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ABSTRACT

Multistable gene regulatory systems sustain differ-
ent levels of gene expression under identical exter-
nal conditions. Such multistability is used to encode
phenotypic states in processes including nutrient up-
take and persistence in bacteria, fate selection in
viral infection, cell-cycle control and development.
Stochastic switching between different phenotypes
can occur as the result of random fluctuations in
molecular copy numbers of mRNA and proteins aris-
ing in transcription, translation, transport and bind-
ing. However, which component of a pathway triggers
such a transition is generally not known. By linking
single-cell experiments on the lactose-uptake path-
way in E. coli to molecular simulations, we devise a
general method to pinpoint the particular fluctuation
driving phenotype switching and apply this method
to the transition between the uninduced and induced
states of the lac-genes. We find that the transition to
the induced state is not caused only by the single
event of lac-repressor unbinding, but depends cru-
cially on the time period over which the repressor
remains unbound from the lac-operon. We confirm
this notion in strains with a high expression level
of the lac-repressor (leading to shorter periods over
which the lac-operon remains unbound), which show
a reduced switching rate. Our techniques apply to
multistable gene regulatory systems in general and
allow to identify the molecular mechanisms behind
stochastic transitions in gene regulatory circuits.

INTRODUCTION

Multistable gene regulatory systems use specific mecha-
nisms like feedback to stabilize expression patterns defin-
ing different phenotypic states (1-8). However, no natural
system is strictly multistable since it will not persist in any
one of its states indefinitely. Instead, the lifetimes of stable
states are finite, with random fluctuations causing transi-
tions between different states. In gene regulatory systems
the copy numbers of mRNA molecules, proteins and lig-
ands fluctuate over time due to the random timing of tran-
scription, translation, transport and binding (9-16). These
fluctuations can trigger a switch from one phenotype to an-
other (17-21). However, when all components of a multi-
stable system fluctuate, what are the fluctuations causing the
transition? In other words, what are the rate-limiting fluctu-
ations?

Such rate-limiting fluctuations are difficult to identify ex-
perimentally, because it is hard to monitor and control vari-
ation in molecular copy numbers inside a cell. In an ideal
scenario, one would take a multistable system and reduce
the amplitude of fluctuations of each of its components in
turn. If reducing the fluctuations of a particular component
affects the switching rate between different states, then one
can consider fluctuations in that component rate-limiting to
the transition. This strategy has been implemented experi-
mentally by Maamar et al. (17) for a single component of
a bistable signaling pathway in Bacillus subtilis. The comK-
pathway enables B. subtilis to take up new genetic material,
which may offer fitness advantages (22). Maamar et al. in-
creased the transcription rate of comK and simultaneously
decreased its translation rate. Average protein levels were
left unaffected, but fluctuations around this mean due to the
random timing of mRNA production were reduced. Maa-
mar et al. observed a decrease in the switching rate between
the states with low levels of ComK and high levels of ComK,
showing that mRNA fluctuations affect the switching rate.
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But are these the only rate-limiting fluctuations in the sys-
tem? Repeating this procedure for all components in a path-
way is cumbersome for small pathways and infeasible for
larger pathways. Moreover, transitions could be driven by
fluctuations in ligand numbers, protein conformations or
binding state, which are even harder to control in experi-
ments.

If rate-limiting fluctuations are hard to identify experi-
mentally, they cannot be identified purely on the basis of
regulatory network models and computer simulations ei-
ther. Any model describes a restricted number of molecu-
lar species and replaces the rest with effective reaction rates.
The formulation of a model thus already constitutes an a
priori assumption on the relevant constituents. Being rare
events, transitions between stable states are strongly influ-
enced by the molecular details. Two models can thus exhibit
the same bistable expression patterns as a function of exter-
nal parameters, e.g. hysteresis plots (1), yet differ markedly
in the mechanisms and rates of switching between states. In-
deed, the rate-limiting fluctuation is thought to differ dras-
tically across pathways: mRNA fluctuations in the comK-
pathway (17), fluctuations in initial pump numbers in the
arabinose-uptake pathway (18) and gene activity bursts in
the �-phage lysogeny (21). Hence, transitions between sta-
ble states can act as a sensitive probe into molecular details
of a pathway.

The best-studied example of a multistable regulatory sys-
tem is the lactose-uptake pathway in Escherichia coli, ex-
hibiting bistable expression of the genes lacZ, lacY, lacA.
Due to a positive feedback loop, both the induced state
(high expression levels of the lac-genes) and the uninduced
state (low expression levels of the lac-genes) can be stable,
see Figure 1. The constituents and function of this path-
way have been known for half a century (23,24), and most
kinetic rates have been measured (25-30), and the param-
eter space over which the system is bistable has been ex-
plored (1). Despite a large body of experimental (1,13,19,31)
and computational studies (32-34), there is no consensus on
the transition mechanism. Experimentally, a key observa-
tion was made by Choi et al. (19), who find that the lac-
repressor tetramer is released just before the transition to
the induced state. But is this single-molecule event alone
driving the transition, or are there other fluctuations in-
volved? A study by Robert et al. (31) shows that cellular
concentrations of the repressor affect the switching behav-
ior of the lac-pathway, suggesting that rebinding of the re-
pressor to the operator might play a role.

In this paper, we use single-cell analysis to determine
switching rates from the uninduced to the induced state
of the lac-system. We set up a detailed mechanistic model
of the lac-system and propose a simple scheme to reduce
fluctuations in the constituents of the lac-pathway in silico
and identify the fluctuations driving the transitions between
states. Our method to pinpoint rate-limiting fluctuations is
general and can be applied to any system whose kinetic rates
are sufficiently well known.

MATERIALS AND METHODS

Determining phenotypic switching rates

To assess expression of the lac-genes at the single-cell level
we used flow cytometry on a population of E. coli strain
CH458, which contains a gfp-cat cassette inserted down-
stream of the lac-operon (35) (see Supplementary Infor-
mation Section S1 for details). The switching rate from
the uninduced state to the induced state is the number of
cells per unit time which switch from low numbers of Lac-
proteins to a state with high number of Lac-proteins. To de-
termine the rate of switching to the induced state, we start
with a population of uninduced cells and fit the fraction of
cells in the uninduced state at subsequent times to an expo-
nential decay. Examples are shown in Figure 2 and Supple-
mentary Figure S3. Switching rates are determined at differ-
ent external inducer concentrations, resulting in a rate curve
of the switching rate against inducer concentration (see Fig-
ure 4). The reverse transition from the induced to the unin-
duced state is slow by comparison and, on the timescales of
our experiment, few cells switch back from the induced to
the uninduced state.

Experimental conditions

We used the non-metabolizable thio-methylgalactoside
(TMG) as an inducer. M9 minimal salts supplemented with
thiamine, MgSO4, CaCl2 and casamino acids were chosen
as growth medium for the CH458 strain used in our ex-
periments. We used succinate instead of glucose as carbon
source to reduce catabolite repression yet maintain suffi-
cient growth. Chloramphenicol (10 �g/ml) was added to
reduce the risk of contamination during sampling. Plasmid
pREP4 (Qiagen) was transformed to strain CH458 using
CaCl2 transformation and selecting for kanamycin resis-
tance, resulting in strain CH458+pREP4.

For rapid and robust optical density (OD) determination,
cultures of 2 ml were grown in 5 ml tubes fitting directly
into the spectrophotometer. Overnight cultures were grown
at different TMG concentrations for 16 h (∼12 generations)
at 37◦C while shaking. In the morning, uninduced cells from
0 �M TMG and induced cells from 250 �M TMG were di-
luted to OD 0.04 and grown in the particular TMG con-
centration for four additional hours. Cultures were redi-
luted every hour to ensure constant exponential growth
within a narrow OD range between 0.03 and 0.08. After this
adaptation phase, cells were spun down and washed for the
change of medium to the desired final TMG concentration.
In the following 8 h, samples were taken every hour for mea-
surement and cultures were rediluted as described above to
maintain steady state. Fluorescence of individual cells was
determined by flow cytometry of 105 cells at a time (see Sup-
plementary Figure S1). The fluorescence intensity was mea-
sured with a BD FACS Canto Flow Cytometer of BD Bio-
science at medium flow with a forward scatter of 200V and
side scatter of 400V. A threshold of 500V was set to exclude
recording of particles that are smaller than normal E. coli
cells. The fluorescence detector FL-1 was set to 800V for a
maximal separation of induced versus uninduced cells. We
found it crucial to maintain constant growth conditions by
dilution to keep intra- and extra-cellular parameters stable.
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Figure 1. Feedback in the lactose-uptake pathway. Three genes under common regulatory control constitute the lactose-uptake pathway: lacZ encodes
the enzyme to break down lactose, lacY encodes a permease (importer of lactose, shown in green), which actively imports lactose from the environment
(here: the non-metabolizable lactose-analogue TMG, blue wedge) and lacA encodes a transacetylase. Bistability is achieved by a positive feedback-loop;
the imported TMG acts as an inducer of the lac-genes by increasing the unbinding rate of LacI tetramer proteins (red) from the so-called operator binding
sites in the lac-regulatory region. LacI tetramers inhibit the expression of the lac-genes. As a result, the induced state shown on the right, with the lac-genes
expressed, is stable if the permease imports enough inducers to deactivate the repressors. The uninduced state shown on the left can also be stable, since in
the absence of lac-expression, the repressors prevent expression of the lac-genes by binding to the regulatory region and forming a DNA loop. However,
this regulatory circuit is built from stochastic components and can be interrupted by random fluctuations of the number of mRNA, proteins, inducer,
repressors or the binding state of repressors to DNA. These fluctuations lead to transitions between the induced and uninduced states.

Figure 2. Single-cell analysis and the rate of phenotype switching. A. (Schematic) We take hourly samples from populations of E. coli cells growing at
different concentrations of the external inducer. Through dilution at regular intervals we keep the populations under constant conditions, see Materials
and Methods and Supplementary Information. A fluorescent reporter indicates the expression levels of the lac-genes in individual cells. B. Fluorescence
data taken at 30 �M of TMG (smoothed with a moving average filter for visual clarity) showing the bimodal distribution of reporter expression with high
and low levels corresponding to cells in uninduced (OFF) and induced (ON) states. Initially, all cells are in the uninduced state. With time, the fraction of
cells in the induced state increases and the fraction of cells in the uninduced state decreases (shown here: purple 3 h, blue 4 h, green 5 h, yellow 6 h, red 7
h, other time points not shown; for data processing see Supplementary Information). For images of single cells and their fluorescence over time, see Figure
6. We observe no significant difference between growth rates of induced and uninduced cells, see Supplementary Information. C. The fraction of cells in
the uninduced state decays approximately exponentially with time. Fitting an exponential function (black line) to the data points gives the switching rate
to the induced state. For this particular concentration of TMG the switching rate is 3.9 × 10−3 ± 3.3 × 10−4/min.

Time-lapse microscopy was carried out by spotting single
cells on a M9 polyacrylamide (10%) slide containing TMG
inside a Gene Frame (Thermo Fisher Scientific). A Nikon
Ti-E microscope equipped with a CoolsnapHQ2 camera
and an Intensilight light source was used in an Okolab cli-
mate incubator at 37◦C. Images with cells expressing the
green fluorescent protein (GFP) were taken with the follow-
ing protocol and filter set: 200 ms exposure time for phase
contrast and 0.5 s exposure for fluorescence at 450–490 nm
excitation via a dichroic mirror of 495 nm and an emission
filter at 500–550 nm. Pictures were taken every 30 min.

Identification of rate limiting fluctuations via smoothing in
silico

We set up a detailed mechanistic model of the lactose-
uptake pathway which captures the switching behavior ob-
served experimentally. This model describes the expression
of mRNA and protein, both of LacY (lactose/TMG im-
porter) and the repressor (LacI tetramer), the uptake of ex-
ternal inducers into a cell, repressor binding to DNA, DNA
looping, passive diffusion of inducers into the cell and cell
division. All rate constants were taken from the literature,
with the exception of a single parameter describing the rate
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Figure 3. In silico smoothing of fluctuations in gene regulatory systems. As
an example we show the production and degradation of some molecule at
constant rates (red line). In order to reduce fluctuations, the step size (one
molecule at a time in the original dynamics) is multiplied by a smoothing
factor s < 1, but the rate at which the smaller steps occur is increased by
1/s. The resulting dynamics (green line s = 0.01) has the same mean, but the
amplitude of fluctuations is reduced by a factor proportional to s relative
to the original dynamics.

Figure 4. The transition from uninduced to induced state of the lac-system.
The unshaded region indicates the range of external inducer (TMG) con-
centration where switching rates from the uninduced to the induced state of
the lac-system could be determined experimentally. Orange triangles give
the switching rates as determined in Figure 2 for different inducer concen-
trations. The experimentally determined switching rates agree closely with
the switching rates observed in computer simulations of the mechanistic
model (blue circles). The rate of unbinding of the repressor from both its
binding sites (simulations, dashed blue line) which was established by Choi
et al. (19) as a necessary condition for a switch to occur, is up to three or-
ders of magnitude greater than the switching rate. The full green line gives
our theoretical result (2) for the switching rate, which takes into account
the threshold time period between repressor unbinding and rebinding, see
text.

of inducer import. For this parameter, literature values vary
widely and may depend strongly on the particular strain
used. This parameter is the sole free parameter of our model
and is determined by fitting the experimentally determined
switching rates to those observed in the mechanistic model.
For details of the modeling and the literature sources of rate
constants, see Supplementary Information Section S2.

To assess the effect of fluctuations in specific components
of the lac-pathway on the switching rate, we put forward a
simple scheme to control fluctuation amplitudes in silico.
Take a particular component, e.g. lacY-mRNA that is pro-
duced in units of 1 molecule at some rate. (This rate changes
over time due to repressor binding and unbinding to the lac-
regulatory region.) We now change the number of molecules

produced in each transcription event by a smoothing fac-
tor s < 1, and simultaneously divide the transcription and
degradation rates by the same factor. For a smoothing fac-
tor s = 0.1, mRNA molecules are produced in units of 1/10
but at 10 times the rate. This is impossible to do experi-
mentally but feasible in silico; downstream, the rate of pro-
tein production will now simply be proportional to a non-
integer number of mRNA molecules, and analogously for
other molecules and binding states. The effect of this proce-
dure is illustrated in Figure 3, see also Supplementary In-
formation Section S3. The mean number of molecules is
preserved, but the fluctuations about this mean are reduced
by a factor of s. Deterministic dynamics (which can be de-
scribed by ordinary differential equations (ODEs)) corre-
sponds to s = 0, while finite values of s result in some degree
of stochasticity. If smoothing fluctuations in a particular
component affects the switching rate between phenotypic
states, we conclude that these fluctuations are rate limiting
to the particular transition. On the other hand, if smooth-
ing fluctuations in a particular component is found not to
affect the switching rate, its dynamics can be modeled by
an ordinary differential equation. In this way, the minimal
model describing a particular transition can be determined
systematically.

RESULTS

Mechanism of switching in the lac-system

For external concentrations of the inducer TMG between
7.5 and 200 �M the lac-system shows bistability with states
of high and low expression levels of the lac-genes (see Sup-
plementary Figure S2). By measuring the relative numbers
of induced and uninduced cells in the population over time
we determine the switching rate per cell at a given exter-
nal TMG concentration, see Figure 2. Figure 4 shows the
switching rate from the uninduced to the induced state
against the external TMG concentration (orange triangles).
The excellent match of this switching rate curve with that
found in numerical simulation of the mechanistic model
(blue circles) suggests that our model contains the relevant
components of the lac-pathway. In order to pinpoint the
rate-limiting fluctuations, we then reduce the fluctuations
of each component of our model in turn as described above
and in Figure 3.

We find that the switching rate curve is unaffected by re-
ducing fluctuations in all components except the operator
state. Notably, fluctuations arising from the finite number
of lacY mRNA and protein, partitioning due to cell divi-
sion, or the random timing of transcription and translation
do not affect the switch to the induced state. Only the ran-
dom timing of repressors binding to and unbinding from
the lac-operator affects the switching rate. Reducing these
fluctuations, the switching rate decreases until no more tran-
sitions to the induced state are observed on the timescale of
our simulations. On the other hand, the stochastic dynam-
ics of all other components can be replaced by a smooth
deterministic dynamics without affecting the switching rate
(see Supplementary Information Section S3). Fluctuations
in the operator state are thus the rate-limiting fluctuations
for the transition to the induced state.
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In the lac-system, LacI molecules can tetramerize and
bind simultaneously to two different operator sites, form-
ing a DNA loop that results in a very effective repression of
transcription. A mechanism proposed by Choi et al. (19) is
that the repressor unbinds from both operator sites, trigger-
ing a burst of mRNA production taking the lac-pathway to
the induced state. However, we find that full repressor un-
binding takes place at a far higher rate than the transition
to the induced state (see Figure 4 and Supplementary In-
formation Section S4). An additional mechanism must be
involved.

Once the repressor has released the lac-operon, the same
repressor molecule (or a different one) might quickly bind
again. Alternatively, the operator might remain unbound
for a time period τ long enough for sufficient numbers of
LacY to be produced and for sufficient inducer molecules
to be pumped into the cell to deactivate repressors and
switch the cell to the induced state. In our simulations we
find that, upon repressor unbinding, the transition to the
induced state takes place only if the time period over which
the operator site remains unbound exceeds some threshold.
Accounting for this threshold period gives a simple but ac-
curate theory of the transition to the induced state of the
lac-system, analogous to the theory developed by Walczak,
Onuchic and Wolynes for a simple model of a self-activating
gene (36).

The effect of lac-expression on the repressors of the lac-
genes is mediated by the inducing sugars imported by the
importer LacY. The threshold period τ is then given by the
time required to express a number of importers sufficient
to maintain a certain concentration of inducers in the cell.
This critical number of importers is set by the requirement
that repressors are deactivated by binding to the imported
inducers. We find the threshold period τ depends on the ex-
ternal concentration of inducers i via

τ = β
i + i0

i
, (1)

where i0 is the half maximum of inducer import while β is
proportional to mRNA and protein dilution rates and in-
versely proportional to rates of translation, transcription
and sugar import by proteins (see Supplementary Informa-
tion Section S4).

Typically, the repressor-DNA loop opens and closes mul-
tiple times before the lac-regulatory region by chance re-
mains free from repressors long enough to cause a switch in
the phenotypic state. How frequently the regulatory region
remains unbound for a period τ depends on two factors, the
rate kb at which an operator site is located by and binds to a
repressor and the rate dt at which a repressor completely
unbinds from the promoter. Assuming that a phenotypic
switch happens when the lac-regulatory region is unbound
for a period exceeding τ , the switching rateγ can be calcu-
lated giving

1
γ

= ekbτ

[(
1
kb

+ 1
dt

)
− τ

ekbτ − 1

]
, (2)

see Supplementary Information Sections S2 and S4 for de-
tails. The switching rate γ is high when τ is small (high exter-
nal concentration of inducers) and when the rate of repres-
sors binding to the operator kb is small. Thus, the threshold

Figure 5. Linear relationship between switching rate and inducer concen-
tration on a logarithmic/inverse plot. We replot data from Figure 4 in the
form suggested by Equation (3). The logarithm of the switching rate turns
out to be (to a good approximation) a linear function of the inverse exter-
nal inducer concentration. The slope −kbβi0 and the intercept ln (dt) −
kbβ of this plot allow to directly read off the parameters i0 and kbβ from
the experimentally measured switching rates (given the unbinding rate dt,
see Supplementary Information Section S2).

period theory explains the observation in theoretical models
that speeding up the rate of repressor-operator binding and
unbinding leads to a decrease of the switching rate (37-39).
Taking the values of all other parameters from the litera-
ture, we use the maximum rate of inducer import per LacY
molecule �tr as the sole free parameter of our model, giving
�tr ≈ 9.44/min (see Supplementary Information Section S4
for details). Figure 4 shows excellent agreement between the
experimentally determined switching rate, the mechanistic
model and the theoretical switching rate curve Equation (2).
If the gene is in the repressed state for most of the time (kb
� dt), the switching rate (2) simplifies to

γ = dte−kbτ = dte
−kbβ

(
1+ i0

i

)
, (3)

which is the rate of repressor unbinding dt divided by the
expected number of unbinding-rebinding events ekbτ per
switch (see Supplementary Information Section S4). This
expression predicts a linear relationship between the loga-
rithm of the switching rate and the inverse external inducer
concentration, see Figure 5.

If the phenotypic switch depends on the time period be-
tween repressor unbinding and rebinding, one expects the
switching rate to depend on the rate at which repressors bind
to the lac-operator. Specifically, increasing the number of
lac-repressors reduces the probability for the lac-regulatory
region to remain unbound for a period τ , which should de-
crease the switching rate. We test this prediction of our the-
ory by constructing an E. coli strain with extra copies of the
lacI gene. The CH458+pREP4 strain expresses LacI from
its original promoter on a plasmid containing a p15A ori-
gin of replication (10–12 copies per cell). We find the addi-
tional copies of the repressor strongly affect the switching
behavior, leading to decreased switching seen both by flow
cytometry (Figure 6A and B) and by time-lapse fluorescence
microscopy (Figure 6C and D). This result cannot be ex-
plained by a scenario where the transition to the induced
state is due to repressor dissociation alone (19), since the
dissociation event does not depend on the number of repres-
sors present. Since in the uninduced state the lac-operon is
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Figure 6. The concentration of lac-repressors affects the switching rate to the induced state. (A and B) Fluorescence distribution of a population of initially
uninduced cells after 16 h of incubation in the presence of a series of TMG concentrations (0, 10, 25, 50, 100, 250, 1000 �M TMG in black, purple, blue,
green, yellow, brown, red, respectively). High fluorescence values indicate induced cells (colored dots) while low fluorescence values indicate uninduced
cells (colored lines); measurements in the low fluorescence range were fitted to a Gaussian distribution to include counts below the instrumental resolution
limit (see also Supplementary Information). Two strains were examined which differ in copy number of the lacI gene. (A) In the original CH458 strain
with a single copy of the lacI gene, over the course of 16 h virtually all cells switched to the induced state at TMG concentrations of 25 �M and above.
(B) For the CH458+pREP4 strain containing 10 extra copies of the lacI gene, no switching was observed at TMG concentrations of 25 �M and below.
Intermediate TMG levels of 50 and 100 �M lead to transition of a fraction of the population and only high TMG levels of 250 �M and above resulted
in all cells switching to the induced state over 16 h. Note that an increased number of repressor molecules (LacI tetramers) leads to reduced fluorescence
intensity in the induced state, most likely due to short-term binding of repressor to the lac-operator (29,30). (C) Time-lapse fluorescence microscopy shows
individual cells of the original CH458 strain (left: phase-contrast image; right: fluorescence image). Cells were spotted on a semi-solid surface containing
inducer concentrations of 25, 50 and 1000 �M TMG and then grew out to microcolonies. Still images from time-lapse movies show that the switching rate
to the induced state increases with inducer concentration. Scale bar: 5 �m. (D) At 25 and 50 �M TMG, cells of the CH458+pREP4 strain with elevated
LacI levels show markedly fewer transitions to the induced state compared to the original strain CH458.

bound by a repressor most of the time, the most direct effect
of an increased number of repressor molecules is to shorten
the time between repressor unbinding and rebinding, in line
with the threshold period scenario above.

DISCUSSION

Fluctuations taking a multistable gene regulatory system
from one phenotypic state to another are among the most
striking manifestations of stochasticity in biological sys-
tems. Here, we have shown that the switching rate curve, the
rate of phenotypic switching as a function of a control pa-
rameter, is a powerful tool to identify the rate-limiting fluc-

tuations that drive a particular transition and to estimate
molecular parameters associated with these fluctuations.

On the basis of precise measurements of the switching
rate from the uninduced to the induced state of the lactose-
uptake pathway in E. coli, we used a detailed computational
model of the lac-pathway to formulate a theory of the rate-
limiting fluctuation triggering lac-induction. It is a com-
bination of two chance events; (i) the repressor unbinding
completely from its binding sites on the lac-operon and (ii)
the operator sites of the lac-system staying free of repres-
sors for a time sufficient to produce enough importers for
positive feedback to kick in and take the cell into the in-
duced state. We then altered the time period until repres-
sor rebinding by changing the concentration of LacI pro-
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teins and found that indeed shorter periods until repressor
rebinding lead to decreased switching to the induced state.

Our result differs from the early picture of Novick and
Weiner (23), where the production of a single molecule of
permease is responsible for the phenotypic transition, or
from the idea that bursts of lacY translation are responsi-
ble. Our result complements and extends the recent result
by Choi et al. (19) who, in single-molecule experiments, ob-
served the repressor unbind completely from DNA prior
to every phenotypic transition. Hence, repressor dissocia-
tion is a necessary condition for the phenotypic transition.
We show that, however, repressor dissociation alone is not a
sufficient condition; rather the operator needs to stay free of
repressors for a threshold time period sufficient to import a
critical amount of inducer into the cell. The second chance
event––all repressors not binding to their binding sites for a
specific period––involves several molecules, and is not a sin-
gle molecular event. This qualitative understanding of the
phenotypic transition in the lac-system has a large quantita-
tive impact on the switching rate. Depending on the external
inducer concentration, the fraction of dissociation events
leading to a phenotypic transition can be very small: at low
inducer concentration the lac-repressor completely dissoci-
ates from DNA more than thousand times before a single
phenotypic transition occurs, see Figure 4 and Supplemen-
tary Information Section S4. Correspondingly, the rate of
phenotypic switching and the rate of complete repressor un-
binding differ by more than three orders of magnitude.

Different multistable gene regulatory systems, from the
sonic hedgehog pathway driving vertebrate organogenesis
to competence development facilitating genetic transforma-
tion in B. subtilis, share features such as feedback and hys-
teresis. Stochastic transitions between phenotypic states, on
the other hand, depend on specific details which differ be-
tween systems. Understanding of the nature of the rate-
limiting step of a phenotypic transition is a prerequisite for
the design of synthetic switches with specific switching rates.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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