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Abstract: An experimental study was performed on a low-density plasma discharge using two
different configurations of the plasma cell cathode, namely, the one mesh system electrodes (OMSE)
and the one mesh and three system electrodes (OMTSE), to determine the electrical characteristics of
the plasma such as current–voltage characteristics, breakdown voltage (VB), Paschen curves, current
density (J), cathode fall thickness (dc), and electron density of the treated sample. The influence
of the electrical characteristics of the plasma fluid in the cathode fall region for different cathode
configuration cells (OMSE and OMTSE) on the performance quality of a surgical gown was studied
to determine surface modification, treatment efficiency, exposure time, wettability property, and
mechanical properties. Over a very short exposure time, the treatment efficiency for the surgical
gown surface of plasma over the mesh cathode at a distance equivalent to the cathode fall distance dc

values of the OMTSE and for OMSE reached a maximum. The wettability property decreased from
90 to 40% for OMTSE over a 180 s exposure time and decreased from 90 to 10% for OMSE over a 160 s
exposure time. The mechanisms of each stage of surgical gown treatment by plasma are described. In
this study, the mechanical properties of the untreated and treated surgical gown samples such as the
tensile strength and elongation percentage, ultimate tensile strength, yield strength, strain hardening,
resilience, toughness, and fracture (breaking) point were studied. Plasma had a more positive effect
on the mechanical properties of the OMSE reactor than those of the OMTSE reactor.

Keywords: DC glow discharge; different cathode configurations; cathode fall thickness; floating
potential; surgical gown sample; wettability

1. Introduction

For 50 years, the direct current (DC) glow discharge has actively contributed to the
fundamental phenomena [1,2] of practical plasma processes that modify material properties,
such as plasma–surface modification, plasma polymerization, sterilization, and industrial
applications, more so than radio frequency (RF) power sources [3,4].

DC cold plasma technologies using low-density weakly ionized argon plasma have
been widely used in chemical, physical, and biological applications because of their sur-
face modification effect. Controlling the current density by different techniques in glow
discharge plasma is an important factor in tool heating, sputtering, etching, coating, disin-
fection processes, and ionization [5].

The basic techniques for the detection of small amounts of Ar plasma in industry, such
as coating or etching, have been developed and improved [6].

The influence of configurations; electrode design parameters (cathode geometries,
mesh cathode, hollow cathode, magnetized cathode, cavity cathode, etc.); and parameters
of the plasma reactor such as the ion velocity, plasma density distribution, plasma kinetics,
performance near the emission boundary, gas type, frequency, and flow rates have been
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investigated in studies related to surgical gown quality. Medical applications such as the
etching process, coating process, and inactivation of microbial processes have also been
investigated [7–9].

Discharges in a low-density weakly ionized argon plasma were briefly discussed
and investigated in theoretical and experimental studies of radial electron temperature
profiles [10] and by determination of the cathode fall thickness in the magnetized and
unmagnetized DC plasma [11,12].

One important safety requirement for the healthcare surgical team is the surgical
gown. Many articles have dealt with the performance of surgical gowns regarding their
resistance to liquid penetration, water repellency, prevention of bacterial infections, and
pathogen resistance of the fabric, in order to improve the mechanical properties of the
samples [13].

Plasma treatment is widely used to treat inorganic and organic surfaces in the deposi-
tion of thin films and processing of materials. The surface modification of polymer films
by plasma is the most effective method of uniform and controlled treatment. The surface
energy of the films is controlled to enhance the wettability and adhesion of coatings by
plasma treatment under different processing conditions [14].

The plasma treatment of textiles is a more efficient technology than traditional in-
dustry methods, which produce large amounts of liquid wastes that contain organic and
inorganic compounds. Treatment of textiles with plasma, which is considered to be an
environmentally acceptable physical agent, includes applications such as the treatment of
surgical gowns to enhance the adhesion of reduced graphene oxide for electro-conductive
properties [15], plasma sputtering of copper on polyester/cotton blended fabrics for the
creation of multifunctional properties [16], structural and characteristic changes of wa-
ter hyacinth fiber from the combined effect of plasma and nano-technology [17], surface
and moisture characterization of jute using a DC glow discharge argon plasma [18], and
the single-step approach of fabricating superhydrophobic PET fabric using low pressure
plasma for oil–water separation [19].

Plasma technology is being developed for many reasons in the textile industry, such
as antimicrobial properties, self-cleaning, flame resistance, resistance to ultraviolet degra-
dation, antistatic properties, water repellency, and dimensional stability of material [20].
Exposure to DC plasma can cause chemical and physical changes in the surgical gown
surface or near-surface layers. Reactive species generated in the DC glow discharge [21]
produce more reactive surfaces and affect wettability, stress, and strain properties. Ad-
vances in modern textile technology processes are attributed to the increasing demands of
the environment.

The objective of this study was to construct two different plasma reactors to analyze,
study, and discuss the plasma treatment of surgical gowns, in order to investigate the
creation of multifunctional properties of surface modification. Plasma treatment offers
different industrial applications and increases the performance quality, the treatment
efficiency, and the mechanical properties of the surgical gown. It also decreases the
wettability property and the exposure treatment time, as well as eliminating the spread
of microbes.

In the present work, the electrical characteristics of the low-pressure glow discharge
of the DC (cold cathode) sputtering unit for different configurations of the plasma reactor
cathode were investigated to determine the experimental current density of the cathode
fall region. The optimum distance of the cathode fall region (dc) was studied through a
comparison between the theoretical and experimental results of the current density. For
the different systems (OMSE and OMTSE), an experimental study was conducted on
characteristics such as electron density, electron temperatures, floating potential, treatment
efficiency, exposure time, wettability property, and mechanical properties of DC plasma for
surgical gown treatment. At optimum distance of the cathode fall region (dc), a comparison
was made between surgical gown samples placed at different distances with respect to the
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mesh cathode and subjected to different exposure times to investigate the wettability of the
surgical gown surface.

2. Experimental Set-Up
2.1. System Preparations

Figure 1a shows a stainless-steel chamber with glass windows that was evacuated
to 7 mTorr with a two-stage rotary pump. High purity Ar working gas was fed into the
chamber through a needle valve. A stationary DC glow discharge was generated between
two electrodes of metallic disks for the different designs and for different low Ar pressures
using a 1200-volt DC power supply. The applied voltage and discharge currents were
measured with a Tektronix digital oscilloscope. The discharge current ranged from 4 to
90 mA, the gas pressure ranged from 0.5 to 5 mTorr, the discharge voltage ranged from 100
to 1200 V, and the current density ranged from 2 to 15 mA/cm2.
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System 1, OMSE reactor (left), and System 2, OMTSE reactor (right).

Figure 1 shows the schematic diagram of the experimental set-up of the electrical
circuit established to create a glow discharge inside the evacuated chamber between
two different electrode configurations of the plasma cell, which were used earlier by the
author [22,23] as follows:
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System 1, called the OMSE reactor, consisted of two parallel circular electrodes in the
axial position: one aluminum cathode mesh electrode and a copper electrode working as
anode placed below the cathode at a gap distance of 2 mm, enough to prevent a plasma
forming between them. System 2, called the OMTSE reactor, consisted of three parallel
circular electrodes in the axial position; two copper anode plates (separated by 60 mm);
and an Al mesh electrode working as a cathode placed between the two copper anodes,
2 mm above the first anode and 58 mm below the second anode.

The grounded holders for the surgical gown samples, mesh cathode, anode, and the
two systems (OMSE and OMTSE) were isolated from the stainless-steel outer chamber by
polytetrafluoroethylene (PTFE)-insulated material to prevent the build-up of charged sheaths
on their surfaces and confine the plasma over the cathode mesh, as well as to strengthen
the plasma outside the cathode mesh.

2.2. Textile Preparations

Parameters of performance and quality were measured for the surgical gowns treated
with a DC glow discharge at low gas pressure (1 mTorr), as well as for different cathode
configurations, cathode fall thicknesses, and treatment exposure times (t). Figure 2 shows
“the water repellency test” for the wettability measurements of the cotton textile before and
after plasma treatment. This test measured the wettability percentage and the state of water
repellency (waterproof) of the textiles wetted with a syringe filled with 250 mL of water at
room temperature, through a jet nozzle of 6.3 mm diameter, separated by an axial distance
of 150 mm from the fabric sample, which was mounted on an inclined holder sloping at an
angle of 45◦ for 25 s. The percentage of free water clinging to the fabric sample was then
measured [24,25].
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The tensile and the elongation behaviors were tested for the surgical gown samples,
untreated and treated with the two different plasma reactors (OMSE and OMTSE), using
Zweigle Model Z010 according to ASTM D412-98a under the standard atmospheric conditions and
at a tension speed of 100 mm/min, wherein the measurements were carried out three times,
and the results represented the mean values. The mechanical properties of the untreated
and treated samples were tested with a uniform DC glow discharge, indicated by the stress
σ (KPa) as a function of the strain ε (percent), where σ = E ε, with E representing Young’s
modulus (stiffness) values.

The present work focused on the effect of different cathode configurations on two
types of plasma reactors (OMSE and OMTSE). At a distance equivalent to dc, different
surgical gown samples were placed on a holder apart from the mesh cathode, where the
effect of current density on the wettability rate was measured for different exposure times
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and cathode configurations of the plasma cell to investigate the surface treatment using a
DC glow discharge.

3. Results and Discussion
3.1. The Characteristics of Different Cathode Configurationtables

The performance of the two reactors (OMSE and OMTSE) depended on the configu-
ration of the cathode mesh in the plasma cell using the DC glow discharge. The uniform
argon plasma discharges in the OMSE and OMTSE reactors were compared by a study of
electrical characteristics such as current–voltage, breakdown voltage (VB), Paschen curves,
current density (J), and cathode fall thickness (dc) as follows.

3.1.1. I–V Characteristics

Figures 3 and 4 show the I–V characteristic curves of the low-density plasma using a
weakly ionized argon gas discharge at different pressures and applied voltages for the two
different configurations systems (OMSE and OMTSE), respectively.
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Figure 3. Characteristic I–V curve of argon gas discharge at different pressures and applied voltages, using the OMSE
configuration system.

By increasing the gas pressure from 0.5 to 2.25 mTorr, the discharge current increased,
and the characteristic curves confirmed that the electrical discharge was mainly in the
abnormal glow discharge region for both reactors (OMSE and OMTSE). The breakdown
voltage of the discharge decreased when increasing the gas pressure at a constant discharge
current. This may be related to the fact that when the gas pressure increased, the mean free
path λe−n decreased [26]; hence, more excitation and ionization processes occurred and,
consequently, the starting potential decreased, where λe−n is inversely proportional to the
gas pressure, as in Equation (1):

λe−n =
1

3.55× 1016 P Qi
(1)

where λe−n is the mean free path, P is the gas pressure in Torr, and Qi is the ionization
cross-section [27].

For different applied pressures P ranging from 0.5 to 3 mTorr, the starting potential
(VB) of the plasma for the OMSE reactor ranged from 300 to 240 V, while for the OMTSE
reactor, it ranged from 400 to 220 V. This may be attributed to the large gap distance between
the secondary anode and the cathode mesh (20 mm) for the OMTSE reactor, implying that
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the electron-neutral particle collision frequency νe-n was small and the mean free path λe-n
was large. Therefore, the ionization probability in OMTSE was lower than that in OMSE.

Furthermore, the slope of the I–V characteristic for OMSE was higher than that for
OMTSE, which means that the resistance and the resistivity of the discharge for the sample
in OMSE decreased dramatically in comparison with OMTSE.
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3.1.2. Paschen Curves

The relationship between the product Pd as a function of the breakdown potential VB,
i.e., VB calculated as a function of Pd, is known as Paschen’s law [28], where d (cm) is the
gap discharge between the electrodes, equal to 4 mm for OMSE and 15 mm for OMTSE,
and P (mTorr) is the gas pressure.

The Paschen curves in Figure 5 show that by increasing Pd (mTorr. mm) for both
reactors, the breakdown voltage VB began to decrease gradually (left-hand side of the
Paschen curve). The VB for OMSE was lower than for OMTSE, which may be attributed to
the following:

(i) The small gap discharge for OMSE, where plasma was confined above the cathode
mesh, leading to a decrease of the ionization coefficient and to a higher recombination
coefficient of Ar2

+ (0.7 × 10−6 cm3/s), whereby argon molecules suffered inelas-
tic collisions with energetic electrons, excitation, and ionization when entering the
discharge [29].

(ii) The collision frequency between electrons and neutral atoms or molecules in the gap
discharge, which increased more for OMSE than for OMTSE [30].

(iii) The large gap discharge in the OMTSE reactor between the cathode mesh with respect
to the secondary anode electrode, where the ionization cross-section decreased, and
electrons needed more energy to reach the secondary anode [31].
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3.1.3. Current Density

Experimentally, the current density can be calculated using the I–V characteristics
of the OMSE and OMTSE reactors, dividing current discharge I (mA) by cathode mesh
area (cm2), and as derived theoretically in our previous work [32], as in Equation (2):

J
P2 = {

4 [1 + (ω/α)]ε( eλi
M )

1/2
Vc

3/2

(P.dc)
5/2 } (2)

where J is the total current density, M is the mass of the ion, e is the electron charge, ε0
is the free space permittivity, and λi is the mean free path of the ion. Furthermore, Vc is
the potential of the regions over the mesh equal to E dc, where dc represents the cathode
fall thickness of the most intense glow zone apart from the mesh and can be calculated
theoretically using Equation (3):

dc =
1
α

ln[
1 + (ω/α)

(ω/α)
] (3)

ω
α is the average number of secondary electrons produced per ionizing collision in the
gas [33], and α is the first Townsend ionization coefficient and equal to ηE, where η
represents the ionization efficiency, as in Equation (4) [33] :

η = α /E =

α
p
E
p
=

A P e
−B p

E

E
(4)

For a gas pressure P equal to 1 mTorr, Figures 6 and 7 show a comparison between
the theoretical and the experimental results of current density J/p2 as a function of Vc, for
the two reactors OMSE and OMTSE, respectively, where J increased by increasing Vc. The
theoretical data are derived from Equation (2), where Vc is the potential of the regions over
the mesh (apparently as the abnormal negative glow region in its characteristics).

The experimental value of OMSE ranged from 0.44 to 3.01 mA/cm2, in only slight
agreement with the theoretical relations. The experimental value of OMTSE current den-
sity ranged from 0.15 to 9.5 mA/cm2, in partial agreement with the theoretical relations.
This may be attributed to the increase in the confined sheath around the mesh wires for
OMSE rather than OMTSE, where Ar molecules suffered inelastic collisions with energetic
electrons. Moreover, more excitation and ionization processes took place, reducing the
current density values for OMSE more than OMTSE [34].
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Figure 7. Current density as a function of the cathode fall potential for OMTSE with applied pressure of 1 mTorr.

Moreover, in the OMTSE low-pressure glow discharges, the experimental data and
the theoretical curves of the current density agreed more than in OMSE. In the OMTSE
case, this may be attributed to a dusty plasma produced from the contamination by
polymerization [35] or by sputtering of the ions with the mesh.

3.1.4. Cathode Fall Thickness

Figures 8 and 9 show values of J/P2 as a function of the distance (dc) for OMSE and
OMTSE, respectively, using Ar gas. The smallest value of cathode fall thickness (dc) corre-
sponded to the largest value of the current density [36] (which referred to the closest regions
where the samples were placed over the mesh). For OMSE, dc was about 0.24–0.41 cm,
while it was 0.22–0.27 cm for OMTSE. The experimental data agreed with the theoretical
relations shown in Equation (3). For OMTSE, the experimental data partially agreed with
the theoretical relations. The discrepancy between the experimental data and the theoretical
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curves at large values of Vc, as shown in Figures 6 and 7, may be attributed to the fact that
a pure low-pressure argon discharge is a complex plasma at large values of Vc, comprising
electrons, ground state argon atoms, metastable argon atoms, argon ions, Ar2* and Ar2

+

molecules (M* excitation process, M+,− ionization process), and impurity atoms existing in
argon or sputtered from electrodes [37].
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Figure 9. Current density as a function of the cathode fall thickness for OMTSE with applied pressure of 1 mTorr.

3.2. The Influence of Different Cathode Configurations on the Surgical Gown

Under a gas pressure P equal to 1 mTorr using a DC glow discharge, surgical gown
samples were exposed to uniform argon plasma and treated under the measured parame-
ters of the two different configurations, OMSE and OMTSE, as follows:

(I) As seen in Section 3.1, the OMTSE current density ranged from 0.15 to 9.5 mA/cm2

for dc ranging from 0.22 to 0.27 cm, and the OMSE current density ranged from 0.44
to 3.01 mA/cm2 for dc ranging from 0.24 to 0.41 cm. The treatment efficiency was
measured for the surgical gown surface in plasma over the mesh cathode at a distance
equivalent to the cathode fall distance dc, and for a very short exposure time.
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(II) From our previous work with the same construction mentioned in [23], the ion velocity
ranged from 1 to 3.5 km/s for OMSE, and from 4 to 22 km/s for OMTSE, while the
ion density Ni per unit area for OMSE was in the range of 109 cm−3 and lower than
that for OMTSE (in the range of 1010 cm−3).

3.2.1. Performance Quality of the Surgical Gown

Figure 10 shows the effect of the plasma cell configurations for OMSE and OMTSE on
the wettability of surgical gownω as a function of exposure time at applied low pressure,
1 mTorr [38]. The performance qualities of the surgical gowns for OMSE and OMTSE
configurations were compared by measuring the wettability at different exposure times
ranging from 0 to 180 s, where different surgical gown samples were placed over the mesh
cathode on an axial moveable grounded holder 0.25 cm away from the mesh, the cathode
fall thickness dc range of both OMSE and OMTSE configurations. Moreover, the wettability
ω at exposure time 180 s decreased from 90 to 50% for OMTSE and decreased from 90
to 10% for OMSE. This means that the wettability of the surgical gown decreased when
increasing the treatment exposure time. This indicated the following:

(i) The treatment processes of the surgical gown exposed to plasma are described as
follows [39,40]: Electrons and ions formed because of the plasma discharge. The
sample was initially negatively charged, relative to the plasma bulk, because of the
higher mobility of the lighter electrons. Then, more electrons were repelled from the
sample and the positive ions were accelerated toward it.

(ii) The wettability of the modified surface decreased when decreasing the gas pressure,
increasing the axial exposure distance (dc), and increasing the velocity of the pen-
etrating species (ions, free electrons, neutral atoms, and molecules) on the textile
surface [41]. This can be understood from Figures 8 and 9 and Equation (2), where
the cathode fall thickness increased with decreasing of the current density at low
pressure, 1 mTorr.

(iii) The treatment efficiency reaches a maximum in plasma in a very short exposure
time [42]; the poor wettability and maximum water repellency properties for OMSE,
more so than OMTSE may be due to the apparent increase in the pressure and the
change of the laminar mode for OMSE to turbulent mode for OMTSE because of the
long distance between the mesh and the secondary electrode.
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Figure 10. The wettability of the surgical gown as a function of exposure time for the different plasma cell configurations
OMSE and OMTSE with applied pressure of 1 mTorr and cathode fall thickness of 0.25 cm.

Figure 11 shows the wettability of the surgical gown ω as a function of the axial
distance from the mesh in the range of cathode fall thickness for the OMSE reactor at a
constant argon pressure of 1 mTorr and short exposure time of 120 s, where the wettability
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decreased at the largest value of cathode fall thickness. This may be attributed to the
following:

(i) More scattering of the positive ions and thus more chemical bonds broken by energy
transfer from reactive particles to the sample surface, as a greater distance (dc) exposes
a larger area of the sample [43–45].

(ii) The physical changes from the exposure to the plasma. These changes produce more
reactive surfaces and affect wettability, as will be discussed in Section 3.3 [46].
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Figure 11. The wettability of the surgical gown (%) as a function of cathode fall thickness (cm) for plasma cell configuration
OMSE at applied pressure of 1 mTorr and exposure time of 120 s.

3.2.2. Mechanical Properties

Figure 12a shows the tensile and the elongation behaviors for untreated and treated
surgical gown samples for the two plasma reactors OMTSE and OMSE exposed to a uniform
DC glow discharge of argon plasma to test their mechanical properties, as indicated by the
stress σ (KPa) as a function of the strain ε (%). Moreover, Figure 12b shows the linear
region AB exhibiting straight lines represented by σ = E ε, with the slope E representing
Young’s modulus (stiffness) values. In the elastic region E increased to 3.25 KPa for
untreated samples, to 4.04 KPa for samples treated with OMTSE, and to 4.39 KPa for
samples treated with OMSE [47].

Tensile resilience (RT) [48] is given by the area under the curve of the elastic region
AB as in Equation (5):

(RT) =
1
2

σ ε. (5)

RT corresponds to values of 9000, 12,800, and 13,600 J/m3, for untreated, and treated
with OMTSE and OMSE, respectively, indicating the better capacity of the surgical gown
samples to absorb more energy when deformed elastically for OMSE samples than for
OMTSE samples, as in Equation (6):

(RT)OMSE > (RT)OMTSE > (RT)untreated (6)

WT, determined by the area under the stress–strain curve up to the fracture (breaking
point) from A to D using Microsoft Excel, represents the energy required for extending the
surgical gown length without damaging it and reflects the mobility of the garment under
deformation (up to fracture) [49–51]. WT increased as follows: 51,695, 54,675, and 58,675
J/m3 for untreated and for treated with OMTSE and OMSE, respectively, as in Equation
Equation (7):

(WT)OMSE > (WT)OMTSE > (WT)untreated (7)
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The mechanical properties of the untreated and treated samples are collected in Table 1,
indicating the following:

(i) The mechanical properties of the surgical gown samples treated with plasma were
more positively influenced in the OMSE reactor than in the OMTSE reactor.

(ii) The use of plasma to treat the surgical gown samples increased the elasticity area, the
stretch, and the strain percentages.

(iii) The density and the energy of the positive ions emerging from the mesh and colliding
with the surgical gown sample for OMSE were much greater than those for OMTSE.
This can be attributed to the fact that there was a loss of energy for OMTSE due to (a)
creation of a sheath around the mesh for OMTSE and (b) creation of dusty plasma
due to more scattering in the longer distance between the mesh and the secondary
electrode for OMTSE [52,53].
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Table 1. The measured mechanical properties of the untreated samples and OMSE and OMTSE treated samples.

Units Treated with OMTSE Treated with OMSE Untreated Parameters Position

KPa 4.04 4.39 3.25 stiffness From A to B

KPa 320 340 225
Yield

strength
σY

B

KPa 420 450 400
ultimate

tensile strength
σUTS

C

KPa 100 110 175
strain

hardening
σUTS − σY

B–C

% 210 230 180 elongation percent
at breaking point D

J/m3 12,800 13,600 9000 resilience Area under the curve of the
elastic region

J/m3 54,675 58,675 51,695 toughness Area under the stress–strain
curve up to fracture

3.3. The Mechanisms of Plasma Interaction with Textile Surface
3.3.1. Interaction Type

The interaction mechanism between the plasma species and textile materials mainly
depends on modifications from the interaction between the plasma species and textile
fibers, wettability, and mechanical properties of the surgical gown surface (with finished
coded levels), which can be improved by the activation process [54]. The activation process
helps to break the covalent bonds present on the surface of the surgical gown sample and
generate radicals. These are highly reactive sites and combine with other species, such as
organic molecules, unsaturated monomers, or reactive gases such as oxygen to generate
functional groups on the surface [55]. Moreover, the activation process may be coupled
with the etching process to clean the surgical gown surface with the ions bombarding
the sample, which removes impurities and contaminants such as blood from the sample
surface [56].

3.3.2. Gas Type

When the excited argon species, viz., ions, electrons, meta-stables, and neutrals, bom-
bard the textile surface along with energetic ultraviolet photons, they can break chemical
bonds and initiate various reactions. Argon can change textile surface properties such as
wettability and mechanical properties because of its high ablation efficiency and chemical
inertness with the surface material [57]. Moreover, argon produces chain scissions on the
surface (i.e., activation) and crosslinking through the reactions of inter- and intra-molecular
polymer chains [58].

4. Conclusions

Two different configurations of the plasma cell cathode, namely, OMSE and OMTSE,
were constructed and investigated theoretically and experimentally. In the OMSE reactor
the optimum position of the sample with respect to the mesh was found to correspond
to the cathode fall thickness (dc) and the smallest value of the current density suitable to
modify the surface of the fabric sample. The area placed exactly over the mesh for OMSE
was found to be the most intense glow zone. OMSE represented a suitable reactor for
surface modification processes because of its steady and equilibrium plasma discharge.

At low pressure (1 mTorr) using a DC glow discharge, the wettability of the surgical
gown decreased when increasing the treatment exposure time. The treatment resulted
in poorer wettability and better water repellency properties for OMSE than for OMTSE
because, as the cathode fall thickness increased, the current density decreased. For the
OMSE reactor, the wettability of the surgical gown decreased at the largest value of cathode
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fall thickness at a farther axial distance from the mesh in the range of cathode fall thickness,
where the resistance and the resistivity of the discharge for the sample decreased.

An experimental study of the performance quality and the influence of different cath-
ode configurations of the plasma cell was performed regarding (a) the surface modification
and performance quality of the surgical gown in low-density plasma using weakly ionized
argon gas and (b) the analysis of the plasma reactive particles created in the glow discharge
through the plasma–surface interaction process. The wettability of the surgical gown
decreased when increasing the treatment exposure time. The treatment resulted in poorer
wettability and better water repellency properties for OMSE than for OMTSE because, as
the cathode fall thickness increased, the current density decreased. For the OMSE reactor,
the wettability of the surgical gown decreased at the largest value of cathode fall thickness
at a farther axial distance from the mesh in the range of cathode fall thickness, where the
resistance and the resistivity of the discharge for the sample decreased.

All the mechanical properties of the untreated surgical gown samples and those
treated with OMTSE and OMSE, such as the tensile strength and elongation percentage,
ultimate tensile strength yield strength, strain hardening, resilience, toughness, and fracture,
were measured.

Our future work will involve an experimental study of the plasma treatment, not only
of direct physical effects and mechanical changes but also of the chemical changes caused
by the plasma. The work will also involve conducting analytical investigations into the
actual effect of the plasma treatment on the surgical gown.
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