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Stage II–IIIA nonsmall cell lung cancer (NSCLC) patients receive adjuvant

chemotherapy after surgery as standard-of-care treatment, even though only

approximately 5.8% of patients will benefit. Identifying patients with minimal

residual disease (MRD) after surgery using tissue-informed testing of postop-

erative plasma circulating cell-free tumour DNA (ctDNA) may allow adju-

vant therapy to be withheld from patients without MRD. However, the

detection of MRD in the postoperative setting is challenging, and more sensi-

tive methods are urgently needed. We developed a method that combines vari-

ant calling and a novel ctDNA fragment length analysis using hybrid capture

sequencing data. Among 36 stage II–IIIA NSCLC patients, this method dis-

tinguished patients with and without recurrence of disease in a 20 times

repeated 10-fold cross validation with 75% accuracy (P = 0.0029). In con-

trast, using only variant calling or only fragment length analysis, no significa-

tion distinction between patients was shown (P = 0.24 and P = 0.074

respectively). In addition, a variant-level fragmentation score was developed

that was able to classify variants detected in plasma cfDNA into tumour-

derived or white-blood-cell-derived variants with 84% accuracy. The findings

in this study may help drive the integration of various types of information

from the same data, eventually leading to cheaper and more sensitive tech-

niques to be used in this challenging clinical setting.
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1. Introduction

Lung cancer is the leading cause of cancer-related

deaths worldwide [1]. At diagnosis, 40–50% of nons-

mall cell lung cancer (NSCLC) patients present with

stage I–III disease [2,3]. Resection is the primary treat-

ment approach for stage I–II disease, and an impor-

tant component of the multimodality approach for

stage III. Based on a meta-analysis of multiple ran-

domised controlled trials the standard of care for stage

II–IIIA NSCLC includes adjuvant chemotherapy, even

though the absolute disease-free survival (DFS) benefit

is limited (5.8%) [4,5]. Moreover, adjuvant person-

alised regimens have been registered recently, using

targeted therapy or immune checkpoint inhibitors

[6,7]. Consequently, there is an unmet clinical need to

identify patients who will not benefit from adjuvant

therapy.

The prospect of using circulating cell-free DNA

(cfDNA) to detect postoperative minimal residual dis-

ease (MRD) was met with initial optimism [8,9]. How-

ever, although early detection of relapse using cfDNA

has been reported in gastric cancer [10] and colon can-

cer [11], as well as for NSCLC post-therapy [12,13],

cfDNA as a postoperative marker to identify NSCLC

patients who will not benefit from adjuvant therapy is

not yet reported.

Traditionally the detection of MRD is focussed on

detecting somatic variants in the resected tissue mate-

rial, and tracing those in the postoperative or postad-

juvant therapy plasma [8–14]. Approaches using the

same panel for all patients can be limited by the num-

ber of variants that are available for tracking. To

overcome this, tissue-informed personalised assays

have been developed, tailored to every individual

patient, to trace up to 48 mutations in plasma [12–15].
However, designing and analysing such individualised

assays is costly and time-consuming, which may be

problematic in between surgery and adjuvant therapy.

More recently, other approaches have been devel-

oped using additional characteristics of cfDNA, next

to mutations, to help detect the presence of circulating

tumour DNA (ctDNA). One promising approach is

the interrogation of cfDNA fragment length, leverag-

ing the knowledge that ctDNA is shorter than

nontumour-derived cfDNA [16–21]. This has been

used to infer a patient-level fragmentation-based classi-

fier from shallow whole-genome sequencing (WGS)

data [22,23], as well as to help distinguish tumour-

derived mutation calls from clonal haematopoiesis-

derived mutation calls in hybrid capture sequencing

data [19,24,25]. This mounting evidence suggests that

fragment length analysis could also be used to support

the classical variant-based detection of MRD. As frag-

ment length analysis and variant tracing are indepen-

dent read-outs of the presence of ctDNA, there is an

opportunity to combine the two approaches to

improve the sensitivity of detecting MRD.

In this proof-of-principle study we explore the

potential of combining patient-level fragment length

analysis and variant calling from hybrid capture

sequencing data for MRD detection in stage II–IIIA
NSCLC patients.

2. Materials and methods

A flow chart illustrating the procedures and data

streams in this project is provided in Fig. 1.

2.1. Patients

All patients were enrolled with written informed con-

sent as part of the multi-centre Lung Early Molecular

Assessment trial (LEMA; ClinicalTrials.gov

NCT02894853), which was in accordance with the

standards set in the declaration of Helsinki and was

approved by the medical ethics committee (METC) of

the Netherlands Cancer Institute (NKI). Patients were

only included in this MRD study if they were diag-

nosed with pathological stage II–IIIA NSCLC disease

and if resected tissue material, preoperative plasma (0–
50 days prior to surgery), preoperative BCP and post-

operative plasma were available. The postoperative

plasma was required to be taken at least 3 days post-

surgery [26], and before adjuvant therapy, with a maxi-

mum of 36 days postsurgery. A cohort of 36 patients

meeting these criteria was selected.

Also, a control group was selected from the LEMA

trial and consisted of 15 risk- and age-matched

patients with a suspicion of lung cancer based on

imaging, who subsequently underwent a tissue biopsy

which proved a nonmalignant diagnosis. This cohort

of risk- and age-matched controls is a reflection of

daily clinical practice where we need to distinguish

between patients with lung cancer and patients with

nonmalignant diseases of the lung. Details of the non-

malignant control group are provided in Table S1. For

the nonmalignant control group only the preoperative

plasma sample was sequenced as described below.

2.2. Samples

Blood was collected in two hospitals, either using

10 mL K2-EDTA tubes or 10 mL cell-stabilising tubes
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(CST; STRECK, Omaha, NE, USA). Cell-free plasma

was obtained from the K2-EDTA tube within 4 h by a

two-step centrifugation at room temperature: 20 min

at 380 g followed by 10 min at 20 000 g. Cell-

stabilising tubes were centrifuged at room temperature

for 10 min at 1700 g and 10 min at 20 000 g within

7 days. Cell-free plasma was stored in 1–4 mL aliquots

at �80 °C. cfDNA isolation was performed using the

QIAsymphony Circulating DNA kit (article number

1091063, Qiagen, Dusseldorf, Germany) with the

QIAsymphony (Qiagen). No extraction blanks were

used in this study. Elution volume was set to 60 lL
and samples were stored at 4 °C until use. No signifi-

cant differences were observed in the fragmentation

scores of samples collected in EDTA tubes or CST

(data not shown). To confirm this, a pilot experiment

was performed with nine patients with metastatic

NSCLC. Blood was concurrently drawn in both CST

and EDTA tubes, and patient-level FS was deter-

mined. Based on a Passing Bablok regression we con-

clude that the type of tube does not influence the

patient-level FS (Fig. S1B).

DNA from BCP was isolated from a 1 mL pellet

using the QIAsymphony DSP DNA Midi Kit (article

number 937255, Qiagen). Elution volume was set to

400 lL and samples were stored at 4 °C until use.

DNA was fragmented sonically on a Covaris ME220

Focused-ultrasonicator (Covaris Inc., Woburn, MA,

USA) using microTUBE AFA Fibre Pre-Slit Snap-

Cap (PN 520045) vessels, with the following settings:

Duration 70 s, Peak Power 70 W, Duty Factor 20%

and 1000 Cycles per Burst.

DNA from tissue was obtained from FFPE slides.

The pathologist scored tumour percentage and indi-

cated most tumour-dense region for isolation on an

H&E slide. Five to 10 (depending on tumour size)

FFPE 10 lm slides were used. DNA and RNA were

isolated simultaneously with the AllPrep DNA/RNA

FFPE isolation kit (Qiagen, #80234) by using the

QIAcube, according to the manufacturer’s protocol.

DNA input into the AVENIO library preparation

phase was determined according to the protocol (me-

dian 37.3 ng, IQR 32.6–46.3 ng). Fragmentation of

the FFPE tissue DNA was performed enzymatically,

according to the AVENIO library preparation proto-

col.

2.3. Sequencing and variant calling

Fourteen preoperative samples were sequenced with a

large capture panel comprising 1.1 Mb as described

earlier [27], which fully overlaps the AVENIO Surveil-

lance Panel and only the overlapping regions were

used. All other samples (22/36 preoperative plasma,

BCP, tissue and postoperative plasma of 36 NSCLC

patients, as well as the preoperative plasma samples of

patients with nonmalignant disease) were sequenced

in-house using the AVENIO Surveillance Panel (for

Research Use Only; not for use in diagnostic proce-

dures, Roche Sequencing Systems, Inc. Pleasanton,

Fig. 1. Flow chart illustrating the experimental procedures and data

flows in this study. Blood and tissue samples from 36 NSCLC

patients and plasma cfDNA from 15 risk- and age-matched patients

with nonmalignant disease were sequenced with a targeted hybrid

capture sequencing panel. Optimised variant calls were combined

with patient-level fragmentomics, both from the hybrid capture

sequencing data, to determine the presence of minimal residual

disease in each patient in a 20 times repeated 10-fold cross valida-

tion.
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CA, USA), covering hypermutated regions or full exo-

nic sequences of 197 genes, total size 198 kb [28]. Han-

dling in accordance with the predefined protocol, we

isolated cfDNA from all available plasma and used

50 lL of the eluate as input for the AVENIO library

preparation. Median cfDNA input for preoperative

samples was 24.4 ng (IQR: 17.4–38.5 ng), for postop-

erative samples was 50.0 ng (IQR: 49.4–50.0 ng).

Samples were multiplexed and sequenced on an Illu-

mina NextSeq550, generating median 30 M reads per

sample (IQR: 27–34 M). Median unique sequencing

depth in preoperative samples was 36789 (IQR: 2495–
47589), in postoperative samples 62899 (IQR: 5081–
69809), in BCP 34289 (IQR: 3162–36849) and in tis-

sue 19389 (IQR: 1573–28199).

Variant calling was performed using the AVENIO

pipeline, using the unfiltered called variants. All vari-

ants that were detected in blood cell pellet were con-

sidered to be germline if they were also detected in

tumour tissue. They were considered to be CHIP if

they were not detected in tumour tissue. Germline

variants and CHIPs were removed from downstream

analysis. All variants except germline variants are

reported in Table S2. Raw data read counts were

extracted from the .freq files of the postoperative

plasma for all variants detected in any sample of that

patient.

Variant calling cut-offs in the postoperative plasma

were optimised. Specifically, the cut-offs were lowered

for tumour-informed and preoperative plasma-

informed variants. We iteratively lowered the cut-offs

to requiring one to eight reads. Additionally, the cut-

off for calling a patient MRD-positive varied from

requiring at least one to six baseline-informed variants

detected in the postoperative plasma. The best combi-

nation of cut-offs was selected based on the highest

concordance with recurrence status of the patients.

2.4. Fragmentation score

To calculate the FS, we first built a reference database

of reads that contained tumour-informed mutations,

and stored their respective lengths from the dedupli-

cated BAM files, in total 21 705 fragments. For the

nontumour reads we collected reads from 15 patients

with nonmalignant disease (177.6 million fragments).

First, we randomly sampled 10 000 reads from each

set and calculated the probability density for each frag-

ment length to occur in tumour- and nontumour-derived

cfDNA (Fig. 2A). Next, we calculated the log-2 of the

ratio of these densities, maxed at +5 and �5 for lengths

that had a count of 0 in either group. Additionally, frag-

ment lengths that had a total of 20 reads or fewer were

given a score of 0. This process was bootstrapped over

Fig. 2. Fragment length analysis. (A) Fragment length density in the perspective of fragment length in base pairs (bp) including tumour

fragments (red, n = 21 705 fragments), defined by containing a tumour-derived mutation, and nontumour fragments (blue, n = 177.6 million

fragments) from patients with nonmalignant disease. Red shaded areas indicate fragment lengths that are more prevalent in tumour cfDNA,

while blue shaded areas are more prevalent in nontumour cfDNA. The intensity of colours corresponds to the log-2 of the relative ratio of

tumour- to nontumour-derived fragments. (B) Patient-level fragmentation score (FS) for age-matched nonmalignant patients (i.e. control

group, n = 15), and paired preoperative and postoperative plasma samples from NSCLC patients (n = 36). Fragmentation score was signifi-

cantly higher in both preoperative patient samples and postoperative patient samples when compared to nonmalignant patients (P < 0.001

and P = 0.002 respectively, Wilcoxon rank sum test). FS was significantly higher in preoperative patient samples compared to paired postop-

erative patient samples (P = 0.007, paired t-test). (C) Patient-level FS for age-matched nonmalignant patients (i.e. control group, n = 15), and

postoperative plasma samples from NSCLC patients, categorised in patients with (n = 14) versus without recurrence of disease (n = 22).

There was no statistically significant difference between the postoperative FS of patients with recurrence and patients without recurrence

of disease (P = 0.38, Wilcoxon rank sum test).
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1000 iterations to smooth out any noisy areas and reduce

the impact of sampling errors.

Thus, each fragment length was allocated a per-

fragment fragmentation score in this reference set,

illustrated in Fig. S2A. In order to translate this per-

fragment score into a per-patient score, we randomly

sampled 1 million fragments from each patient and

reported the mean fragmentation score per million

fragments (Fig. 2A,B and Fig. S3A). Patients who had

an FS greater than the mean FS plus two times the

standard deviation among 15 plasma samples from

patients with nonmalignant disease were considered

positive for MRD detection. Technical reproducibility

of the FS was shown by 10 times repeated subsam-

pling of one million, hundred thousand, ten thousand

or one thousand reads per sample (Fig. S4A). The

confidence interval of the calculated FS was consis-

tently smaller than 0.01 when one million reads were

sampled, indicating very consistent patient-level FS

reproducibility at this sampling size (Fig. S4B).

The per-fragment score was translated to a per-

variant score (VFS) by averaging the scores of all frag-

ments supporting a specific variant (Fig. 3A). If the

same variant was detected in both the preoperative and

postoperative plasma, the fragments were analysed col-

lectively in order to obtain more fragments per variant,

resulting in a better score. The nonmalignant cfDNA

threshold was established by randomly sampling each

number of reads from 15 patients with nonmalignant

disease 1000 times, and calculating the VFS. The thresh-

old was set at the mean plus two times the standard devi-

ation in nonmalignant reads. The minimum number of

reads to include a variant was determined by assessing

the best performance by assigning a score of 1 for each

correctly classified variant, �1 for incorrectly classified

variants and 0 for indeterminate variants below the cut-

off, and resulted in a cut-off of eight reads. The same

cut-offs were applied to the validation data in the

MSKCC/Grail cohort (Fig. S3B).

The algorithm to calculate the FS and VFS was

written in R [29] and has been made publicly available

(https://github.com/DCLVessies/Fragmentomics) for

other researchers to evaluate, along with the estab-

lished fragment length reference set. The FS and VFS

presented in this work could in principle be used in

any cfDNA sequencing method that preserves the frag-

ment length information, such as hybrid capture

sequencing and (shallow) whole-genome sequencing,

but not in PCR-based amplicon sequencing.

2.5. Cross validation

The applicability of the combined variant calling and

FS model for predicting recurrence was validated using

Fig. 3. Variant level fragment length analysis and Kaplan–Meier curve of the combined MRD-model. (A) Variant-level fragmentation score

(VFS) versus number of reads per variant for all tumour-informed variants (n = 204, red) and CHIP variants (n = 190, blue) in the LEMA-MRD

cohort. Reads from preoperative and postoperative plasma for the same variant were added up for this analysis. The black dashed line rep-

resents the mean plus two times standard deviation of fragments randomly sampled from 15 patients with nonmalignant disease and is

used as a nonmalignant cfDNA threshold. (B) Performance of a combined MRD model including fragment length analysis and variant calling.

Kaplan–Meier curve with progression-free survival (PFS) of MRD-positive (yellow) and MRD-negative patients (blue) based on the combined

variant calling and patient-level fragmentation score (FS) model in a 20 times repeated 10-fold cross validation. Patients were labelled as

MRD-positive or -negative by the majority result of the cross validation. The model was able to differentiate between patients with recur-

rence of disease and those without (P = 0.0029, log-rank test).
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a 20 times repeated 10-fold cross validation. For each

repeat, the 36 patients were randomly divided into 10

folds of three or four patients. In each iteration the

model was trained on nine folds, and the training algo-

rithm was applied on the remaining fold until each

fold had been applied once. In total, this process of

cross validation was repeated 20 times.

For each fold, the reference set for the FS was rebuilt

using only the mutation reads in the 90% of the data

used for training, and all FS including the FS for patients

with nonmalignant disease were recalculated. Cut-offs

for the variant calling were determined likewise based on

the training data. The variant calling and FS each pro-

vided a true or false call based on their respective cut-

offs as described above. Based on the best fit of the train-

ing data to the status of disease recurrence, the model

determined whether both outcomes had to be positive or

whether one positive outcome was sufficient. Subse-

quently, this algorithm was applied to the one remaining

fold that was not included in the training data. The final

performance of the model was determined by the major-

ity call for each patient among the 20 repeats – that is, a

patient was counted as predicted positive if it was pre-

dicted positive at least 11 times (Fig. S5).

For the randomly assigned patient-level FS as

shown in Fig. S6C, the FS and variant calls were

determined as described above, but subsequently, the

patient-level FS was assigned to a randomly deter-

mined other NSCLC patient.

2.6. Potential clinical implications

Based on the Lung Adjuvant Cisplatin Evaluation

(LACE) meta-analysis of five randomised controlled

trials [4], adjuvant chemotherapy after complete resec-

tion of stage II and III NSCLC was established as the

standard of care [5]. The absolute disease-free survival

benefit of adjuvant chemotherapy was determined to

be 5.8% in the meta-analysis, and this was assumed to

be the case in our simulations.

In order to estimate the fraction of patients that

benefit from adjuvant chemotherapy in the MRD-

positive and -negative groups, we assumed that the

sensitivity of detecting recurrence is the same as the

sensitivity for detecting patients who would benefit

from chemotherapy. While this assumption is not

ideal, this is the closest estimate we have based on the

data generated in this study.

In a 10 000 times repeated bootstrap simulation 36

patients were randomly drawn from our cohort, with

replacement. Next, each of the 36 patients was randomly

assigned a prediction: MRD-positive or MRD-negative

with probability equal to the results of the TTF-CV

(Fig. S5, rightmost column). In each iteration the 5.8%

of people who benefit from adjuvant chemotherapy were

distributed between the MRD-negative and -positive

groups proportionally to the sensitivity for detecting

recurrence in that iteration (e.g. if sensitivity for detect-

ing recurrence was 80% in that iteration, then likewise

80% of the 5.8% of patients who would benefit from

adjuvant chemotherapy were allocated to the MRD-

positive group). The fraction of MRD-positive and -

negative patients who would benefit from adjuvant

chemotherapy was reported.

3. Results

In total 36 stage II–IIIA NSCLC patients with avail-

able preoperative blood cell pellet (BCP) and plasma,

resected tissue material and postoperative plasma

between 3 and 36 days postsurgery were included in

this study. In addition, 15 patients with nonmalignant

disease and with available preoperative blood plasma

were selected as a control group. All patients were

selected from the larger Lung Early Molecular Assess-

ment trial (LEMA; ClinicalTrials.gov NCT02894853).

3.1. Patient characteristics

In this cohort six patients (17%) were diagnosed with

pathological stage IIA, 18 patients (50%) with stage IIB

and 12 patients (33%) with stage IIIA disease. In total,

recurrence of disease occurred in 14 patients (39%) with

a median follow-up of 23 months (IQR 19–30 months).

The clinical characteristics of the assessed cohort are

represented in Table 1. A total of 16 patients (44%) had

squamous cell carcinoma, in line with national preva-

lence of this histological subtype in stage II (35%) and

III (36%) NSCLC patients in the Netherlands [30].

3.2. Somatic variants

To detect MRD using variant calling, we first identi-

fied tumour-related variants in the preoperative setting

using tissue and plasma and subsequently sought

whether these variants could be traced in the postoper-

ative plasma. After removing clonal haematopoiesis of

indeterminate potential (CHIP) and germline variants,

a median of 8 (range 3–34) tissue-informed or preoper-

ative plasma-informed variants per patient remained

that could be tracked in the postoperative plasma. As

such, variants that were only detected in postoperative

plasma were considered uninformative and were

removed from analysis. In total, 389 trackable variants

were identified in 36 patients, of which 154 variants

(40%) in the postoperative plasma were directly
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reported by the AVENIO pipeline or had reads in the

deduplicated BAM files (Fig. 4A).

When considering the prognostic power of MRD

detection using only variants, a median of 3 variants

per patient (range 1–10) were detected or had reads in

the postoperative plasma of patients who did not

develop recurrence, in comparison to a median of 4

variants (range 0–13) in patients who did develop

recurrence (Fig. 4B). Defining disease recurrence as a

surrogate endpoint for the presence of MRD post-

surgery, we performed a 20 times repeated 10-fold

cross validation (TTF-CV, described in Materials and

methods) to evaluate the performance of variant call-

ing for detecting MRD. Using only variant calling

with optimised variant call thresholds we were unable

to accurately distinguish patients with and without

recurrence (P = 0.24, log-rank test, Fig. S6A).

3.3. Fragment length analysis

We investigated differences between ctDNA and non-

tumour cfDNA fragment lengths. ctDNA fragments

were defined by containing a tumour tissue-informed

mutation, of which 21 705 fragments were detected in

the plasma of 36 patients. In line with what others

found, these ctDNA fragments were shorter than

cfDNA fragments from patients with nonmalignant

disease (control group), including both the mononucle-

osomal and the dinucleosomal fragments (Fig. 2A)

[16,18,20]. Correspondingly, the relative abundance of

each fragment length in ctDNA versus nontumour

cfDNA fragments indicates the likelihood of each frag-

ment originating from a tumour cell or a nontumour

cell. As described in the Materials and methods sec-

tion, this property was used to calculate an aggregated

patient-level Fragmentation Score (FS) from 1 million

fragments per patient, derived from the same hybrid

capture sequencing data as the variant calling.

Median patient-level FS in the preoperative samples

was �0.47 (IQR �0.54 to �0.37), which was higher

than observed in the postoperative samples with a

median of �0.55 (IQR �0.60 to �0.46, P = 0.007,

paired t-test, Fig. 2B). FS among 15 patients with non-

malignant disease (median �0.67, IQR �0.70 to

�0.56) was lower than in preoperative samples

(P < 0.001, Wilcoxon rank sum test) and in postopera-

tive samples (P = 0.002, Wilcoxon rank sum test,

Fig. 2B). Applying a cut-off at the mean plus two

times standard deviation of the patient-level FS for

patients with nonmalignant disease, we reached 100%

specificity (95% CI 72%–100%), and sensitivity of

44% (95% CI 28%–62%) and 25% (95% CI 12%–
42%) in preoperative and postoperative samples

respectively. Subsequently, the performance of the

patient-level FS was validated in the DELFI cohort

[22]. We applied a cut-off of the mean plus two times

standard deviation of the patient-level FS among 213

samples from healthy individuals. This resulted in

98.6% specificity (95% CI 95.9%–99.7%) and 58%

sensitivity among lung cancer cases (n = 12, 95% CI

28%–85%), confirming the performance of the

patient-level FS (Fig. S3A). However, the difference in

postoperative FS between patients with and without

recurrence was not significant (median �0.49 versus

�0.55, P = 0.38, Wilcoxon rank sum test, Fig. 2C)

and using only the FS we were unable to accurately

distinguish patients with and without recurrence

(P = 0.07, log-rank test, Fig. S6B).

Additionally, a variant-level fragmentation score

(VFS) was developed to differentiate tumour-informed

variants from nontumour variants (e.g. CHIPs) based

on the fragment length of the supporting reads. The

VFS distinguished tumour-informed variants from

CHIPs with 84% specificity (159/190 CHIPs classified

correctly) and 55% sensitivity (113/204 tumour

Table 1. Clinical characteristics of NSCLC patients in this cohort.

LCNEC, Large-cell neuroendocrine carcinoma; NSCLC-NOS, Nons-

mall cell lung cancer – not otherwise specified.

All patients Stage II Stage III

N = 36 N = 24 N = 12

Age, median years (IQR) 68 (62–76) 69 (62–75) 67 (61–76)

Sex, n (%)

Male 23 (64) 15 (63) 8 (67)

Female 13 (36) 9 (37) 4 (33)

Smoking status, n (%)

Active 11 (31) 8 (33) 3 (25)

Former 25 (69) 16 (67) 9 (75)

Pack years, median (IQR) 38 (20–57) 37 (20–55) 43 (23–70)

Tumour histology, n (%)

Adenocarcinoma 18 (50) 13 (54) 5 (42)

Squamous cell carcinoma 16 (44) 10 (42) 6 (50)

NSCLC-NOS 1 (3) 1 (4) 0

LCNEC 1 (3) 0 1 (8)

Recurrence of disease, n (%)*

Yes 14 (39) 7 (29) 7 (58)

No 22 (61) 17 (71) 5 (42)

Adjuvant chemotherapy

Yes, completed 7 (19) 5 (21) 2 (17)

Yes, partially completed 7 (19) 3 (12) 4 (33)

No 22 (61) 16 (67) 6 (50)

Days between baseline plasma

and surgery, median (IQR)

8 (6–14) 8 (6–14) 9 (6–15)

Days between surgery and

postoperative plasma,

median (IQR)

10 (6–23) 13 (6–25) 6 (4–20)

Months follow-up,

median (IQR)

23 (19–30) 26 (22–30) 19 (7–23)
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variants classified correctly; Fig. 3A). When consider-

ing only variants with at least eight reads, the speci-

ficity was 82% (131/159 CHIPs) and sensitivity was

improved to 86% (93/108 tumour variants). The per-

formance of the VFS was validated in an independent

cohort with high confidence calls of CHIPs and

biopsy-matched variants from Grail/MSKCC [31].

Using the exact same criteria and cut-offs as estab-

lished in our own cohort, we reached 93% specificity

(106/114 CHIPs) and 82% sensitivity (263/319 tumour

variants; Fig. S3B), confirming the robustness and gen-

eralisability of the VFS classification. However, includ-

ing this classifier in the MRD detection model did not

improve its ability to distinguish patients with and

without recurrence since the variants were already cor-

rectly classified by having sequenced the tumour tissue

and BCP.

3.4. Combined variants and FS model

To improve the accuracy of the MRD model we

explored the possibility of combining the variant detec-

tion and FS approach. The method of combination

and the TTF-CV used to evaluate the performance of

this combined model are described in Materials and

methods. The clinical sensitivity of the combined vari-

ant calling and FS approach for detecting ctDNA in

preoperative plasma was 75% (95% CI 58%–88%) at

100% specificity (95% CI 78%–100%), compared to

44% for FS alone (95% CI 28%–62%) and 47% for

variant detection alone (95% CI 30%–64%), highlight-

ing the complementarity of these approaches

(Fig. S1A).

When applied to detect MRD, the combined model

was able to differentiate patients with disease recur-

rence from those without with an accuracy of 75%

(Fig. 3B, P = 0.0029, log-rank test). The negative pre-

dictive value (NPV) was 78% (95% CI 56%–92%).

The performance of this combined model was signifi-

cantly superior in comparison to the model using only

variant calling (Fig. S6A, P = 0.24, log-rank test), only

FS (Fig. S6B, P = 0.07, log-rank test), or a model

combining variant calling and randomly generated FS

(Fig. S6C, P = 0.18, log-rank test), indicating the addi-

tion of FS is truly informative.

Due to the small cohort size and limited number of

events (n = 14), it was not possible to perform a mul-

tivariate Cox proportional hazards analysis. Instead,

we evaluated the bivariate Cox hazard ratios of the

MRD prediction model using each of the following

factors as a covariate: disease stage (stage II versus

stage IIIA), simultaneous secondary malignancies (yes

versus no), completion of adjuvant chemotherapy (not

started versus not completed versus completed) and

the time between surgery and postoperative blood

draw (in days). This revealed the MRD prediction

model was a significant predictor of progression-free

survival (PFS) in all bivariate analyses, and only

tumour stage was found to be a significant covariate

(Table S3).

Fig. 4. Variants detected in tumour tissue and pre- and postoperative plasma. (A) Total number of absolute variants across 36 patients

detected in tumour tissue (yellow), preoperative plasma (blue) and/or postoperative plasma (red), including a differentiation in variants called

by the Avenio pipeline or only with supporting reads. (B) Number of trackable variants per patient that were detected or had supporting

reads in the postoperative plasma, categorised in patients with (n = 14) versus patients without recurrence of disease (n = 22). Trackable

variants are defined as detected variants in the preoperative setting in either plasma or tumour tissue. Trackable variants in dark orange

were detected by the Avenio pipeline, trackable variants in light orange were not detected by Avenio but did have reads in the alignment

files. Trackable variants in grey did not have reads in the postoperative plasma alignment files.
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3.5. Potential clinical implications

To explore the potential effect of implementing an

MRD test with similar performance in a larger setting,

we simulated the hypothetical effect on clinical deci-

sion making (Materials and methods). Therefore, the

following assumptions were made: first, 5.8% of

patients potentially benefit from adjuvant chemother-

apy [4,5]. Second, the MRD test’s sensitivity for

detecting those patients that benefit is equal to the sen-

sitivity for detecting patients who will develop recur-

rence of disease. This simulation estimated a decrease

in benefit of adjuvant chemotherapy in the MRD-

negative group to 3.7% (95% CI: 1.4%–5.6%). On the

other hand, in the MRD-positive group the expected

benefit of adjuvant chemotherapy was hypothesised to

increase to a median of 9.0% (95% CI: 6.1%–13.3%;

Fig. S7).

4. Discussion

There is an unmet clinical need to identify stage II–
IIIA NSCLC patients who have been successfully

cured by surgery alone and will not benefit from adju-

vant therapy. Detection of postoperative MRD may

help guide adjuvant treatment decisions and reduce

overtreatment. Although studies in other types of can-

cer have demonstrated the ability to detect postopera-

tive MRD [10,11], and post-therapy detection of MRD

in NSCLC [12,13], no studies to date have reported

postsurgery detection of MRD in stage II–IIIA
NSCLC patients with the intent of withholding adju-

vant therapy in the MRD-negative group.

Here we present a combined variant calling and

fragment length model to detect postoperative MRD

and predict recurrence of disease which reached 75%

accuracy in cross-validation (P = 0.0027, log-rank

test). The analyses presented in this work may help

drive the integration of various types of information

from the same data, ultimately leading to cheaper and

more sensitive techniques for detecting postoperative

MRD in this setting.

4.1. Study design limitations

While the present results are hopeful, they need to be

critically nuanced. First and most importantly, this

study was designed as an explorative proof-of-concept

study, and the results should be interpreted as such.

Second, in this study both patients with and without

adjuvant chemotherapy were included. Disease recur-

rence was used as a surrogate endpoint to identify

patients with MRD postsurgery. One drawback of this

approach is that patients who were cured by adjuvant

therapy will show up as false-positive results in this

study design (i.e. MRD-positive but no recurrence),

and skew the model towards more cautious calling of

MRD. Since only 14 patients in our cohort started

adjuvant chemotherapy, of whom only seven patients

completed it, and because of the minimal cure rate of

adjuvant chemotherapy, we do not expect this to have

a large effect on the results.

Along the same lines, it is important to consider

that asking who will develop recurrent disease is not

the same as asking who will benefit from adjuvant

therapy. By extension, the clinical implications simu-

lated in this study should be interpreted as a best esti-

mate based on the data we have, and not as actual

data generated by this study. This estimate might be

used to generate hypotheses or inform the design of a

follow-up study.

4.2. Model performance

Despite these limitations, this study supplied valuable

insights. In order to get an indication of the clinical

sensitivity of the combined model we applied it to pre-

operative plasma samples and patients with nonmalig-

nant disease, using the confirmed presence or absence

of a tumour as a clinical gold standard to evaluate the

performance of the test. We reached a sensitivity of

75% at 100% specificity, comparable to the perfor-

mance of other methods that combine mutation detec-

tion with fragmentation patterns. For example, in a

cohort of 85 stage I–III lung cancer patients Lung-

CLiP reached sensitivities of 54% and 67% in stage II

and III respectively, at 98% specificity [24]. MRDetect

reached 67% sensitivity for 39 patients with lung ade-

nocarcinoma, of whom 78% with stage I–IIA, at 96%

specificity [32]. INVAR reports a sensitivity of 63% in

19 NSCLC patients with stage I–III [25]. DELFI is a

different model that uses shallow whole-genome

sequencing combined with artificial intelligence to

detect genome-wide fragmentation patterns [23].

Among 24 stage II–IIIA lung cancer patients, this

model reached 96% sensitivity at 80% specificity, and

71% sensitivity at 98% specificity. This indicates that

the combined variant detection and fragmentation pat-

tern model developed in this study performs compara-

bly to other state-of-the-art models.

When comparing the performance for detecting

MRD, the present model had an accuracy of 75%

(95% CI 58%–88%) in cross-validation, with an NPV

of 78% (95% CI 56%–92%). This was comparable to

an accuracy of 77% (95% CI 55%–92%) among 22

stage I–III lung adenocarcinoma patients for
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MRDetect [32], with an NPV of 100% (95% CI 74%–
100%). It should be noted that in the MRDetect study

only five patients developed recurrent disease, com-

pared to 14 patients in our study, leaving little room

for false-negative results. This is probably caused by a

high proportion of stage I disease (14 out of 22

patients), and a comparatively short follow-up for the

negatively tested stage II and III patients in their

cohort (n = 4). When only considering stage II–III
patients in the MRDetect study (n = 8) the accuracy

was 88% (95% CI 48%–100%) and the NPV 100%

(95% CI 40%–100%).

We speculate that while our model shows a highly

significant distinction between patients with a high or

low risk of developing recurrence (P = 0.0029,

Fig. 3B), the sensitivity and NPV of our and similar

methods will not be sufficient to ethically withhold

adjuvant therapy in the clinical application of a post-

operative MRD-test in stage II–III NSCLC. For that

reason, the field is working towards increasingly sensi-

tive techniques, and to that end it will be important to

obtain as much information as possible from data that

is already generated in current and future diagnostic

procedures. By combining hybrid capture variant call-

ing data, which can be used for molecular profiling,

with fragmentation analyses from the same data, our

method is another step in that direction.

Additionally, the postoperative samples in this

cohort were obtained relatively soon after surgery (me-

dian 6 days). Considering that three out of four false-

positive patients in our cohort had their blood col-

lected within 5 days after surgery and had elevated

levels of cfDNA in their blood (Fig. S5), this might

indicate a failure of clearance of ctDNA of the pri-

mary tumour after surgery. Performance characteristics

of the method might be improved by obtaining the

blood with a longer interval after surgery to make sure

any residual ctDNA from the primary tumour has

cleared, although definitive evidence about the optimal

timepoint for blood draw after surgery is still lacking

[33].

4.3. Fragmentation score

To the best of our knowledge the fragmentation score

(FS) presented in this work is the first method that

derives both a patient-level and variant-level fragmen-

tation score from hybrid capture sequencing data. In

our model the predictive weight of each fragment is

determined by the relative abundance in ctDNA versus

nontumour cfDNA. As a consequence, fragments of

130–150 bp and 250–300 bp are given higher predic-

tive weight towards ctDNA, while fragments of 180–

210 bp are given higher predictive weight towards

healthy cfDNA (Fig. 2A, Fig. S2A).

This method provides several advantages compared

to other studies that use fragment length analysis to

detect ctDNA. Other models most often define one or

several ‘windows’ of fragment lengths that are enriched

for ctDNA, such as the window of 100–150 bp [22],

90–150 bp [19] or < 160 bp and 230–310 bp [24]. How-

ever, these windows allocate the same predictive

weight to each fragment within that window, and the

boundaries of the windows may change between differ-

ent research groups. This is especially detrimental in

the 150–160 bp range, which is the most abundant in

cfDNA and would have a large impact on the model,

even though fragments in that range are abundant in

both ctDNA and nontumour cfDNA and therefore

poor predictors.

Applying our model to patients with nonmalignant

disease, the patient-level FS was significantly lower

than in both preoperative and postoperative patient

samples (Fig. 2B). This finding was reproduced in pub-

licly available data of the DELFI cohort, highlighting

the reproducibility and broader applicability of the

approach (Fig. S3A). The DELFI data were generated

from shallow WGS data, confirming that the patient-

level FS performance does not depend on the target

area of the sequencing data. However, based on

patient-level FS alone we were unable to reliably dis-

tinguish patients with and without recurrence

(Fig. S6B), underlining the finding that patient-level

FS is not a silver bullet solution and should be used in

conjunction with other means of MRD detection like

variant calling.

To reduce the need for BCP-paired sequencing,

methods are needed to distinguish CHIPs from

tumour-derived mutations [34]. To that end we devel-

oped a VFS. Since we had access to a rich dataset con-

taining tumour tissue, BCP and plasma sequencing

data we were able to report the performance of the

VFS on an individual variant level, which has not been

reported before. The VFS was capable of distinguish-

ing tumour-derived variants from nontumour-derived

variants (i.e. CHIPs) with high specificity (84%) and

reasonable sensitivity (55%). Sensitivity in variants

with at least eight reads improved to 86%, with com-

parable specificity (82%), at the cost of inconclusive

results for 32% of variants (Fig. 3B). Validation of the

trained model in a highly characterised public dataset

of Grail/MSKCC reached an even superior perfor-

mance with 82% sensitivity and 92% specificity

(Fig. S3B).

Since variants were already classified based on

tumour tissue and BCP sequencing, the VFS was not
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of added value in our current MRD model. We specu-

late that the VFS could be applied in future studies to

filter nontumour-derived variants with high accuracy,

and thereby reduce or eliminate the need to sequence

tumour tissue and/or BCP alongside plasma samples.

4.4. Clinical implications

In an exploratory hypothesis-generating simulation we

estimated the potential clinical consequences of imple-

menting the MRD prediction model in clinical prac-

tice. In the MRD-negative group we hypothesised that

only 3.7% of patients would benefit from adjuvant

chemotherapy, potentially tipping the debate towards

withholding adjuvant chemotherapy for these patients.

However, the simulated data does not correct for

chemotherapy undergone by patients in our cohort

and represents data from only a small cohort. As such

these simulated estimates should be treated as hypoth-

esis generating based on the data we have and not as a

prediction of the clinical impact of our model.

At present, adjuvant targeted therapy and

immunotherapy are being integrated in early-stage

NSCLC to improve cure rates and long term overall

survival [7,35,36]. Extensive molecular testing at diag-

nosis can identify oncogenic drivers and therefore pre-

sents an opportunity for targeted treatment in the

adjuvant setting. Epidermal growth factor receptor tyr-

osine kinase inhibitors (EGFR-TKI) have shown

promising efficacy in clinical trials for resected EGFR

mutant NSCLC [7]. A plausible future scenario would

be the incorporation of precision medicine into treat-

ment of earlier stages of NSCLC. Since this presented

MRD model is based on hybrid capture NGS data,

this method would provide both a molecular analysis

to guide treatment and the identification of MRD as

regards which patients would benefit. A recent study

with patients who received adjuvant anti-PD-1

immunotherapy after melanoma resection showed that

nearly half of the patients (43%) developed chronic

anti-PD-1 related adverse events, defined as persistent

symptoms 12 weeks after anti-PD-1 discontinuation

[37]. Since chronic adverse events can severely impact

quality of life in the long term, it will become increas-

ingly important to guide physicians and patients

towards informed decisions about adjuvant treatment.

5. Conclusion

In conclusion, we present an explorative study to

detect postsurgery MRD in stage II–IIIA NSCLC

patients, prior to adjuvant therapy. Using only variant

calling or only fragment length analysis, we were

unable to distinguish patients with or without recur-

rence of disease with sufficient accuracy. The com-

bined model was capable of stratifying patients after

surgery into high versus low risk of developing recur-

rent disease in a cross-validation setting. The perfor-

mance of this model was comparable to other methods

that employ combined fragmentation and variant call-

ing. The results of this model could be used as a step-

ping stone towards a more sensitive model to detect

MRD in stage II–IIIA NSCLC patients.
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