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Short Communication

Effects of cadmium exposure on Iberian ribbed newt (Pleurodeles 
waltl) testes
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Abstract: To characterize the histomorphologic effects of cadmium on adult newt testes, male Iberian ribbed newts (6 months post-
hatching) were intraperitoneally exposed to a single dose of 50 mg/kg of cadmium, with histologic analysis of the testes at 24, 48, 
72, and 96 h. Beginning 24 h after cadmium exposure, apoptosis of spermatogonia and spermatocytes was observed, and congestion 
was observed in the interstitial vessels of the testes. Throughout the experimental period, the rates of pyknotic cells and TUNEL and 
cleaved caspase-3 positivity were significantly higher in the spermatogonia and spermatocytes of cadmium-treated newts compared 
with control newts. There were no significant differences between cadmium-treated and control newts in phospho-histone H3 positivity 
in the spermatogonia and spermatocytes. These results suggest that spermatogonia and spermatocytes in adult Iberian ribbed newts are 
highly sensitive to cadmium. This is the first report of the histomorphologic characteristics of cadmium-induced testicular dysfunction 
in newts. (DOI: 10.1293/tox.2017-0032; J Toxicol Pathol 2017; 30: 345–350)
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Cadmium is a toxic environmental and industrial pol-
lutant1–3. Cadmium enters the environment from anthropo-
genic sources such as paints, fertilizers, plastic stabilizers, 
plating, metal smelting, battery manufacturing, and min-
ing1–3. Several organs, such as the kidney and liver, are af-
fected by cadmium, and the testes are exceedingly sensitive4. 
In the testes, cadmium induces apoptosis and necrosis of 
germ cells, decreases in sperm number and motility, endo-
thelial cell damage, and congestion of testicular blood ves-
sels, with edema and hemorrhage4. These cadmium-induced 
testicular manifestations are associated with distortion of 
the blood-testis barrier and oxidative stress4. Previous stud-
ies reported that cadmium induces testicular dysfunction in 
a variety of mammalian and bird species, including mice, 
rats, hamsters, rabbits, dogs, and mallard ducks5–12.

As a result of runoff, aquatic ecosystems are the ter-

minal receptacle of land-based chemicals13; therefore, it is 
assumed that compared with terrestrial vertebrates, aquatic 
vertebrates are more readily affected by exposure to chemi-
cals containing metals such as cadmium. Nevertheless, only 
a few histopathologic studies of cadmium-induced testicular 
dysfunction in amphibian species have been published14, 15. 
In the testes of Rhinella arenarum, injection of 5 mg/kg of 
cadmium into the dorsal lymphatic sac daily for 15 days 
caused necrosis and apoptosis of germ cells and enlarge-
ment of the lumen of the interstitial vessels14. In the testes 
of Chinese fire-bellied newts exposed subcutaneously to 
50 mg/kg of cadmium for 36 h, increases in the number 
of TUNEL-positive cells and increases in caspase-3 gene 
expression and enzyme activity were observed15. However, 
there are no reports describing the histomorphologic effects 
of cadmium on newt testes. Therefore, the histomorphologic 
characteristics of cadmium-induced testicular dysfunction, 
such as the expanse and distribution of damaged germ cells 
and the presence and degree of interstitial lesions, and their 
temporal changes in newts remain unclear. Therefore, in the 
present study, we examined the temporal changes in various 
histomorphologic characteristics in the testes of adult male 
newts exposed to cadmium.

Iberian ribbed newts (Pleurodeles waltl) were origi-
nally purchased from an animal handling company (Tao, 
Chiba, Japan). The animals used in the present study were 
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raised in our laboratory from the originally purchased 
newts. Male Iberian ribbed newts (6 months post-hatching) 
were maintained at 25–26°C in a recirculating aquaculture 
system equipped with carbon filtration and biofiltration. 
The photoperiod was adjusted to a 14:10 hour (light:dark) 
cycle. The present experiments were performed following 
the guidelines of the Animal Research Committee of Tottori 
University.

A total of 32 newts were divided into two groups: a 
control group (n=16) and a cadmium-treated group (n=16). 
Cadmium chloride (Wako Pure Chemical Industries, Osa-
ka, Japan) was dissolved in saline. The newts received in-
traperitoneal (i.p.) injections of cadmium (50 mg/kg body 
weight) or saline (control). The decision to use this concen-
tration was based on results of a preliminary study in which 
exposure to 5, 10, and 25 mg/kg of cadmium induced few 
histopathologic changes in the testes, whereas exposure to 
50 mg/kg caused stable pyknotic changes in the testes. No 
individual differences in the pyknotic rate were observed in 
the 50 mg/kg cadmium-treated group.

Testes samples were collected after euthanasia by ad-
ministration of an overdose of pentobarbiturate (100 mg/kg, 
i.p.) at 24, 48, 72, or 96 h after cadmium exposure. The tes-
tes were fixed in Bouin’s fluid overnight, refixed in neutral 
buffered formalin, embedded in paraffin, cut into sections, 
and routinely stained with hematoxylin-eosin.

Testicular cells with fragmented DNA were detected 
using a terminal deoxynucleotidyl-transferase (TdT)-medi-
ated deoxyuridine triphosphate-digoxigenin (dUTP) nick-
end labeling (TUNEL) assay, which was performed using 
a TACS 2 TdT-DAB In Situ Apoptosis Detection Kit (Trev-
igen, Inc., Gaithersburg, MD, USA). The rate of TUNEL 
positivity was calculated as the percentage of TUNEL-
positive cells among the total number of spermatogonia and 
spermatocytes.

Immunohistochemical staining was carried out using a 
labeled-polymer method with Histofine Simple Stain MAX-
PO (R) (Nichirei, Tokyo, Japan). For cleaved caspase-3 anti-
gen retrieval, tissue sections were immersed in citrate buffer 
(pH 6.0) (Dako, Glostrup, Denmark) and autoclaved for 15 
min at 121°C. For detection of phospho-histone H3, tissue 
sections were immersed in citrate buffer (pH 6.0) (Dako) 
and microwaved for 15 min. Histone H3, a protein involved 
in chromatin structure, is phosphorylated at serine 10 dur-
ing chromatin condensation in mitosis16; therefore, phospho-
histone H3 is recognized as a mitosis-specific marker17, 18. 
Endogenous peroxidase activity was quenched by immers-
ing the sections in 3% hydrogen peroxide in methanol for 
15 min. Sections were incubated with cleaved caspase-3 
rabbit polyclonal antibody (1:50 dilution; Cell Signaling 
Technology, Inc., Danvers, MA, USA) for 30 min at room 
temperature. Sections were incubated with phospho-histone 
H3 rabbit monoclonal antibody (1:1,500 dilution; Abcam, 
Tokyo, Japan) for 30 min at room temperature. The sections 
were then treated with Histofine Simple Stain MAX-PO (R) 
(Nichirei) for 30 min at room temperature. After exposure 
to a solution of 3,3′-diaminobenzidine containing hydrogen 

peroxide (Nichirei) to facilitate a peroxidase color reac-
tion, the sections were counterstained with Mayer’s hema-
toxylin. The rates of cleaved caspase-3 and phospho-histone 
H3 positivity were calculated as the percentage of cleaved 
caspase-3-positive and phospho-histone H3-positive cells, 
respectively, among the total number of spermatogonia and 
spermatocytes.

All values are expressed as the mean ± standard er-
ror. Comparisons of differences between the control and 
cadmium-treated groups were analyzed using Excel-Toukei 
2015 statistical software (SSRI Co., Ltd., Tokyo, Japan). 
The data from two groups were analyzed using an F-test. 
When variances were homogenous, Student’s t-test was per-
formed. Welch’s t-test was performed when variances were 
not homogeneous (P<0.05). P values of <0.05 or <0.01 were 
considered indicative of statistical significance.

In both the control and cadmium-treated groups, all 
newts survived, and none exhibited behavioral disorders 
or abnormal appearance throughout the entire experimen-
tal period. A few pyknotic cells were observed among the 
spermatogonia and spermatocytes within the testes in the 
control groups throughout the experiment (Fig. 1 and 2). 
In the cadmium-treated group, pyknotic cells among the 
spermatogonia and spermatocytes were observed at 24 h 
after cadmium treatment (Fig. 1). At 72 and 96 h, numerous 
pyknotic cells were observed among the spermatogonia and 
spermatocytes, and the structure of cysts collapsed in the 
testes of the cadmium-treated group (Fig. 1 and 2). These 
pyknotic cells were positive for TUNEL staining and anti-
cleaved caspase-3 antibody (Fig. 3 and 4). Throughout the 
experimental period, the rates of pyknotic cells and TUNEL 
and cleaved caspase-3 positivity in the spermatogonia and 
spermatocytes of cadmium-treated newts were significantly 
higher than in control newts (Fig. 1). In addition, almost 
equal numbers of phospho-histone H3-positive cells were 
present among the spermatogonia and spermatocytes in both 
groups (Fig. 5). No significant difference in phospho-histone 
H3-positive rate in the spermatogonia and spermatocytes 
was observed (Fig 1). Throughout the entire experimental 
period, few histopathological changes were observed in the 
round spermatids or elongating spermatids of the cadmium-
treated group (Fig. 6).

In the present study, i.p. injection of 50 mg/kg of cad-
mium induced an increase in the number of pyknotic cells 
among the spermatogonia and spermatocytes in adult male 
Iberian ribbed newt testes. These pyknotic cells were posi-
tive for TUNEL staining and cleaved caspase-3. Cleavage of 
caspase-3 is associated with induction of apoptosis; there-
fore, cleaved caspase-3 is recognized as an apoptosis mark-
er19. Our results thus indicate that the cadmium-induced 
pyknotic changes in the spermatogonia and spermatocytes 
of Iberian ribbed newt testes were caused by apoptosis. Mi-
tochondria are considered to be the primary target of cadmi-
um-induced apoptosis20. Other studies demonstrated that in 
the testes of frogs, rats, and mice, cadmium induces upregu-
lation of Bax and caspase-3 expression and downregulation 
of Bcl-2 expression9, 10, 21. In rat testes, cadmium-induced 
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apoptosis is mediated by the translocation of apoptosis in-
ducing factor from the mitochondria to the nucleus22.

In newts, the testis can be divided into four zones, 
each containing spermatogenic cells at the same differen-
tiation stage of spermatogenesis: the spermatogonial stage, 
spermatocyte stage, round spermatid stage, and elongating 
spermatid stage23. The lobules formed at the cephalic re-
gion gradually assume a more caudal position as the cells 
mature23. Therefore, it is easy to distinguish the germ cell 

differentiation stage, which is highly sensitive to chemicals, 
by histomorphologic examinations using hematoxylin-eo-
sin staining. In the present study, i.p. injection of 50 mg/
kg of cadmium induced apoptosis of the spermatogonia 
and spermatocytes in Iberian ribbed newts. The observed 
histopathologic findings in the testes of newts exposed to 
cadmium were similar to those reported for testes of several 
frogs, such as Bufo melanostictus and Rana hexadactyla 
Lesson24, 25, and fish, such as Oryzias latipes26.

Fig. 1.	 Changes over time in the rates of pyknotic cells (A), TUNEL positivity (B), cleaved caspase-3 positivity (C), and phospho-histone H3 
positivity (D) in the spermatogonia and spermatocytes of newts. Values are expressed as the mean ± SE. **Significantly different from 
the control group at P<0.01 (Student’s t-test). ††Significantly different from the control group at P<0.01 (Welch’s t-test).

Fig. 2.	 Pyknotic changes in the spermatogonia and spermatocytes 96 h after cadmium treatment. (A) Control group. (B) Cadmium-treated 
group. Abbreviations: sg, spermatogonia; sc, spermatocytes. Bar = 30 μm. 1. Low-power view of newt testes. Bar = 50 µm. 2. High-
power view of newt testes. Bar = 30 µm. Arrows indicate congestion. Arrowheads indicate pyknotic cells.
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In the present study, congestion was also observed in 
the testes of Iberian ribbed newts exposed to cadmium. Pre-
vious studies demonstrated congestion of interstitial blood 
vessels in the testes of frogs, fish, and rats exposed to cadmi-
um13, 14, 27, 28. The congestion is speculated to be associated 

with disruption of the vascular system2, 29; however, details 
of the pathogenesis of cadmium-induced congestion remain 
unclear.

The results of the present study revealed that a 50 mg/
kg exposure to cadmium induces significant apoptosis of 

Fig. 3.	 TUNEL-positive cells in the spermatogonia and spermatocytes 96 h after cadmium treatment. (A) Control group. (B) Cadmium-treated 
group. Bar = 30 μm.

Fig. 4.	 Cleaved caspase-3-positive cells in the spermatogonia and spermatocytes 96 h after cadmium treatment. (A) Control group. (B) Cadmi-
um-treated group. Bar = 30 μm.

Fig. 5.	 Phospho-histone H3-positive cells in the spermatogonia and spermatocytes 96 h after cadmium treatment. (A) Control group. (B) Cad-
mium-treated group. Bar = 30 μm.
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spermatogonia and spermatocytes in the testes of adult Ibe-
rian ribbed newts, indicating that germ cells in these dif-
ferentiation stages are highly sensitive to cadmium. The 
histopathologic findings of the present study are similar to 
those reported for cadmium-exposed frogs, such as B. mela-
nostictus and R. hexadactyla Lesson, and fish, such as O. 
latipes24–26. To our knowledge, this is the first report of the 
histomorphologic characteristics of cadmium-induced tes-
ticular dysfunction in newts.
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