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Deoxynivalenol (DON) is one of the most devastating and notorious contaminants in
food and animal feed worldwide. A novel DON-degrading strain, Nocardioides sp.
ZHH-013, which exhibited complete mineralization of DON, was isolated from soil
samples. The intermediate products of DON generated by this strain were identified by
high-performance liquid chromatography and ultra-performance liquid chromatography
tandem mass spectrometry analyses. It was shown that, on an experimental level, 3-
keto-DON was a necessary intermediate product during the conversion from DON to
3-epi-DON. Furthermore, the ZHH-013 strain could also utilize 3-epi-DON. This DON
degradation pathway is a safety concern for food and feed. The mechanism of DON and
3-epi-DON elimination will be further studied, so that new enzymes for DON degradation
can be identified.
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INTRODUCTION

Deoxynivalenol (vomitoxin, DON) is one of the most important toxic secondary metabolites of
mold. Wheat and corn are the main sources of DON in food and animal feed because they are
highly important raw food materials that are susceptible to Fusarium infection (Xu and Nicholson,
2009). Issues with planting, processing, and warehouse management can cause DON pollution and
reduce production yields (Bai and Shaner, 2004). DON has been found to be enriched in water from
contaminated cereals during wet processing, in rainwater in the field, and in polluted water from
animal farms (Wettstein and Bucheli, 2010; Gracia-Lor et al., 2020; Eagles et al., 2021).

Abbreviations: 15-ADON, 15-acetyl DON; 3-epi-DON, 3-epi-deoxynivalenol; 3-keto-DON, 3-keto-deoxynivalenol; Dep,
DON epimerization; DOM-1, de-epoxy DON; DON, deoxynivalenol; HPLC, high-performance liquid chromatography;
LB, Luria-Bertani; MM, mineral salt medium; MS, mass spectrometry; MS/MS, tandem mass spectrometry; NMR, nuclear
magnetic resonance; RT, retention time; TSB, tryptic soy broth; UPLC, ultra-performance liquid chromatography.
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In addition, DON derivatives are important sources of
DON for animals and humans. Wheat cultivars and toxigenic
Fusarium strains can convert DON into masked mycotoxins,
such as 3-acetyl DON (3-ADON), 15-acetyl DON (15-ADON),
DON-3-glucoside, DON-15-glucoside, DON-sulfate, and DON-
glutathione (Miller and Arnison, 1986; Hassan et al., 2016; Jurisic
et al., 2019). These masked mycotoxins can then be broken
down into DON by gut microbes. Overexposure to DON can
lead to intense vomiting in humans and animals, as well as
damage to the immune and reproductive systems and disruption
of developmental processes (Gunther et al., 2017; Lucke et al.,
2017; Springler et al., 2017; Juan-García et al., 2019).

Among the solutions to DON pollution, disease-resistant
plants and fungal biocontrol agents are more promising than
antifungal agricultural chemicals. Lower disease incidence greatly
reduces DON pollution during planting and raw material
storage. In addition, it is necessary to develop efficient
and environmentally friendly detoxification technologies for
processing, waste treatment and ecological restoration.

Heat (Bretz et al., 2006) and ozone (Li et al., 2019) are
widely studied physical and chemical DON elimination methods
that are considered safe and environmentally friendly and
achieve efficient degradation; however, the resulting degradation
products are unstable and difficult to analyze because of their
complexity, and these methods may reduce the nutritional quality
of raw food materials (Santos Alexandre et al., 2018). Therefore,
non-thermal methods, such as intense pulsed light (Chen et al.,
2019), plasma-activated water (Chen et al., 2019), carbon nitride
nested tubes (Bai et al., 2019), and the upconversion nanoparticle
@TiO2 (Zhou et al., 2020), are of interest because they are
environmentally friendly, efficient, and/or economical. These
methods are good for processing foods with smooth surfaces
or free DON in solvent, and may be useful in the sorting
and pretreatment of raw food materials; however, their use to
influence animal digestion processes, with the aim of eliminating
unreleased or masked DON in food, is less feasible.

Compared with the methods mentioned above, DON
biodegradation technologies are gentle, effective, and easy to
scale up. Among them, microorganisms or their metabolic
detoxification systems that exhibit DON degradation abilities are
receiving the most attention.

Massive screening techniques using diverse methods have
been conducted to identify DON-degrading microbes, several
of which have high DON conversion ability. Over the last
three decades, DON-degrading strains have been identified
among genera including Eubacterium (Fuchs et al., 2002),
Eggerthella (Gao et al., 2018), Desulfitobacterium (He et al.,
2020), Devosia (He et al., 2016; Wang et al., 2017, 2019),
Sphingomonas (Ito et al., 2013; He et al., 2017), Nocardioides
(Ikunaga et al., 2011), Marmoricola (Ito et al., 2012), Bacillus (Li
et al., 2011), Pelagibacterium (Zhang et al., 2020), and Aspergillus
(He et al., 2008; Jaqueline and Eliana, 2010; Jaqueline et al., 2011;
Yang et al., 2017).

Extensive epidemiological investigations have shown that
many animals are insensitive to DON; however, monogastric
animals, especially swine, are sensitive to DON. Rumen and gut
microbes are considered to be effective at DON detoxification.

Nevertheless, only a few DON-degrading strains have been
isolated from rumens or chicken intestines, and they could only
transform DON to de-epoxy DON (de-DON or DOM-1) under
anaerobic conditions. Eubacterium sp. BBSH 797 was the first
anaerobic DON-degrading strain isolated from the rumen fluid of
a cannulated cow (He et al., 1992; Fuchs et al., 2002). When swine
ate feed containing this strain, the negative effect of DON on pig
intestines was controlled (Grenier et al., 2013). Eggerthella sp.
DII-9, isolated from chicken intestines, can similarly transform
DON (Gao et al., 2018). In the past, it was thought that the
conversion of DON to DOM-1 could only be completed under
anaerobic conditions; however, recent studies have shown that
Desulfitobacterium sp. PGC-3-9 can transform DON under both
anaerobic and aerobic conditions (He et al., 2020). The genus
Devosia has been widely studied, and several species in this
genus can detoxify DON. The DON transformation mechanism
of Devosia sp. 17-2-E-8 is relatively well understood and involves
two enzymes from the DON epimerization (Dep) pathway. DON
is first converted to 3-keto-DON by DepA (Carere et al., 2018a),
and then 3-keto-DON is transformed to 3-epi-DON by DepB
(Carere et al., 2018b). Sphingomonas sp. KMS1 and S3-4 can
utilize DON as a sole carbon source; the former strain could
transform DON to 16-hydroxy-DON using a special cytochrome
P450 system (Ito et al., 2013), while the latter strain could
only convert DON to 3-keto-DON (3-oxo-DON) and 3-epi-DON
(He et al., 2017). Recently, two novel strains, from the LZ-N1
consortium, namely, Pseudomonas sp. Y1 and Lysobacter sp.
S1, were shown to exhibit sustained ability to transform DON
into the metabolite 3-epi-DON, with no degradation products
detected after 72 h (Zhai et al., 2019).

In this study, a new DON-degrading strain, designated
Nocardioides sp. ZHH-013, was isolated from soil associated with
a high incidence of root rot. We examined the DON-degrading
activity of the species and assessed the detected intermediate
products, 3-keto-DON and 3-epi-DON.

MATERIALS AND METHODS

Soil Samples, Chemicals, and Media
Soil samples (n = 1360) were collected from wheat, corn, or forest
fields at Jiangsu, Anhui, Hebei, Beijing, Liaoning, Heilongjiang,
Nei Mongol, Yunnan, Gansu, and Xinjiang in China, to isolate
DON-degrading microbes.

Deoxynivalenol (32943-5MG, Sigma-Aldrich, United States;
16.87 mM in water) was stored at−20◦C.

Mineral salt medium (MM) (Ikunaga et al., 2011) was
used for enrichment and DON degradation assays. R2A
(Difco, United States), Luria-Bertani (LB) broth (Oxoid,
United Kingdom), and tryptic soy broth (TSB; Oxoid) were used
to culture the DON-degrading strains isolated from soil samples.

Screening, Enrichment, and Isolation of
DON-Degrading Strains
Each soil sample (0.05–0.10 g) was suspended in 0.7 ml of MM
with 168.74 µM DON and incubated at 30◦C and 220 rpm for
21 days. Thereafter, 20-µl culture aliquots were added to 0.5 ml
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of MM containing 168.74 µM DON, followed by 21 days of
incubation under the same conditions. This process was repeated
at least three times. Samples were taken at each step, mixed with
an equal volume of sterile 50% glycerol, and stored at 80◦C. The
concentration of DON in samples was then assessed by high-
performance liquid chromatography (HPLC), as described below.

After a series of dilutions, final enriched cultures were spread
onto R2A, LB, or TSB agar plates and incubated at 30◦C for
14 days. Various colonies were selected and incubated in MM
containing 168.74 µM DON at 30◦C for 14 days. Thereafter,
concentrations of DON were detected by HPLC. Pure cultures
were mixed with an equal volume of sterile 50% glycerol and
stored at −80◦C. All screening and incubation processes were
carried out under aerobic conditions.

Phylogenetic Analysis of Nocardioides
sp. ZHH-013
The partial 16S rRNA gene sequence of the ZHH-013 strain was
amplified by PCR using primers 27f and 1492r (Zhang et al.,
2017). The resulting amplicon was an approximately 1381-bp 16S
rDNA sequence (GenBank Accession No. MW493343). Similar
sequences were identified using BLAST (Johnson et al., 2008)
and 16S-based ID apps in the EzBioCloud server (Yoon et al.,
2017). Neighbor-joining phylogenetic trees were constructed
using MEGA X software (Kumar et al., 2018). Alignment was
conducted using the ClustalW program (Higgins et al., 1994).
Bootstrap analysis was performed with 1,000 replications.

DON Degradation Assay
To obtain an initial culture, a single ZHH-013 colony was
inoculated in 700 µl of MMD and grown under aerobic
conditions at 30◦C for 8–12 days.

To assess DON degradation by a high-density culture of the
ZHH-013 strain, 3 ml of TSB medium was mixed with the initial
culture (1%) and grown at 30◦C, with agitation at 220 rpm for
7 days. Next, culture densities were adjusted to an OD600 of 0.4–
0.6, inoculated in 100 ml of TSB, and incubated at 30◦C and
220 rpm for 5 days.

Next, 50 ml of fermentation broth was transferred to a 50-
ml centrifuge tube and centrifuged at 14,400 × g for 3 min
at 4◦C. The supernatant was collected and filtered through a
0.22-µm filter (Millipore, Cork, Ireland) to generate a cell-free
supernatant. Additionally, the cell pellets were washed three
times with sterilized water and resuspended in 5 ml of MM. Next,
DON was added to the samples at the final concentrations of
0.169, 1.687, 3.375, and 33.747 mM. All samples were incubated
at 30◦C with 220 rpm for 10 and 24 h.

In addition to the fermentation broth supernatant and the cell
pellets, we also assessed lysed cells. Cells were lysed using a sonic
disrupter, and lysates centrifuged at 20,700 × g (4◦C, 20 min) to
obtain supernatants. Aliquots were left untreated or filtered using
0.22-µm filters. DON (168.74 µM) was added to the samples and
incubated at 30◦C and 220 rpm for 10 and 24 h.

All samples were stored at −80◦C before analysis by HPLC
or ultra-performance liquid chromatography tandem mass
spectrometry (UPLC-MS/MS), as described below.

Preparation and Purification of
3-keto-DON and 3-epi-DON
To prepare 3-keto-DON as the standard control (Carere et al.,
2018a), the synthesis gene of depA from Devosia sp. 17-2-
E-8 was purchased from GENEWIZ (Su Zhou, China). The
gene was cloned into pET-28a (+) and then transformed into
Escherichia coli BL21(DE3). After ensuring inducible expression
and purification by Ni-nitrilotriacetic acid chromatography,
DepA was mixed with 0.1 mM KH2PO4, 0.1 mM NaOH,
1 mM Ca2+, and 100 µM pyrroloquinoline quinone, and then
incubated at 30◦C for 20 h. Thereafter, a triple volume of
methanol was added and samples were left at −20◦C for 20 min.
After centrifugation (4◦C, 20 min), the supernatant was collected.
The solvent was removed using vacuum freeze-drying equipment
(Martin Christ, Osterode am Harz, Germany), and 3-keto-DON
was dissolved in 100 µl of methanol. The 3-keto-DON standard
was stored at−80◦C before HPLC or UPLC-MS/MS analysis.

Preparation of 3-keto-DON produced by ZHH-013 strain
referred to the analysis method as described above. Preparation
of 3-epi-DON produced by ZHH-013 strain refers to the method
described by Ikunaga et al. (2011) with modification. Wet
Nocardioides sp. ZHH-013 cells were resuspended in 1 ml of MM
(OD600 = 1.0) containing 10 mg of DON, and incubated for 41 h
at 30◦C. After centrifugation at 20,700 × g (4◦C, 20 min), the
supernatant was collected and filtered using a 0.22-µm filter. The
solvent was drawn off completely using vacuum freeze-drying
equipment (Martin Christ) and the sample was resuspended in
100 µl of methanol. Analytical HPLC (described in the next
section) was used to prepare 3-epi-DON and 3-keto-DON. All
elution fractions of 3-epi-DON and 3-keto-DON were mixed,
respectively. After sample enrichment by vacuum freeze-drying
(Martin Christ) and resuspension in 100 µl of methanol, all
degradation products were stored at −80◦C before HPLC or
UPLC-MS/MS analysis.

HPLC Analysis of DON, 3-epi-DON, and
3-keto-DON
Equal volumes of samples were mixed well with methanol stored
at −20◦C. Before HPLC analysis, samples were filtered using
0.22-µm filters.

The HPLC system (Shimadzu, Kyoto, Japan) consisted of an
LC-20AT pump and an SPD-20A UV/VIS detector. A reverse
phase column (Agilent TC-C18, 4.6 mm× 250 mm, 80 Å, 5 µm)
was used. To detect DON and its derivatives, the mobile phase
comprised methanol and water (15:85, v/v) at a flow rate of
1.0 ml/min. To detect 3-keto-DON, the mobile phase comprised
methanol and water (1:2, v/v). UV/VIS detection was performed
at a wavelength of 220 nm. The column was heated to 40◦C.

UPLC-MS/MS Analysis of DON,
3-epi-DON, and 3-keto-DON
UPLC-MS/MS analysis was performed using a Nexera UHPLC
LC-30A (Shimadzu) UPLC system coupled with TripleTOF5600
(AB Sciex, United States). For C18 separation, mobile phase A
was acetonitrile, and mobile phase B was 0.5% formic acid in
water. The column was an HSS T3 column (150 mm × 3 mm,
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1.8 µm; Waters) operated at 40◦C. The flow rate was 300 µl/min
and the injection volume was 1 µl. Gradient conditions were as
follows: 0–10 min, A: 0 to 50%, B: 100 to 50%; 10–13 min, A:
50 to 95%, B: 50 to 5%; 13–14 min, A: 95 to 0%, B: 5 to 100%;
14–15 min, A: 0 to 0%, B: 100 to 100%.

The mass spectrometer was operated in positive ion mode
with ion spray voltage floating, 5500 V; ion source gas 1
50 psi; ion source gas 2 50 psi; and curtain gas at 25 psi and
source temperature, 500◦C. Sample analysis was performed by
information-dependent acquisition, with a 200-ms time-of-flight
(TOF)-MS scan from 100 to 1,500 Da, followed by an MS/MS
scan in high-sensitivity mode from 50 to 1,500 Da of the top 20
precursor ions from the TOF-MS scan.

RESULTS AND DISCUSSION

Screening, Identification, and
Characterization of Nocardioides sp.
ZHH-013
Microbes are the main decomposers in nature and soil
is the richest source of strains with degradation activity.
Over the last three decades, especially the past 3 years,
several strains that can efficiently transform DON have been
reported. Nocardioides sp. WSN05-2, isolated from wheat
field soil, was the first Nocardioides strain demonstrated to
degrade DON as a carbon source (Ikunaga et al., 2011). It
completely converted DON after 10 days of incubation and
no signal of a typical trichothecene skeleton was detected
by nuclear magnetic resonance (NMR) analysis (Ikunaga
et al., 2011); however, no more public information has been
released about the DON degradation function of this genus,

despite several researchers continuing to screen for DON
degrading microorganisms.

Enrichment culture of 1,360 soil samples was conducted; after
three rounds of screenings, 24 samples with DON-degrading
activity were isolated. Among them, 13 samples exhibited DON
degradation characteristics similar to those reported for Devosia.
The remaining 11 samples could completely transform DON.
After 10 sub-inoculations, Culture Sample No. 13 showed
stable and efficient DON-degrading activity. Microbial diversity
analysis of Sample No. 13 showed that Nocardioides (45.20%) and
Paracoccus (27.25%) were the main components at the genus level
(unpublished data).

An enriched culture of Sample No. 13 was plated on
various media (LB, TSA, R2A, or MM) using the dilution
method. Consequently, the ZHH-013 strain was isolated
and a 1,381-bp sequence of its 16S rDNA was used for
phylogenetic analysis. Sequences with the highest similarities
to the ZHH-013 strain were as follows: Nocardioides vastitatis
21Sc5-5T (97.68%), Nocardioides kongjuensis A2-4T (97.39%)
Nocardioides nitrophenolicus NSP 41T (97.32%), Nocardioides
caeni MN8T (97.25%), Nocardioides albidus THG-S11.7T

(97.25%), Nocardioides flava THG-DN5.4T (97.18%), and
Nocardioides pelophilus THG-T63T (97.18%). A phylogenetic
tree, constructed using the neighbor-joining method, showed
that the ZHH-013 strain belongs to the genus Nocardioides
(Figure 1). The 16S rRNA similarity was lower than the
recommended classification threshold of 98.65% (Kim et al.,
2014); hence, we inferred that the ZHH-013 strain may be a new
Nocardioides species. The sequence similarity between ZHH-013
and other DON-degrading Nocardioides strains (Sato et al., 2012)
was less than or equal to 92.27%.

The ZHH-013 strain is a Gram-positive, aerobic, rod-shaped,
non-spore-forming bacterium that is 0.28–0.29 × 0.86–0.87 µm

FIGURE 1 | Phylogenetic tree, including Nocardioides sp. ZHH-013, based on neighbor-joining analysis of 16S rDNA sequences.
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FIGURE 2 | Morphological characteristics of Nocardioides sp. ZHH-013 cell
(×50,000).

FIGURE 3 | High-performance liquid chromatography analysis of DON
degradation products after incubation of DON with (A) filtered intracellular
supernatant treated, (B) intracellular supernatant, and (C) untreated
Nocardioides sp. ZHH-013 cells. (D) The 168.74 µM DON standard was used
as control.

in size (Figure 2). Colonies were white and translucent on R2A
plates, and yellowish white on LB or TSA plates. The ZHH-
013 strain could use DON as a sole carbon source, whereas
related species (N. vastitatis 21Sc5-5T , N. kongjuensis A2-4T ,
N. nitrophenolicus NSP 41T, N. caeni MN8T, and N. albidus
THG-S11.7T) could not.

The DON degradation rate was directly proportional to
the amount of ZHH-013 strain. After 48 h of incubation, the
DON degradation rate was 80% at an OD600 of 0.4 and only

40% after 10-fold dilution. After 10 h of co-incubation with
DON, DON was not degraded by ZHH-013 fermentation broth
supernatant or filtered or moist heat sterilized (121◦C, 20 min)
by supernatant of ZHH-013 cell lysate (Figure 3). Thus, the
complete degradation capacity of DON may rely on live cells.

Characterization of DON Biodegradation
by Nocardioides sp. ZHH-013
Researchers have confirmed DON detoxification mechanisms in
several organisms, including animals and plants, and most of
these processes rely on microorganisms (Fuchs et al., 2002; Ito
et al., 2012; Gao et al., 2018). The five main degradation pathways
detected in microorganisms are as follows: (1) DON to DOM-1;
(2) DON to 3-ADON or 15-ADON; (3) DON to 3-keto DON;
(4) DON to 16-DON; and (5) two-step transformation: DON
to 3-keto-DON and 3-keto-DON to 3-epi-DON. Some other
strains, such as Aspergillus niger As-D.1 (Yang et al., 2017), exhibit
different mechanisms; however, the degradation products have
not been clearly explained based on detailed data. Moreover, the
ZHH-013 strain exhibited a new degradation mechanism that
differed from the five mechanisms mentioned above.

FIGURE 4 | High-performance liquid chromatography analysis of DON
degradation by Nocardioides sp. ZHH-013 after (A) 8 h, (B) 4 h, (C) 0.5 h,
and of (D) 3-keto-DON produced by DepA. (E) The 3.37 mM DON standard.
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FIGURE 5 | The concentration changes of 3-epi-DON (B) and 3-keto-DON
(C) in the process of DON (A) degradation by Nocardioides sp. ZHH-013.

Deoxynivalenol degradation products generated by ZHH-
013 were detected by HPLC and UPLC-MS/MS. 3-epi-DON
appeared as an early DON degradation product (Figures 4, 5).

Based on MS and MS/MS data indicating a compound with a
retention time (RT) of 3.09 min (Supplementary Figure 2A), the
predominant ion at m/z 297.13 was consistent with a molecular
ion of [DON + H]+ (Supplementary Figures 2B,C), which
was similar to that of DON (Supplementary Figures 1B,C). 3-
epi-DON has previously been identified as a DON degradation
product, based on MS and NMR data (Ikunaga et al., 2011; He
et al., 2015b). After continued incubation, the peak for 3-epi-
DON surprisingly disappeared (Figure 5B and Supplementary
Figure 5) and we concluded that ZHH-013 could also utilize
3-epi-DON. These results resemble the findings reported for
the strain, WSN05-2 (Ikunaga et al., 2011), which can utilize
3-epi-DON as a sole carbon source.

Karlovsky speculated that Nocardioides sp. WSN05-2 may
provide a high ratio of oxidation and reduction rates, leading
to low accumulation of the intermediate product (3-keto-
DON) (Karlovsky, 2011); however, no experimental evidence
was published. Using the ZHH-013 strain, we observed very
little accumulation of DON degradation product, 3-keto-DON,
unlike reports of experiments using DepA obtained from Devosia
sp. 17-2-E-8 (Figures 4, 5C); however, after further analysis, a
new peak (RT = 4.06 min) was identified as 3-keto-DON. MS
and MS/MS data from that compound revealed a predominant
ion at m/z 293.10, consistent with the molecular ion [DON–
2–H]− (Supplementary Figures 4B,C), similar to that of 3-
keto-DON prepared from DON using DepA (Supplementary
Figures 3B,C). The difference of 2 atomic mass units between the
ions at m/z 293.10 [DON–2H–H]− and m/z 297.13 [DON+H]+
indicates that two protons were absent. 3-keto-DON disappeared
when DON was depleted, and no 3-keto-DON accumulation was
found when 3-epi-DON was degraded. Therefore, we presumed
that DON must have been converted to 3-keto-DON before then
being converted to 3-epi-DON (Figure 6) and that the efficient
conversion ability of Nocardioides sp. ZHH-013 may have led to
low accumulation of 3-keto-DON.

The toxicity of DON degradation products is a core question
for strain or enzyme applications. The toxicity of DON has
been fully studied, while in vitro and vivo toxicological data
on its derivatives remain very scarce. The 12,13-epoxide ring,

FIGURE 6 | Typical DON degradation pathways of different microorganisms including Nocardioides sp. ZHH-013. The blue characters denote microorganism name,
and the rose red characters denote identified gene or enzyme.
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hydroxyl group at C-15, hydroxyl group at C-3, and double
bond between C-9 and C-10 are crucial DON toxic groups
(McCormick et al., 2011). DON inhibits nucleic acid synthesis
by binding to peptidyl transferase in the 60S ribosomal subunit,
inducing ribotoxic stress, and activating MAPKinases (Maresca,
2013; Garreau de Loubresse et al., 2014). Unlike DON, 3-epi-
DON does not activate MAPKinases (Pierron et al., 2016). The
toxicity of DON derivatives created by microorganisms has been
tested using BrdU bioassays (Widestrand et al., 1999; Sundstøl
et al., 2004). The toxicity of 3-epi-DON is substantially lower
than that of DON and its derivatives, while excessive exposure
to 3-epi-DON still caused organ lesions in mice (He et al.,
2015a). Moreover, exposure to 3-epi-DON caused slight changes
in intestinal explants (Pierron et al., 2016); however, 3-epi-DON
showed almost no hepatotoxicity or immunotoxicity in in vivo
pig experiments (Bracarense et al., 2020). Therefore, 3-epi-DON
may represent a low-toxicity, safe DON degradation product
in mice and pigs. The toxicity of 3-epi-DON is potentially due
to the 12,13-epoxide ring and the double bond between C-9
and C-10 (Wei and McLaughlin, 1974). Therefore, elimination
of 3-epi-DON may be necessary. Nocardioides sp. ZHH-013
metabolizes 3-epi-DON, and we speculate that it may induce
the oxygen heterocyclic form of 3-epi-DON to undergo a ring-
opening reaction in one or more steps, and that the toxicity of
DON can thereby be eliminated.

CONCLUSION

Biodegradation is an effective strategy to reduce toxin exposure
risks and economic losses. There are five important issues that
have been hindering the development of industrial bacteria and
enzyme preparations: (1) the lack of strains or enzyme sources,
(2) the safety of the transformed products, (3) the lack of
compound toxicology data, (4) the safety of the strains, and (5)
the industrial application of the strains and enzymes.

In this paper, we report a novel DON-degrading strain,
Nocardioides sp. ZHH-013, isolated in China. ZHH-013 can
degrade DON to 3-keto-DON and 3-epi-DON, achieving DON
mineralization. The DON degradation mechanism of this strain
may inspire the development of attenuated agents or bio-
detoxifiers. Determining the mechanisms underlying the efficient
generation and degradation of 3-epi-DON may lead to the
discovery of new enzymes. Furthermore, there is potential to
improve enzyme activity, expression level, and adaptability via
enzyme engineering technology, which would help to realize
the application of DON-degrading enzymes to eliminate DON

pollution in food/feed fields or to restore DON-polluted bodies
of water on farms.
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