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Abstract 

Background:  Refractory Ceramic fibres (RCF) are man-made mineral fibres used in high performance thermal insula-
tion applications. Analogous to asbestos fibres, RCF are respirable, show a pleural drift and can persist in human lung 
tissue for more than 20 years after exposure. Pleural changes such as localised or diffuse pleural thickening as well as 
pleural calcification were reported.

Result:  A 45 years old man worked in high performance thermal insulation applications using refractory ceramic 
fibres (RCF) for almost 20 years. During a occupational medical prophylaxis to ensure early diagnosis of disorders 
caused by inhalation of aluminium silicate fibres with X-ray including high-resolution computed tomography (HRCT), 
bilateral pleural thickening was shown and a pleural calcification next to a rounded atelectasis was detected. Asbestos 
exposure could be excluded. In pulmonary function test a restrictive lung pattern could be revealed. In work samples 
scanning electron microscopy (SEM) including energy dispersive X-ray analysis (EDX) classified used fibres as alumin-
ium silicate fibres. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) showed crystalline as 
well as amorphous fibres.

Conclusions:  A comprehensive lung function analysis and in case of restrictive lung disorders additional CT scans are 
needed in RCF exposed workers in accordance to the guidelines for medical occupational examinations comparable 
to asbestos exposed workers.

Keywords:  Aluminium silicate fibres, RCF, Thermal insulation, Rounded atelectasis, Restrictive lung function pattern, 
Occupational diseases
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Background
Refractory Ceramic fibres (RCF) are man-made min-
eral fibres used in high performance thermal insulation 
applications and mostly to line furnaces, kilns and other 
industrial heaters. Also RCF are used as thermal bar-
rier in the automotive, marine, petrochemical, steel, 
aluminium, ceramic, glass and construction industries. 
RCF are produced by melting (at ~ 1925  °C) a mixture 
of aluminium oxide (Al2O3) and silicon oxide (SiO2) in 
approximately proportion or in combination with minor 

amounts of other inorganic oxides [1]. Therefore the RCF 
were named also as aluminium silicate fibres. RCF were 
produced from melting and blowing or spinning process. 
As manufactured, RCF are in the form of bulk fibres [1]. 
The diameter of the fibres depends on process param-
eters. Respirable fibres with the greatest toxicological 
potential are WHO fibres with a length > 5 µm, a diame-
ter ≤ 3 µm and the length to diameter ratio of at least 3:1. 
These fibres impede clearance by alveolar macrophages 
[1]. Lockey et  al. [2] showed that RCF can persist in 
human lung tissue for more than 20 years after exposure.

Analogous to asbestos fibres, RCF show a pleural drift. 
After alveolar deposition the dust particles can trigger a 
chronic inflammatory reaction in the lung interstitium 
or be transported in the lymphatic and blood systems. 
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Asbestos fibres can alter the pleura through pleural drift. 
All fibro genic substances have the potential to cause 
irreversible damage to the lung parenchyma. Pleural 
changes such as localised or diffuse pleural thickening 
as well as pleural calcification were reported by LeMas-
ter [3]. Rounded atelectasis after asbestos exposure was 
described previously [4]. In our opinion this is the first 
report of rounded atelectasis in connection with calcified 
pleural plaques following long-term RCF exposure.

Methods
Occupational history
In 2000 a 25  year old Caucasian male worker (never 
smoker) started to work in a RCF processing plant. For 
the first three years he was employed at a suction station 
for processing vacuum mouldings by transferring RCF 
manually from packages into the suction station. He also 
operated a dry kiln for these vacuum mouldings. After 
drying the vacuum moulds they had to be cut or sawed 
to length manually, polished, and holes had to be drilled 
to attach heating units. The heating units were glued and 
clenched to the moulds. Finally two half-round moulds 
were assembled to form one round heating furnace. He 
was exposed to refractory fibres unprotected during the 
whole work duration at the suction station, the dry kiln 
and the final composition of the mouldings (cartridge 
production). Dust concentrations of RCF were measured 
at different instants at all workplaces. Since 2004 he was 
assigned to the cartridge production line also working at 
the works bench with a lower exposure to RCF. Protective 
work clothing like protective masks (e.g. FFP2 masks) has 
not been used during work.

Personalised measurements were taken at different 
production sectors within the plant in 2012, 2015, 2017 
and 2018 as shown in Table 1.

Results
Clinical history and clinical examination
The worker has been a never smoker and was asympto-
matic throughout his entire work life. He never expressed 
complains of chest pain, dyspnoea or cough. No pulmo-
nary disease (e.g. history of pneumonia, pneumothorax, 
pleurisy or any other lung disease) has been described 
before. No complaints were reported while being exposed 
to fumes, gases, dust or being in wet and cold weather. At 
the moment the worker is not treated with any medica-
tion. A standard posterior-anterior chest radiograph was 
obtained prior to start of work in November 2000 with-
out any pathological findings. It showed a sharply demar-
cated diaphragm, free costrophrenic angles, no localised 
or defuse densities and a normal cardia shadow. He per-
forms endurance sport as running and soccer playing on 
a regular base. Breath sounds were reduced in the lower 

left side and the percussion note was dull. Lung expan-
sion was decreased on the left side. Crackles could not be 
detected. At the moment the patient is not treated with 
any medication.

Lung function analysis
In 2018 restrictive lung function was revealed during an 
occupational medical examination. For grading the pul-
monary function, VC, FEV1, TLC, RV, DLCO, DLCO/
VA, ITGV, and MEF50 were expressed and analysed as 
a percent of the predicted value in the reference popu-
lation (pred.) as recommended by the guidelines GLI 
2012 [5–11]. In our outpatient clinic lung function 
analysis confirmed a reduced vital capacity (VC) of 3.35 
L with a lower limit of normal (LLN) of 4.01 L accord-
ing to GLI 2012. Forced expiratory volume in 1 s (FEV1) 
was reduced with 2.8 L (LLN 3.18 L) whilst FEV1/FVC 
ratio 82% (LLN 69%) was normal. The diffusing capacity 
(DLCO) of 7.93  mmol/min/KPa (pred. 8.34  mmol/min/
KPa) was reduced as well as residual volume divided by 
total capacity (RV/TLC) 28% (pred.: 41%) and total gas 
volume (TGV) 2.6 L (pred.: 4.44 L). Predicted oxygen 
partial pressure at rest was 85.0  mmHg O2. Before car-
diopulmonary exercise testing, oxygen partial pressure 
was measured at 81.6 mmHg at rest and 72.9 mmHg at 
125 W.

Radiological findings
The chest X-rays (p.a. and lateral) showed localised pleu-
ral thickening with adhered costodiaphragmatic sinus on 
the left side and consecutively reduced volume of the left 
hemi thorax (Fig. 1).

Computer tomography scans presented bilateral pleu-
ral thickening especially paravertebral (right side not 
shown), with embedded pleural calcification only on the 
left side (Fig. 3). Besides this a beginning rounded atelec-
tasis with a “comet tail” sign is visible adherent to the 

Table 1  Personalised measurements of RCFs at different 
production sectors in Fibres per cm3

Production sector 2012 2015 2017 2018

Suction station 1 0.037 0.120

Suction station 2 0.293 0.118 0.30

Suction station 3 0.270 0.256

Kiln 0.781 0.492 0.650 0.766

Saw position 1 0.35 0.64 0.30

Saw position 3 1.10 1.21 0.99

Work bench 0.34 0.31

Booth M9 0.11 0.15

Cartridge production 0.32

Final assembly 0.14
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pleura in the left (Figs. 2, 3). The volume of the left lower 
lobe (Fig. 2) is reduced.

Analysis of the insulating material
Techniques used for the material characterisation
Refractory fibres samples (aluminium silicate fibres) 
called sample 1, 2 and 3 were obtained from the 

processing plant and were analysed (raw material RCF: 
1a, 2a and 3a; processed RCF from vacuum moulds: 1b, 
2b and 3b). Scanning electron microscopy (SEM; Hitachi 
S-2300; Hitachi, Ltd., Tokyo, Japan) was used to identify 
fibre geometry in addition to the microstructure of the 
fibres. To determine the elementary composition Energy 
Dispersive X-ray spectroscopy (EDX) was applied. To 

Fig. 1  p.a. (a) and lateral chest X-ray (b) with an adhered costodiaphragmatic sinus (white arrow). Pleural thickening with fibrosis strands is seen on 
the left middle field

Fig. 2  Axial cross sections of the lung-mediastinal window a, lung window b with diffuse pleural thickening and rounded atelectasis with a “comet 
tail” sign (thick white arrow) and a reduction in the volume of the left lower lobe. Calcified pleural plaques (slim white arrow)
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increase the conductivity, all samples were sputtered with 
a fine layer of Au.

X-ray powder diffraction (XRD)  is a common tech-
nique to determine the crystal structure of materials. It 
was used to analyse the crystallinity of the RCF. X-ray 
powder diffraction in reflection mode was performed 
with an X’Pert Pro from PANalytical (CuKα radia-
tion (λ = 1.5418  Å), 40  kV, 40  mA). The measurements 
occurred between 10° and 80° with a step size of 0.033°. 
With this technique, monochromatic X-ray radiation, 
generated by a cathode ray tube, creates constructive 
interference with the sample when the conditions fulfil 
Bragg’s law:

Here n is an integer, λ is the wavelength of the mono-
chromatic X-ray radiation (most common: CuKα radia-
tion λ = 1.5418 Å), d is the distance between two lattice 
planes and θ (Theta) is the diffraction angle.

The intensity of the diffracted beam is detected in 
dependence of the angle 2θ, measured in degree (deg), 
between the incident beam and the detector. The result-
ing diffraction “peaks” (reflections) can be converted 
into d-spacings, which allows the identification of the 
material since these d-spacings are unique for each com-
pound. While crystalline substances produce a pattern of 
sharp reflections with different intensities, amorphous 
compounds only produces a broad background signal. 
Further information about this technique can be found, 
for example, in the review article of Bunaciu et al. [12].

The crystallinity of the refractory ceramic fibres was 
additionally investigated with transmission electron 
microscopy (TEM) and electron diffraction. The TEM 
images were recorded with a Philips CM30/STEM 
(300 kV, LaB6 cathode) equipped with a GATAN digital 
camera (Figs. 4, 5).

In Fig.  6 the results of the X-ray powder diffraction 
of the samples 1 and sample 3 were presented. The raw 
material (indicated 1a and 3a) as well as the RCF from 
processed vacuum moulds (indicated 1b and 3b) showed 
no reflections, only a broad background signal, which 
indicates the amorphous character of these samples. The 
electron diffraction confirms these results; no reflections 
were visible as well.

In contrast, the fibres of the samples 2 are crystalline. 
The X-ray powder diffraction (Fig.  7) of the sample 2a 
and 2b show sharp reflections for specific angles, which 

(1)n� = 2d · sinθ

Fig. 4  SEM images of the RCF (Magnification 500- (Sample 1a, left (a)), 2000-fold (Sample 1a, right (b)). Several fibres meet the criteria of WHO fibres

Fig. 3  Multiplanar reformation (MPR) of computed lung tomography. 
Pleural thickening with fibrosis strands on dorsal chest wall (thick 
white arrows) and pleural calcifications (slim white arrows)
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indicate the crystallinity of these samples. The fibres were 
identified with a crystallographic data base by the diffrac-
tion pattern as mullite (3Al2O3∙2SiO2).

The electron diffraction confirms these results. Fig-
ure  8 shows the electron diffraction pattern of the 
samples 2a and 2b. The different arrangement of the 
reflections originates from different crystallographic 
orientations of the fibres. The distance between the 
centre and the reflections can be converted into 
d-spacings, which can be assigned to the Miller indices 
shown in Fig. 8.

The lattice planes are usually depicted through 
the Miller indices h, k, l. These three digit numbers 
describe the orientation of a single lattice plane or a 

set of parallel planes and result from the points, where 
a plane cuts the crystallographic axes (a, b, c). The 
Miller indices are depicted in curvilinear bracket as 
(hkl). Further information about crystallography can 
be found, in the review article of Ameh [13].

Discussion
The safety engineer reported that the worker had been 
exposed to RCF since 2000. Personalised measure-
ments were taken at different production sectors within 
the plant in 2012, 2015, 2017 and 2018 and showed 
elevated concentrations of RCF above 0,3 Fibres/cm3 
as recommended by European guidelines Directive 
2004/37/EC of the European parliament [14] at the saw 
position 1 and 3, at the dry kiln, at the work bench and 

Fig. 5  Energy dispersive X-ray spectrum of the RCF Sample 1a as example of aluminium silicate fibres. The EDX spectrum shows oxygen, aluminium 
and silicon peaks resulting from aluminium oxide (Al2O3) and silicon dioxide (SiO2). The Au peak results from a fine layer of gold from the sample 
preparation

Fig. 6  X-ray powder diffraction patterns (normalized; a.u. = arbitrary 
unit) of the fibres samples 1a, 1b, 3a and 3b. The absence of 
reflections shows the amorphous character of the samples 1 and 3

Fig. 7  X-ray powder diffraction patterns (normalized; a.u. = arbitrary 
unit) of the sample 2a and 2b compared to literature data of mullite 
(3Al2O3∙2SiO2; PDF 00-006-0258)
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the cartridge production. Amorphous and crystalline 
RCF were detectable during suction processing, dry-
ing and in all manual working steps during cartridge 
production. The fibres did not change physical prop-
erties during different processing steps. As shown in 
Fig. 4 fibres had various lengths with a high proportion 
of long fibres meeting the WHO criteria as respirable 
fibres.

During a routine medical examination a restrictive lung 
function analysis was obvious. In chest X-rays includ-
ing chest CT scans diffuse pleural thickening, calcifica-
tions and a rounded atelectasis could be confirmed. The 
patient and safety engineer excluded any asbestos expo-
sure at the workplace. The changes were ascribed to RCF 
exposure at the workplace.

Animal studies
Animal data indicated there is a risk of pleural changes 
and malignancies after RCF exposure. Hesterberg and 
Mast showed in 1995 that exposure to RCF induced lung 
fibrosis, lung tumours and mesotheliomas in rats and 
hamsters [15, 16]. RCF exposure over 12 months resulted 
in macrophage infiltration, bronchiolisation of proximal 
alveoli, and microgranuloma formation. Additionally 
Everitt et  al. and Gelzleichter et  al. found in hamsters 
increased focal pleural thickenings after a 12-week expo-
sure to RCF [17, 18].

Symptoms
Data from RCF morbidity in humans indicated that 
exposed workers suffered from dyspnoe, and showed 

significant deficiencies in certain measurements in lung 
function. Also a dose-related increase in pleural plaques 
was described [3, 19].

Trethowan et al. studied 628 current employees in the 
manufacturer of ceramic fibres in seven European plants 
in three countries [20]. In all plants, the most frequent 
symptoms of the employees were nasal stiffness in 55% of 
all subjects, 41% complained of eye irritation, 36% com-
plained of skin irritation, 18% of wheeze, 13% dry cough, 
and 12% fulfilled the criteria of chronic bronchitis. All 
symptoms were more frequent in current smokers com-
pared with ex or never smokers.

Lung function changes
The longest ongoing observational study by LeMasters 
et  al. [3], 30-year mortality and respiratory morbid-
ity study of refectory fibres workers, showed localized 
pleural thickening associated with small decreases in 
spirometry results. While statistical significance was 
observed for FVC between cumulative RCF exposure 
(eg. 15 vs > 60 fibre-months/cc at age 40), there was 
no consistent pattern demonstrating increasing loss 
in FVC with higher exposure categories  [21, 22]. This 
was also depended on initial weight and weight gain 
(p < 0.001). Additional FEV1 reduction was associated 
with cumulative pack-years and current smoking sta-
tus significantly. Trethowan et al. studied employees in 
the manufacturer of ceramic fibres [20]. After adjust-
ment for age, sex, height, smoking and past occupa-
tional exposure, there was no significant influence in 

Fig. 8  Indexed (Miller indices) electron diffraction images of the sample 2a (left (a) and 2b (right (b)). The fibres have different crystallographic 
orientations resulting in a different arrangement of the reflections
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FEV1 resp. peakflow in non-smokers. However, there 
was a significant decrease in FEV1 and peakflow in 
current smokers and ex-smokers. In contrast, Clausen 
et  al. found significantly lower values of FEV1  in 340 
insulation workers compared with 166 bus drivers [23]. 
The observed difference was independent of smoking 
habits and self-assessed former asbestos exposure. In 
summary RCF exposures failed to be associated with 
reduced lung function tests so far.

Pleural changes
Lockey et al. described a dose response between pleural 
changes and cumulative fibre exposure in RCF work-
ers [2]. In RCF production pleural changes increased 
after a latency > 20  years with an OR of 10.8 [95% CI: 
2.4–47.9] [2, 24] even without any asbestos exposure. 
In contrast interstitial changes have not been associ-
ated with RCF exposure [21, 22, 25]. The occurrence 
of pleural changes on chest radiographs suggests that 
RCF have sufficient biopersistence to directly or indi-
rectly induce pleural inflammatory response result-
ing in pleural thickening [26–28]. LeMasters et  al. 
[3] demonstrated that RCF workers without asbestos 
exposure had in 6.1% pleural changes, mostly bilateral 
(67.4%) and localized pleural thickening (LPT) (86.5%) 
after a latency of 20–30  years. 2.2% showed diffuse 
pleural thickening (DPT) and 11.2% had both LPT and 
DPT. Latency categories of RCF exposure were signifi-
cantly associated with pleural changes: for those in the 
> 20–30  years latency, the odds ratio (OR) was signifi-
cant elevated OR = 7.3, [95% CI: 2.0–26.2] and in the 
> 30 years latency period OR = 7.8 [95% CI: 2.2–27.7].

The new findings of our report are besides findings 
of pleural thickening and calcified pleural plaques also, 
the formation of a rounded atelectasis in a RCF worker 
accompanied with a restrictive lung function. Rounded 
atelectasis is more common in men (80%) than in 
women. The most common cause of rounded atelecta-
sis (RA) is occupational exposure to asbestos [29, 30]. 
The direct mechanism for the development of rounded 
atelectasis has not been fully explained. According to 
one of the theories [29], pleural fluid causes local ate-
lectasis due to the pressure on the adjacent lung. If the 
rate of fluid pleural accumulation exceeds the absorp-
tive capacity of adjacent alveoli, visceral pleura damage 
occurs with formation of a fissure and translocation of 
the lung towards that fissure. As a result of this pro-
cess, the lung folds in a concentric shape maintained by 
developing adhesions. When the effusion is resorbed, 
the lung fills in the space around rounded atelectasis. 
According to another theory, the lesions are initiated 
by local pleuritis due to agents, such as asbestos fibres. 

Local accumulation of pleural fluid or fibre dusts in the 
course of asbestosis, leads to shrinkage and thickening 
of pleura. The adjacent lung also shrinks and rounded 
atelectasis develops [31]. Pathophysiological it may 
be obvious, that not only asbestos fibres but also RCF 
causes rounded atelectasis.

Conclusion
A rounded atelectasis was found in chest CT scans in a 
middle aged worker in a RCF processing plant during a 
medical check-up. This is accompanied with a restric-
tive ventilation disorder and reduced diffusing capacity. 
Meanwhile the restrictive lung disease is accepted as a 
recognised occupational disease by the accident insur-
ance institution. A comprehensive lung function analysis 
and in case of restrictive lung disorders additional CT 
scans are needed in RCF exposed workers in accordance 
to the guidelines for medical occupational examinations 
comparable to asbestos exposed workers.
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