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We studied the relationship between osteolysis and polyethylene wear, age at

surgery, body mass index and height in 463 subjects (180 osteolysis and 283

controls) after cemented Charnley total hip arthroplasty (THA), in order to

develop a kernel-based Bayesian model to quantitate risk of osteolysis. Such

tools may be integrated into decision-making algorithms to help personalize

clinical decision-making. A predictive model was constructed, and the esti-

mated posterior probability of the implant failure calculated. Annual wear

provided the greatest discriminatory information. Age at surgery provided

additional predictive information and was added to the model. Body mass

index and height did not contain valuable discriminatory information over

the range in which observations were densely sampled. The robustness and

misclassification rate of the predictive model was evaluated by a five-times

cross-validation method. This yielded a 70% correct predictive classification

of subjects into osteolysis versus non-osteolysis groups at a mean of 11 years

after THA. Finally, the data were divided into male and female subsets to

further explore the relationship between wear rate, age at surgery and inci-

dence of osteolysis. The correct classification rate using age and wear rate in

the model was approximately 66% for males and 74% for females.
1. Introduction
Osteolysis, resulting in aseptic loosening, is the most common factor limiting the

survival of modern total hip arthroplasty (THA). The pathogenesis of osteolysis is

complex, with multiple factors contributing to its development [1]. Findings from

several studies have suggested that polyethylene wear is the dominant factor in

the development of osteolysis. The relationship between wear rate and the devel-

opment of osteolysis has been characterized in a variety of statistical models. For

example, the relationship between wear rate and osteolysis has been quantified

using logistic regression analysis and expressing the results as odds of osteolysis

per unit change in wear [2], and also using a population wear quintile-based

approach to characterize the dose–response relationship between annual wear

rate and osteolysis [3,4].

Measurement of polyethylene wear may be made clinically from plain

radiographs, and several systems are available for this purpose [5–7]. Wear

measurement made in the mid-term after THA have the potential to provide a

tool for personalizing the need for later implant surveillance after THA. While

these methods give useful information on the epidemiological association

between wear and osteolysis, they do not provide risk data that would be directly

clinically applicable to individual patients, and they also do not predict risk of

osteolysis in the setting of other clinical risk factors, such as age and sex.

Intelligent decision support systems are commonly used in industry to give

failure-time prediction based on multiple covariates that enables appropriate

service intervals for mechanical parts, for example, the prediction of failures
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Table 1. Characteristics of study subjects. Plus– minus figures are mean+ s.d.

patient
characteristics

Charnley THA
control
(n 5 283)

Charnley THA
osteolysis
(n 5 180)

sex (male-female) 132-151 106-74

height (m) 1.63+ 0.09 1.67+ 0.09

weight (kg) 76.0+ 15.3 79.1+ 15.0

body mass index 28.4+ 5.0 28.4+ 4.6
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in aircraft engines [8]. This model, constructed by applying

Bayes’ theory and kernel density estimation, has been used

extensively for pattern recognition in various fields, including

in historical manuscript recognition [9], multiclass cancer classi-

fication [10] and in situ hybridization signal classification [11].

In this study, we aimed to explore the potential application of

this tool to compute the probability of implant failure using

multiple risk factors. We aimed to use predictor variables that

could easily be obtained in the clinical setting to construct the

model such that a simple but multivariate-based estimate of

risk could be calculated.
(kg m – 2)

implant survival

time (years)

11.9+ 4.2 10.2+ 4.7

age at surgery

(years)

64.1+ 8.2 59.5+ 8.8

total wear (mm) 1.022+ 0.957 1.411+ 0.955
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2. Material and methods
2.1. Subjects
The subject data used in this analysis were collected as part of a

study examining patient risk factors for osteolysis [12]. The study

was approved by the local ethics committee, and all subjects

provided written, informed consent prior to participation. Sub-

jects were recruited between February 2000 and April 2006 and

included Caucasian men and women who had previously under-

gone THA for idiopathic osteoarthritis of the hip between the

years 1971 and 1998. The exclusion criteria for this study are detailed

elsewhere [12]. The anonymized supporting data are accessible

through Sheffield Musculoskeletal Biobank via request to the

senior author.

All subjects received a cemented monobloc Charnley femo-

ral component with a 22 mm diameter femoral head, and a

cemented Charnley polyethylene acetabular component. The

osteolysis group comprised 180 subjects who have subsequently

undergone revision surgery for osteolysis or aseptic loosening.

Loosening of the femoral component was defined according

to the criteria of Harris & McGann [13], and loosening of the

acetabular component was defined according to the criteria of

Harris & Penenberg [14]. The control group comprised 283

subjects with well-functioning implants at a mean of 12 years

(s.d. ¼ 4) after surgery, with no radiological evidence of loosen-

ing (table 1). Annual linear wear rate was measured on

digitized plain radiographs of the pelvis using a uniradiographic

technique with EBRA-Digital software (v. 2000, University of

Innsbruck, Austria). Use of this technique and its precision in

our institution is detailed elsewhere [15].

2.2. Model development
2.2.1. Background theory and development of kernel density

estimators
Prediction of the development of osteolysis can be viewed as

a classification problem, as the outcome is a binary variable. The

classification task can be considered as assigning probabilities to

each class Ci, fi ¼ 1, . . . Mg among M classes given some obser-

vation �x, expressed as PðC ¼ Cij�xÞ. Using Bayes’ theorem, we have

PðC ¼ Cij�xÞ ¼
pðC ¼ Ci; �xÞ

pð�xÞ ¼ pð�xjC ¼ CiÞPðC ¼ CiÞ
pð�xÞ ; ð2:1Þ

where P(C ¼ Ci) is the prior probability of class i, PðC ¼ Cij�xÞ is the

posterior probability of class i given the observation �x, and

pð�xjC ¼ CiÞ is the likelihood function or conditional probabi-

lity density of observation �x given the class Ci. For an M-class

classification problem, we have [16]

PðC ¼ Cij�xÞ ¼
pð�xjC ¼ CiÞPðC ¼ CiÞPM

m¼1 pð�xjC ¼ CmÞPðC ¼ CmÞ
: ð2:2Þ

To apply equation (2.2), for each class, we need prior probability and

the probability density function of data given class membership.
Assuming large enough data samples, an estimate of the prior

probability can be obtained from the relative frequency of

occurrence of data with known class. We calculate conditional

probability density, using a non-parametric kernel estimate [17]

p̂ð�xÞ ¼ 1

nhd

Xn

i¼1

K
1

h
ð�x� �XiÞ

� �
; ð2:3Þ

K(.) denotes the kernel function (satisfying appropriate constraints,

e.g.
Ð

Rd Kð�xÞdx ¼ 1, Kð�xÞ . 0, etc.) and h is the window width, also

called the smoothing parameter or bandwidth. n is the number of

observations �Xi with the dimension d. The range of �x depends on

the sampled data. The kernel estimator is a sum of kernel functions

placed at the data points. Normally, K(.) is chosen to be a radially

symmetric probability density function, such as the standard

multivariate normal density function

Kð�xÞ ¼ ð2pÞ�d=2 exp �1
2
�xT�x

� �
: ð2:4Þ

The effective use of kernel density model is subject to an appro-

priate choice of the window width parameter. This can be seen as

a trade-off between the bias and the variance in the estimates.

A very small value of h causes random variations to appear in den-

sity estimates, while choosing a large value for h may eliminate

the important characteristics (bimodality for instance) of the

underlying distribution.

There are several approaches to the estimation of the window

width parameter, h [18]. For example in the one-dimensional

case, the optimal value of h under the assumption that data are

distributed normally is given by h ¼ (4/3n)1/5 s, where s is

the standard deviation of the data. However, data such as

wear rate are typically not distributed normally. In order to

deal with asymmetric, long-tailed distributions and outliers, a

robust estimate of s such as the median absolute deviation

estimator is more desirable [19]. This leads to the choice

ŝ ¼ median fjXi � ~mjg
0:6745

; ð2:5Þ

where ~m denotes the median of the sample.

It should be noted that the appropriate method for choosing

the window width depends on the application and the nature of

the dataset. In some applications, visual tuning of h based on

prior knowledge about the underlying population can be suffi-

cient while in others more sophisticated automatic methods

such as least-squares cross-validation [20] or smoothed bootstrap

[21] are required.



Table 2. Mean values of the five-fold cross-validation dataset: control group (top); osteolysis group (bottom).

set total wear (mm)
age at
surgery (years) height (m) weight (kg)

body mass
index (kg m – 2)

osteolysis-free survival
time (years)

1 0.970 63.5 1.62 73.2 28.0 11.5

2 1.181 64.9 1.64 75.7 28.2 12.1

3 0.872 65.4 1.62 73.9 28.2 11.5

4 1.011 64.3 1.64 76.5 28.4 12.3

5 1.082 62.3 1.66 80.7 29.4 12.2

mean 1.023 64.1 1.63 76.0 28.4 11.9

1 1.308 62.8 1.69 80.4 27.9 9.2

2 1.404 58.5 1.66 79.6 28.9 10.0

3 1.487 60.8 1.66 76.0 27.3 9.4

4 1.331 57.6 1.65 79.3 29.2 11.2

5 1.523 57.5 1.68 90.1 28.5 11.2

mean 1.411 59.5 1.67 79.1 28.4 10.2
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2.2.2. Univariate analysis and construction of a bivariate model
The wear rate data were distributed in a lognormal fashion with a

long right-handed tail and were log transformed to normalize the

distribution before its inclusion in the model. A kernel density

estimator with fixed window width was used to construct

the class conditional density using the wear rate data. When the

smoothing parameter of h ¼ 0.3 based on the robust estimate of

the standard deviation (equation (2.5)) was used, the density func-

tion was not sufficiently smooth. The window width of the

smoothing parameter was increased to 0.7 to obtain a more

smooth estimation. The same window width was also used for

age at surgery, body mass index and height, to estimate class con-

ditional densities for control and revision subjects in the training

set. The prior probability of osteolysis was obtained from

the relative frequency of occurrence of data with known class,

P(C ¼ C0) ¼ 0.612 and P(C ¼ C1) ¼ 0.388, where C0 denotes con-

trol group and C1 denotes revision group. Classification was

made using Bayesian decision theory using prior probabilities

and estimated class conditional densities for the training set for

all the features separately. For the bivariate case, each of the

other features (age, height and body mass index) was paired

separately with annual wear rate.

2.2.3. Sex-specific model and cross-validation
In order to test the validity of the model in terms of its predictive

value, we applied the k-fold cross-validation [22]. This allowed

all available subject data to be used for training the model, and

allowed the misclassification rate of the model to be calculated.

The data are divided into k random subsets of approximately

equal size. The model is then trained k times using data from

k – 1 of the subsets. Each time a single subset was left out to

serve temporally as an independent test sample for evaluating

the desired performance criterion. A good estimate of the classi-

fication performance is given by the average performance over

the k independent tests. In this study, the value of k was taken

as 5. Adopting the five-fold cross-validation procedure, subjects

were randomly divided into five distinct segments in order to

examine the robustness of the model (table 2). Each subgroup

was randomly made up of 36 revision and approximately 57

control subjects. In the multivariable case, observations were

transformed to have zero-mean and unit-variance data so that

they were dimensionless and had the same spread and similar

range, allowing a standard kernel to be used. In order to deal

with long-tailed annual wear distribution the natural logarithm
of annual wear was used to normalize the data distribution.

Then the five test sample estimates were averaged to obtain the

estimate of misclassification percentage.

Finally, male and female subjects were studied separately to

further investigate the sex-specific relationship between wear

rate, age at surgery and incidence of osteolysis, and to calculate

the misclassification rate for males and females independently.

2.2.4. Sensitivity analysis
As mentioned earlier, the window width parameter governs the

smoothness of the density estimation, which consequently affects

the resulting posterior probability obtained by equation (2.2). To

study the sensitivity of the classifier output to the window width,

different values of h over the range of 0.1 and 10 with step size

0.1 were used to compute the class conditional densities. The

five-fold cross-validation method was performed over 100 per-

mutations of data for each classifier. The misclassification rate

was then averaged over 100 permutations. This was performed

for the bivariate model using the entire dataset and also male

and female groups separately.

Different runs of five-fold cross-validation provide different

misclassification rates due to the effect of random variation in

selecting each subset. By rerunning the cross-validation method

several times, a more accurate misclassification rate can be calcu-

lated [23], to better characterize the sensitivity of the model to the

window width variations.
3. Results
3.1. Univariate analysis and construction of a

multivariate model
The posterior probabilities of the univariate case for annual

wear using normalized log-transformed wear data, BMI,

height and age at surgery with linear normalization are

shown in figure 1. The smoothing parameter in this case was

h ¼ 0.7. We can infer that the probability of a patient with

annual wear 0.2 (mm/year) being in control group is 0.45

(figure 1a). The range of posterior probability variation for

BMI is between 0.57 and 0.61 over the interval within which

our data are concentrated (BMI values of 20.7–35.3, figure 1b),

therefore this parameter in isolation does not contain valuable
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discriminatory information. The same conclusion can be made

for height (values in the range 1.50–1.79; figure 1c). However,

age at surgery contained more information over the range in

which observations are densely sampled (49.3–76.3, figure

1d). The density estimation of each variable using the whole

dataset is also calculated showing regions where densely

sampled data are available (figure 2a–d).

A predictive model based on annual wear rate was chosen

as the most informative univariate model. To develop the

model further into a multivariable model, we included each

remaining feature. Linear normalized age at surgery and nor-

malized log-transformed annual wear were used. Annual

wear rate with age at surgery had the highest discrimina-

tory information among all possible bivariate models over

the ranges in which observations were densely sampled.
The risk of osteolysis decreased as age at surgery increased

for a given wear rate (figure 3a) over the area where the

data were densely distributed (figure 3b).
3.2. Sex-specific model and cross-validation
The characteristics of the subjects randomly allocated to each

of the five cross-validation subsets were similar (table 2).

The mean misclassification rate calculated using this

cross-validation method was 30.6% (range 25.8–34.7). The

predictive value of the model of implant survival based on

age at surgery and implant wear for male and female subjects

analysed independently demonstrated better predictive value

of the model for females versus males. The mean misclassifi-

cation percentage of five-fold cross-validation within the
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overall dataset was 31% (s.d. 3; range 26–35). The misclassi-

fication rate for men was 34% (6; 26–40), and for females was

26% (3; 23–31: p ¼ 0.04). The prediction of implant survival

based on age at surgery and annual wear rate for male and

female subjects are shown in figure 4a,b, respectively. The

sex-specific probability density estimation for both control

and revision groups are also shown in figure 5. The inferior

performance for males can be attributed to the long-tailed den-

sity of the control group (figure 5a) compared to its female

counterpart (figure 5c). There are also fewer data points with

high wear rate in the male revision group (figure 5b) compared

with the female revision group (figure 5d). This perhaps

resulted in a better training of the model over the region

with high annual wear rate where only female subjects

were used.

3.3. Sensitivity analysis
The mean misclassification rates using five-fold cross-

validation method for 100 permutations of the data and

different values of h were computed. The results for the over-

all dataset, male and female groups are shown in figure 6a–c,

respectively. The average misclassification rates are also

re-plotted in figure 6d for better visualization. The model pro-

vides a better performance for the female group over the

entire range of the window width. The average misclassifi-

cation rate for data including both male and female sexes

was between 28 and 39%, for male was 31 and 44% and for

female was 25 and 33%. The high misclassification rate

for small h is due to the high variations of the class conditio-

nal density estimates. For large values of h, the posterior

probability obtained based on kernel density estimation
approaches prior probability of the control group, corre-

sponding to the constant sections of the misclassification

rates in figure 5. The convergence of the posterior probability

to the prior holds irrespective of the problem and the dataset

and therefore does not carry any discriminatory informa-

tion [24]. The best performance for the overall dataset and

female group corresponded to h ¼ 0.5 and for male group

corresponded to h ¼ 0.8. In the previous analyses, a value

between these two, i.e. h ¼ 0.7 was chosen.
4. Discussion
In this study, we examined the potential role of a kernel-

based Bayesian model in the prediction of osteolysis in the

late period after cemented THA. We found that mean

annual wear rate was the most predictive variable for osteo-

lysis, followed by age at THA surgery. This model, based

on Bayes’ theory, gave a correct classification rate for osteo-

lysis of approximately 70%, using five-fold cross-validation

to examine the accuracy of the model. When the data

were divided into male and female subsets, the correct

classification rate for female was 74% versus 66% for males.

The appropriate choice of the window width is crucial

in constructing the classifier. There are various methods

suggested in the literature to calculate the window width par-

ameter [18], which can be easily incorporated to the proposed

method in this work. One simple technique is to determine

the window width based on the sample standard deviation

or its alternative robust estimates [19]. This works well

if the observation points are normally distributed. Other

commonly used methods are based on cross-validation or
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bootstrap techniques, which could impose high computational

costs when applied on very large datasets. The bootstrap based

techniques shown to be superior to the cross-validation based

methods, however, are computationally more expensive [21]. It

should be noted that these methods might have different

performances for different datasets. For the dataset used in

this work, our sensitivity analysis shows values that prevent

noisy and over smoothed density estimations can provide

approximately similar misclassification rates.

The finding that mean annual wear rate and age at

surgery were predictive factors for osteolysis is consistent

with the findings of several other studies highlighting these

patient factors as risk factors for osteolysis [2,25–27]. While

these previous studies have quantitated the contribution

of these variables to the risk of osteolysis, these analyses

have been conducted and the data expressed as univariate

survivorship analyses and proportional hazards. However,
such analyses cannot be easily applied to provide risk predic-

tion in the clinical setting, as the predictive risk factors are

independent variables, and the contribution to each in the

overall risk needs to be incorporated to allow personalized

prediction of prosthesis survival. The statistical approach

taken here contrasts with previous studies in that we have

aimed to use the demographic patient data to construct a

multivariate model for predicting osteolysis that might be

applicable to estimate risk for individual patients in clinical

practice. We have shown that the likelihood of osteolysis at a

mean of 11 years after surgery may be calculated from

patient-specific factors, such as age at surgery, wear rate and

sex. The cross-validation data suggest that the error rate with

this method is approximately 30%.

We have used a uniradiographic method for calculating

mean annual wear rate. This method assumes that wear

rate is fairly constant over time. Previous longitudinal studies
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of wear rates suggest that this assumption is valid, provided

that wear rate is calculated from data collected after the initial

run in wear period that lasts 1–2 years. This model has been

derived from a retrospective dataset, however, and needs to

be confirmed prospectively to evaluate its robustness in clini-

cal practice. Furthermore, the derived estimates are likely to

be prosthesis-specific, as the relationship between linear and

volumetric wear rates is dependent on the diameter of the

bearing articulation, and may differ between cemented and

cementless implants. Collection of prospective datasets to

validate and inform the refinement of this predictive model

might also include other potentially relevant variables, such

as patient activity levels that also may impact on prosthesis

survival modelling.

The clinical dataset used to develop this statistical model

was based on the Charnley monobloc hip replacement that

uses a 22 mm head and a metal on conventional polyethylene

bearing. The estimates of the precise contribution of individ-

ual predictor variables, and the amount of total variability in

the outcome variable generated here is thus only directly

applicable to the Charnley 22 mm prosthesis in our specific

population. However, in this paper, we aimed to demonstrate

the broader proof that this Bayesian statistical approach can

be applied to generate an accurate multivariate prosthesis

survivorship tool that would have utility in personalized
clinical prediction. We chose the Charnley prosthesis as the

exemplar for this proof of principle as it is a benchmark

prosthesis that has well-characterized survivorship behaviour.

We have included subjects with both femoral and pelvic

osteolysis in the dataset from which the model was gener-

ated. In this analysis, we did not divide the datasets into

femoral versus pelvic osteolysis, as the patient-relevant end-

point for surveillance purposes is to predict the need for a

revision surgery episode. Finally, this type of model does

not incorporate individual patient’s biological response to

wear particulate debris as a predictor variable, which may

also be an important consideration in the development of

osteolysis after THA [28].

In summary, predictive models adapted from the industrial

setting may provide a useful additional strategy in identify-

ing patients at risk of osteolysis and for stratifying clinical

follow up according to risk. This Bayesian model performs

well where modelling data are available for densely sampled

regions within the model.
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