[45], lexical comprehension [46] and semantic cognition [47]. These results further validated the relationship between the principal 
gradient and cognitive function. 

In addition, the gradient scores of the left middle temporal gyrus were found to be related to both the number of APOE €4 alleles 
and neuropsychological test scores. The APOE €4 allele has been reported to be related to the formation of β-amyloid and neurofi
brillary tangles [48,49], so more APOE ε4 alleles may cause more serious cerebral degeneration. It has been proven to be a risk factor 
for AD [50] and the most important predictor of longitudinal cognitive decline in elderly people [51]. Our study also suggested that the 
ratio of patients with APOE €4 alleles in the MCI-C group was much higher than that in the MCI-NC group. Thus, we can speculate that 

Fig. 1. (a) The principal gradient in the MCI-C and MCI-NC groups showed a similar gradient axis from the default mode network (blue) to the 
sensory-motor network and visual network (yellow). (b) The global histogram shows that the extreme values decreased and mid-range values 
increased in the MCI-C group compared with the MCI-NC group. (c) The boxplot had a smaller interquartile range and range for the MCI-C group 
than for the MCI-NC group (The upper boundary of the box represented the upper quartile of gradient scores, while the lower boundary represented 
the lower quartile, the line inside the box represented the median of the gradient scores, and the lengths of the whiskers represented the maximum 
and minimum values of the gradient scores). (d) The brain regions with significant differences (yellow) in gradient scores between the MCI-C and 
MCI-NC groups (ROI_4, left lingual gyrus; ROI_201, right fusiform gyrus; ROI_205, right fusiform gyrus; ROI_152, left middle temporal gyrus). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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gradient scores of the left middle temporal gyrus may be a “bridge” to link APOE €4 alleles and cognitive impairment. Namely, more 
APOE €4 alleles cause more serious cerebral degeneration, which leads to alterations in gradient scores of the left middle temporal 
gyrus and then manifests as more serious cognitive impairment. Thus, gradient scores of the left middle temporal gyrus may be a 
potential biomarker to distinguish MCI-C and MCI-NC at baseline. 

Fig. 2. Scatter plots of the correlation between the gradient scores and neuropsychological test scores and the number of APOE ε4 alleles. (a) Scatter 
plots of the correlation between the gradient scores of ROI_4 and ROI_205 and neuropsychological test scores. (b) Scatter plots of the correlation 
between the gradient scores of ROI_201 and neuropsychological test scores. (c) Scatter plots of the correlation between the gradient scores of 
ROI_152 and neuropsychological test scores and the number of APOE ε4 alleles. (ROI_4, left lingual gyrus; ROI_201, right fusiform gyrus; ROI_205, 
right fusiform gyrus; ROI_152, left middle temporal gyrus; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; RAVLT, 
Rey Auditory Verbal Learning Test; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive subscale; APOE, apolipoprotein E). Linear model 
fitting is shown over the scatterplot (red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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In our topological analysis, compared with the MCI-NC group, the MCI-C group showed decreased nodal efficiency of nodes in the 
SMN and FPN and increased nodal efficiency of nodes in the VAN were detected in. Nodal efficiency characterizes the degree of in
formation communication of adjacent nodes if a node is removed, which is also related to cognitive function [32]. Decreased nodal 
efficiency may be related to dysfunctions in information communication. Additionally, the SMN and FPN were located at the two ends 
of the principal gradient, so these results were consistent with our gradient analysis results. While the VAN is located in the middle area 
of the principal gradient, increased nodal efficiency of nodes in the VAN may be a compensatory effect. Furthermore, the nodal ef
ficiency of the anterior cingulate gyrus and posterior cingulate gyrus were significantly related to the RAVLT percent forgetting scores. 
The RAVLT is a well-known measure of episodic memory [52], and the anterior cingulate gyrus and posterior cingulate gyrus have 
been reported to be related to the formation of episodic memory [53], consistent with our results. 

In the classification of MCI-C and -MCI-NC by using an SVM model based on individual GM connectomes, we obtained a balanced 
accuracy of 79.4%, which is comparable to previous classification studies based on structural MRI. The results suggested that indi
vidual GM connectomes can be used as potential biomarkers to distinguish MCI-C and MCI-NC at baseline. However, the accuracy was 
still not satisfactory enough to meet the need for clinical diagnosis. Previous studies have reported that combining functional and 
structural MRI may improve the performance of the classification of MCI-C and MCI-NC [54,55], so we will try to combine the GM 
connectome and functional connectome to improve performance in the future. 

Several limitations should be noted. First, to our knowledge, this is the first study to investigate the difference in the hierarchy of 
individual GM networks between the MCI-C and MCI-NC groups. Further studies are needed to investigate whether these differences 
can be replicated. Second, we observed differences in the principal gradient between the MCI-C and MCI-NC groups at baseline; 
however, it is still not clear whether these differences further develop with the progression of disease; therefore, a complete longi
tudinal follow-up study will be needed. Finally, we used the Schaefer atlas with 400 regions to construct the individual gray matter 
network; however, there is no widely accepted atlas for use in constructing brain networks, so other atlases should also be considered 
in future studies. 

Fig. 3. (a) Brain regions with significant differences in nodal efficiency between the MCI-C and MCI-NC groups. (ROI_40, left postcentral gyrus; 
ROI_146, left anterior cingulate gyrus; ROI_358, right posterior cingulate gyrus; ROI_302, right temporal pole). (b) Scatter plots of the correlation 
between nodal efficiency and scores on neuropsychological tests. Linear model fitting is shown over the scatterplot (red line). (RAVLT, Rey Auditory 
Verbal Learning Test). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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In conclusion, the hierarchy of the whole-brain GM network in the MCI-C group was more compressed than that in the MCI-NC 
group, which may be related to the more serious cognitive impairment in the MCI-C group. Furthermore, the gradient scores of the 
left middle temporal gyrus were both related to cognitive function and APOE €4 alleles, thus making it a potential biomarker to 
distinguish MCI-C and MCI-NC at baseline. 

Data availability statement 

The data used in this study were downloaded from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) website (adni.loni.usc. 
edu), the data was collected in different institutions.The ADNI study was approved by an ethics committee on human experimentation 
at each institution, and written informed consent was obtained from all participants. 

Ethics statement 

Ethical review and approval were not required for the study on human participants because all the data in this study were 
downloaded from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. 

CRediT authorship contribution statement 

Baiwan Zhou: Writing – original draft, Visualization, Software, Methodology, Data curation. Yueqi Zhao: Formal analysis, Data 
curation. Xiaojia Wu: Writing – review & editing, Validation, Investigation. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgements 

The authors would like to thank all the study participants and their families. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e28874. 

References 

[1] C. Oboudiyat, H. Glazer, A. Seifan, C. Greer, R.S. Isaacson, Alzheimer’s disease, Semin. Neurol. 33 (2013) 313–329, https://doi.org/10.1055/s-0033-1359319. 
[2] M.S. Albert, S.T. DeKosky, D. Dickson, B. Dubois, H.H. Feldman, N.C. Fox, A. Gamst, D.M. Holtzman, W.J. Jagust, R.C. Petersen, P.J. Snyder, M.C. Carrillo, 

B. Thies, C.H. Phelps, The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national institute on aging-alzheimer’s 
association workgroups on diagnostic guidelines for alzheimer’s disease, Alzheimers Dement 7 (2011) 270–279, https://doi.org/10.1016/j.jalz.2011.03.008. 

[3] R.C. Petersen, O. Lopez, M.J. Armstrong, T.S.D. Getchius, M. Ganguli, D. Gloss, G.S. Gronseth, D. Marson, T. Pringsheim, G.S. Day, M. Sager, J. Stevens, A. Rae- 
Grant, Practice guideline update summary: mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation 
Subcommittee of the American Academy of Neurology, Neurology 90 (2018) 126–135, https://doi.org/10.1212/WNL.0000000000004826. 

[4] H. Fukuda, H. Kanzaki, F. Murata, M. Maeda, M. Ikeda, Disease burden and progression in patients with New-onset mild cognitive impairment and alzheimer’s 
disease identified from Japanese Claims data: Evidence from the LIFE study, J Alzheimers Dis 95 (2023) 1559–1572, https://doi.org/10.3233/JAD-230471. 

[5] M.T. de Schotten, S.J. Forkel, The emergent properties of the connected brain, Science 378 (2022) 505–510, https://doi.org/10.1126/science.abq2591. 
[6] O. Sporns, G. Tononi, R. Kötter, The human connectome: a structural description of the human brain, PLoS Comput. Biol. 1 (2005) e42, https://doi.org/ 

10.1371/journal.pcbi.0010042. 
[7] Y. He, Z.J. Chen, A.C. Evans, Small-world anatomical networks in the human brain revealed by cortical thickness from MRI, Cereb. Cortex 17 (2007) 

2407–2419, https://doi.org/10.1093/cercor/bhl149. 
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