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ABSTRACT. Catheter ablation for ventricular tachycardia (VT) has been increasingly used 
over the past two decades in patients with structural heart disease (SHD). In these individuals, 
a substrate mapping strategy is being more commonly applied to identify targets for VT abla-
tion, which has been shown to be more effective versus targeting mappable VTs alone. There are 
a number of substrate mapping methods in existence that aim to explore potential VT isthmuses, 
although their success rates vary. Most of the reported electrogram-based mapping studies have 
been performed with ablation catheters; meanwhile, the use of multipolar mapping catheters with 
smaller electrodes and closer interelectrode spacing has emerged, which allows for an assessment of 
detailed near-field abnormal electrograms at a higher resolution. Another recent advancement has 
occurred in the use of imaging techniques in VT ablation, particularly in refining the substrate. 
The goal of this paper is to review the key developments and limitations of current mapping strate-
gies of substrate-based VT ablation and their outcomes. In addition, we briefly summarize the role 
of cardiac imaging in delineating VT substrate.
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Introduction

Over the last decade, catheter ablation for ventricular 
tachycardia (VT) has been increasingly performed as an 
adjunctive therapy to antiarrhythmic drugs.1,2 With this 

came an increased understanding of the mechanisms 
of VT; notably, it commonly results due to scar-related 
reentry in patients with structural heart disease (SHD). 
Activation mapping and entrainment mapping are rea-
sonable approaches to identify and target critical sites of 
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the reentrant VT circuit for ablation in patients with tol-
erated reentrant VT.3–6 However, the majority of patients 
presenting for catheter ablation have unstable VT that 
hampers the accurate definition of the critical areas 
of the reentrant circuit with activation or entrainment 
mapping.7,8

Thus, substrate ablation is increasingly favored as a VT 
ablation strategy, with or without entrainment/acti-
vation mapping methods. Substrate-based approaches 
involve the identification of local abnormal ventricular 
electrograms that represent diseased areas consistent 
with potential isthmuses capable of supporting reentrant 
VT and may be followed even when VTs are not inducible 
or not hemodynamically tolerated.9,10 Although a com-
bination of several approaches is commonly employed 
during VT ablation, a number of studies have examined 
with variable results whether a substrate-based ablation 
strategy may be superior or comparable to one guided 
predominantly by the activation/entrainment mapping 
of inducible and hemodynamically tolerated VTs.11–18 
Critical in achieving more successful results with a sub-
strate-based approach is an accurate representation of the 
pathologic substrate; various strategies to delineate this 
have been proposed to date.4,10,13–22

With the advent of three-dimensional (3D) electroanatom-
ical mapping (EAM) systems in the 1990s,23 there has been 
a significant improvement in our ability to represent both 
anatomical and functional electrical information in a real-
time model of the ventricle. Furthermore, the develop-
ment of multipolar catheters facilitates precise scar detec-
tion,24–26 with potentially more successful results.27 In 
addition, cardiac imaging in the form of cardiac magnetic 
resonance (CMR) imaging or multidetector computed 
tomography (MDCT) may play a potentially important 
role in the preprocedural assessment of cardiac anat-
omy and myocardial substrate and the intraprocedural 
integration of the structural and electrophysiological VT 
substrate.28–31

In this paper, we review substrate mapping and abla-
tion strategies and clinical outcomes for VTs in the set-
ting of SHD and also discuss the importance of modali-
ties for substrate detection in addition to those based on 
electrograms.

Substrate mapping in patients with structural 
heart disease

Electrogram-based substrate detection

The identification and modification of the arrhythmo-
genic substrate in the endocardium and/or epicardium 
are increasingly considered as composing a primary abla-
tion strategy in patients with SHD. This technique was 
originally developed in the absence of 3D mapping9,32–34; 
however, the development of 3D mapping systems in the 
late 1990s23 accelerated the use of electrogram-based tech-
niques in detecting and localizing substrate reproducibly 
and feasibly. Furthermore, the recent use of ultra-high-
density mapping with catheters with multiple small elec-
trodes and closer interelectrode spacing has enhanced the 
speed, density, resolution, and detailed near-field signal 
assessment of mapping acquisition, reducing interpola-
tion and possibly improving clinical outcomes25–27,35–38 
(Figure 1).

Bipolar voltage mapping to evaluate the electrogram 
peak-to-peak voltage is a widely accepted and frequently 
used technique to characterize substrate. Endocardially, 
a bipolar voltage amplitude of 1.5 mV or more normally 
identifies healthy tissue. Additionally, normal ventricu-
lar myocardial bipolar electrograms are defined as sharp, 
biphasic or triphasic signals with a duration of 70 ms or 
less and/or with an amplitude-to-duration ratio of more 
than 0.046.9,39 Areas with voltages of 0.5 mV to 1.5 mV 
are often considered as border zones in the setting of 
a 3.5-mm to 4-mm-tip, 1-mm ring electrode, and 2-mm 
interelectrode spacing mapping catheter (Table 1),10,32,34 
even in the right ventricle.40 The definitions above have 
been validated by human pathologic data and radiologic 
studies.41–43 Areas with voltages of less than 0.5 mV are 
generally considered as “dense scar”; however, low-am-
plitude abnormal electrograms are frequently observed 
in these areas.44 Therefore, in order to define unexcita-
ble scar, the area should contain no visible electrograms 
(ideally using mapping catheters with smaller and nar-
rower-spaced bipolar electrodes) and have no local pac-
ing capture.45 In the epicardium, a bipolar voltage cut-
off of 1 mV or more46 or 1.5 mV47 is considered normal. 
With regard to the right ventricle, epicardial 1.5 mV can 
also be a reasonable bipolar voltage cutoff.40 The major-
ity of VTs have critical circuits located in the scar bor-
der zone,48 which harbors abnormal electrograms9,32,33 
[ie, fractionated potentials,49 double potentials, and late 
potentials (LPs), discrete and separated from the QRS 
by 40 ms50], which can be targeted by catheter ablation. 
However, it has been reported that a certain proportion 
of abnormal potentials are also located in regions with 
bipolar voltages of more than 1.5 mV,19,21 with abnor-
mal electrograms occasionally unmasked by extrastim-
uli.51,52 We have recorded at least 3% of substrate defined 
as local abnormal ventricular activity (LAVA) in voltage 
zones of more than 1.5 mV (because of far-field signal 
annotation)53 (Figures 2A–2D). Moreover, Tung et al.54 
found that 18% of critical VT isthmuses were within 
low-voltage areas during pacing from the site but 
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Figure 1: Left: Comparison of bipolar voltage maps (endocardial: scar < 0.5 mV, border zone 0.5–1.5 mV, and healthy tissue > 
1.5 mV; epicardial: border zone 0.5–1 mV and healthy tissue > 1 mV) using Navistar® (Biosense Webster, Diamond Bar, CA, USA) 
(NAV) mapping versus PentaRay® (Biosense Webster, Diamond Bar, CA, USA) (PR) mapping in the endocardium (A) and epicar-
dium (B) of a sheep model with an iatrogenic-created anteroseptal scar and in humans (C) using the CARTO® 3 system (Biosense 
Webster, Diamond Bar, CA, USA). All images are shown in an anteroposterior view. A: LAVA is represented in pink, the proximal 
conduction (left-sided His) system is in blue, and the Purkinje system is in yellow. Border zone areas and LAVA channels are 
visible within the scar with PR mapping, but none are visible with NAV mapping. B: Three LAVA channels are visible with PR 
mapping but none with NAV mapping. The border zone is smaller and demonstrates increased detail using PR mapping. C: 
Larger scar area and improved border zone definition using PR versus NAV mapping. Right: Point pair analysis (≤ 3 mm of dis-
tance between a PR and NAV point) from two examples by manual signal analysis in two different patients. Substrate maps are 
shown at 100% transparence. LAVA using PR (in purple) and NAV (in white) are tagged. The distance between tags is measured 
using the distance measurement tool in the mapping system. A red arrow indicates a clear LAVA visible with PR mapping but 
one that is barely or not visible with NAV mapping. Reproduced with permission from: Berte B, Relan J, Sacher F, et al. Impact 
of electrode type on mapping of scar-related VT. J Cardiovasc Electrophysiol. 2015;26(11):1213–1223. LAVA: local abnormal 
ventricular activity; ENDO: endocardial; EPI: epicardial.

within normal amplitude (> 1.5 mV) areas with pacing 
from another site, indicating that voltage is affected by 
the activation wavefront.54–56 Therefore, a voltage map 
based on standard (0.5–1.5 mV) voltage criteria is not 
necessarily capable of delineating the entire possible VT 
substrate.

Furthermore, with the use of high-density mapping with 
small electrodes and narrower interelectrode spacing 
( Figure 1), traditional definitions of substrate voltage 
need to be adjusted depending on the mapping cathe-
ter.24,36 The electric field recorded by a pair of electrodes 
on a novel mapping catheter is relatively small, record-
ing precise local signals located just underneath the 
electrodes.57,58 Meanwhile, endocardial unipolar voltage 
mapping has a large field of view and is useful to identify 
septal, intramural, and/or epicardial substrate,58–69 with 

different amplitude thresholds present depending on the 
etiology of the disease. The use of bipolar mapping with 
small electrodes and closer interelectrode spacing in com-
bination with unipolar mapping may constitute an opti-
mal strategy.

In summary, there are several limitations55 of conven-
tional voltage mapping for substrate detection, with 
variations occurring due to the wavefront of activa-
tion,54–56 catheter interelectrode spacing,24,25 interpo-
lation,63 far-field peak annotation of multicomponent 
electrograms, catheter orientation64 and contact,65,66 and 
surrounding  insulating tissue (eg, fat, edema). Con-
versely, nonelectrogram techniques of substrate detec-
tion such as cardiac imaging29,30,67–69 are unaffected by 
directions of wavefront activation or techniques based 
on specific  electrogram characterizations (see later). 

Substrate Mapping and Ablation for VT in SHD
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Lastly, omnipolar  mapping is a new development that 
may resolve some of these limitations by providing 
instantaneous catheter-tip wavefront direction and 
speed.70,71 With this mapping technology, local electrical 
field signals are determined and used to assess the trav-
eling wavefront on a multielectrode catheter, rather than 
activation-based data acquisition, which may allow for 
a beat-to-beat determination of wave propagation infor-
mation that is independent of electrode orientation 
or activation time. Further clinical validation of this 
technology is ongoing.

Specific electrogram-based substrate ablation 
strategies

Substrate-based ablation approaches may differ between 
VT ablation centers. A number of methods are implemented 
during substrate modification, with a large variation in the 
amount of ablation energy delivered according to the preset 

mapping and endpoints of the procedure. The major strat-
egies are summarized in Table 1. These studies must be 
cautiously interpreted because the mapping details or end-
points are often heterogeneous, even for the same strategy. 
In addition, although the advantage of multipolar mapping 
catheters has now been recognized, many previous studies 
have used ablation catheters for mapping.

Local abnormal ventricular activity–guided ablation. 
In a seminal study by our group, we reported a mapping 
and ablation strategy to homogenize substrate defined as 
LAVAs (Figure 2).19–21 Elimination of all LAVAs is asso-
ciated with improved midterm and long-term arrhyth-
mia-free survival.19–21 LAVAs are defined as sharp, high-fre-
quency ventricular potentials, possibly of low amplitude, 
that are distinct from the far-field ventricular electrogram 
that occurs at any time during or after the far-field ventricu-
lar electrogram in sinus rhythm or before the far-field ven-
tricular electrogram during VT, which sometimes display 

Figure 2: Left: Electrogram recordings from different patients showing characteristics of LAVAs (arrows). A: The potential rep-
resenting LAVA is fused with the terminal portion of the far-field ventricular signal, making it difficult to identify the LAVA 
as a separate signal. B: The LAVA potential occurs just after and with a slightly higher frequency than the far-field ventricular 
potential. LAVAs in A and B occur within the QRS complex. C: The LAVA is a double-component potential that closely follows 
the far-field ventricular signal. The early component is a high-frequency potential that is almost fused with the preceding 
 far-field ventricular potential. It occurs within the terminal portion of the QRS complex. Another low-amplitude signal follows 
an isoelectric interval and represents the late component of the LAVA, which occurs after the QRS complex. D: LAVAs are rep-
resented by pluricomponent signals without isoelectric intervals. These signals can be visualized distinctly from the preceding 
far-field ventricular signal. E: A double-component LAVA signal. Although the early component is recorded just after the QRS 
complex, the late component is recorded after the inscription of the T-wave on the surface electrocardiogram. Right: Role of 
LAVAs in the induction of VT and the influence of radiofrequency (RF) energy on LAVAs. F: The local ventricular electrogram 
during the baseline paced rhythm at first sight looks simple. However, in the terminal portion, a very high-frequency compo-
nent (LAVA) may be identified. G: Programmed electric stimulation from the right ventricle (RV) unmasks the LAVA potential 
by increasing the delay from the far-field signal. The delay observed during RV pacing suggests poor coupling of the muscle 
bundle generating the LAVA signal. The delay is maximal with S3, which is associated not only with a change in the polarity 
of the LAVA but also with the induction of VT. H: After delivery of RF energy, there is a remarkable delay (see A) between the 
far-field ventricular signal and LAVAs during baseline paced rhythm. I: Repeat programmed electric stimulation from the RV 
results in the absence of LAVA signals after the far-field ventricular potential during S2 and S3 (open arrows). The absence of 
LAVAs is associated with an inability to induce VT. Although ablation has rendered the VT noninducible, further RF energy 
application is indicated to completely eliminate the LAVAs. Reproduced with permission from Jaïs P, Maury P, Khairy P, et al. 
Elimination of local abnormal ventricular activities: a new end point for substrate modification in patients with scar-related 
ventricular tachycardia. Circulation. 2012;125(18):2184–2196.
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fractionation or double or multiple components separated 
by very-low-amplitude signals or an isoelectric interval and 
which are poorly coupled to the rest of the myocardium.19,21 
Importantly, this strategy also targets abnormal substrate 
in so-called normal-voltage areas, although most LAVAs 
are generally observed in low-voltage areas.53 Clinical 
outcomes have been reported as including a 55% (88/159) 
VT freedom rate during a median follow-up of 47 months 
(range: 33–82 months) without antiarrhythmic drug ther-
apy except for β-blockers.20

Linear ablation with cross-section of the scar and 
border- zone. Marchlinski et al.10 first described the 
use of linear ablation lesions to target multiple unmap-
pable VTs. The technique involved the creation of con-
tiguous lesions from the dense infarct area through the 
infarct border-zone and anchored to anatomic barriers or 
healthy myocardium. In their study,10 the ablation strat-
egy resulted in a 75% (4/16) freedom from VT recurrence 
rate at the median follow-up point of eight months (range: 
3–36 months). Additionally, Soejima et al.72 reported a VT 
freedom rate of 62.5% (25/40) at a mean follow-up point 
of 12 months ± six months in their study. In addition, this 
linear ablation approach was the main approach used in 
the Substrate Mapping and Ablation in Sinus Rhythm to 
Halt VT (SMASH VT) trial,22 a randomized study show-
ing promising results.

Late-potential ablation. Definitions of LPs differ 
among studies.16,73–78 The initial description was of any 
electrogram with a duration extending beyond the end 
of the surface QRS.32 Modified definitions have sub-
sequently been reported, often with an isoelectric line 
among multiple components in the bipolar signals.73,74 
Regarding the clinical result, Arenal et al.73 first reported 
that after a mean follow-up of nine months ± four 
months, no VT recurrence was observed in 19 (79%) of 
24 patients. Volkmer et al.16 additionally demonstrated 
a 71% VT freedom rate (7/25) in a follow-up period of 
26 months ± 14 months. Nogami et al.74 reported a 67% 
(6/18) VT freedom rate over a relatively long follow-up 
period of 61 months ± 38 months in patients with ARVC. 
 Garcia et al.75 and Bai et al.76 also demonstrated results of 
the elimination of delayed potentials or LPs in patients 
with ARVC with follow-up [VT freedom in 77% (10/13) 
patients during 18 months ± 13 months of follow-up and 
ventricular arrhythmia or implantable cardioverter-de-
fibrillator (ICD) appropriate therapy freedom in 84.6% 
(22/26) during 39 months ± four months of follow-up, 
respectively]. More recently, Vergara et al.77 reported that, 
after a mean follow-up of 13 months ± four months, VT 
recurred in 10 patients (20%).

Scar homogenization. Di Biase et al.17 reported on a scar 
homogenization approach targeting all abnormal electro-
grams within low-voltage areas defined with conventional 
bipolar voltage criteria when mapping in sinus or paced 
rhythm. With this approach, abnormal electrograms are 
defined as any electrograms that have more than three 

deflections, an amplitude of less than 1.5 mV, and a dura-
tion of more than 70 ms. The acute ablation endpoint was 
either the elimination of abnormal electrograms or the 
loss of local capture at high-output pacing (20 mA out-
put at a 10-ms pulse width). This approach can potentially 
eliminate more possible critical sites than more focused 
mapping approaches, but has limitations in patients with 
massive substrate, particularly under unstable conditions. 
During a mean follow-up of 25 months ± 10 months, the 
freedom from VT recurrence rate was 81% (35/43) in 
patients with ICM who showed scar homogenization.17 
More recently, the results of a multicenter randomized 
study comparing scar homogenization with standard 
limited substrate ablation in patients with ICM were 
reported.11 At one year of follow-up, freedom from VT 
recurrence was achieved in 52% (31/60) of patients who 
underwent clinical VT ablation only versus in 85% (49/58) 
of patients who underwent scar homogenization.

Border-zone ablation/core isolation. The core isolation 
approach was recently developed by Tzou et al.79 in an 
effort to limit the number of lesions required to eliminate 
all of the areas critical for VT maintenance within the 
dense scar. This is a stepwise approach that starts with 
the identification of the potential critical isthmus within 
the dense scar that is related to the patient’s clinical and/
or induced VTs based on conventional criteria including 
voltage channels; sites with LPs; sites with good pace-
maps; and the existence of long stimulus to QRS intervals, 
isthmus sites defined by entrainment mapping, and sites 
of VT termination with ablation. Therefore, this approach 
acts as a combined approach between conventional and 
substrate-based approaches. These areas are typically 
within areas of dense scar (< 0.5 mV). Once identified, the 
critical area is targeted with contiguous ablation lesions 
either completely surrounding the region of interest or 
by using anatomic anchors to minimize the amount of 
ablation necessary. The authors demonstrated that, after 
a mean follow-up of 18 months ± nine months, no VT 
recurrence was observed in 38 (86%) of 44 patients.79

Scar dechanneling. This substrate ablation approach, 
which targets channels within the abnormal substrate, 
was originally described by Soejima et al.45 and  Arenal 
et al.80 Although, in all studies, the concept of scar dechan-
neling encompasses targeting the VT channels, the iden-
tification of the channels differs in terms of technique. 
In the study by Soejima et al.,45 channels were identified 
within the low-voltage area using high-output pacing 
(10 mA, with pulse width of 2 ms). Electrically unexcit-
able scar was defined as a loss of capture at high-output 
pacing and marked on the voltage maps. Conversely, Are-
nal et al.80 were able to visualize channels after adjusting 
voltage cutoffs on EAM. More recently, Tung et al.81 and 
Berruezo et al.82 described an approach that targets inter-
connected activation channels within the abnormal sub-
strate, adopting clear endpoints with clinical follow-up. 
The method involved high-density mapping of the chan-
nels of activation of LPs. Once a specific sequence of LP 
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activation has been identified, focal ablation of the earli-
est LP is delivered with the end goal of eliminating a con-
secutive series of LPs. Tung et al.81 demonstrated a rate 
of freedom from VT recurrence of 86% (18/21) during 
a median follow-up of 11 months (range: 6–18 months), 
while Berruezo et al.82 noted that, during a median fol-
low-up of 21 months (range: 11–29 months), the rate of 
freedom of VT recurrence was 80% (80/101). In addition, 
Andreu et al.83 recently demonstrated scar dechanneling 
by using CMR imaging in conjunction with EAM, which 
showed corridors formed by conducting channel points 
in the scar tissue. In that study, the rate of VT freedom 
during a mean follow-up of 20 months ± 19 months was 
81.5% (44/54).83

Frequency analysis mapping

High-frequency electrogram components are more often 
associated with critical sites of reentry as compared with 
low-frequency, large-amplitude components. Several 

studies have demonstrated that the frequency analysis 
of electrograms may aid with substrate identification84–86; 
however, this analysis is still only available as an offline 
tool and the feasibility of an automated real-time tool 
needs to be further investigated.

Use of imaging to identify substrate

Cardiac imaging may play an important role in the pre-
procedural assessment of cardiac anatomy and myocar-
dial scar as well as in the intraprocedural integration of 
the structural VT substrate.28 Cardiac imaging has been 
mainly used as an adjunct either offline or online (real-
time image integration)27,83,87,88 to support the localiza-
tion of scar in 3D mapping systems during substrate 
mapping and ablation (Figure 3). Cardiac imaging has 
several advantages, as follows: (1) it may provide pre-
cise anatomical information including endocardial/
intramural/epicardial scar location, while EAM sys-
tems can only provide derived 3D reconstructions from 

Figure 3: A: Lateral and inferior LV scar on CMR (arrows). B: Patient-specific 3D model built from merged computed tomog-
raphy (CT) (anatomy) and magnetic resonance imaging (scar) data. Cardiac chambers (gray), coronary arteries, veins (in red 
and blue, respectively), and left phrenic nerve (green) as segmented from CT and dense scar and gray zone (in orange and 
yellow, respectively) as segmented from magnetic resonance imaging. C: Epicardial bipolar voltage map with merged imaging 
model. Voltage mapping (color-coded from purple to red) underestimates the substrate extent as compared with imaging. 
Fractionated and LPs (green dots) are identified in normal voltage areas. Middiastolic potentials (yellow and blue signals in 
E) are recorded during VT on an epicardial lateral LV site (yellow dot in C). This potential target for epicardial ablation is far 
enough from the left phrenic nerve path derived from imaging (green line in C), which accurately matches sites of phrenic cap-
ture (orange dots in C). However, CT demonstrates the proximity of this site to a marginal branch of the circumflex artery on 
the registered imaging model. D: Confirmatory coronary angiography demonstrates contact between the tip of the ablation 
catheter and the coronary artery. Ablation was thus performed on a different site of the VT isthmus (blue dot in C), resulting 
in successful VT termination. Reproduced with permission from Mahida S, Sacher F, Dubois R, et al. Cardiac imaging in patients 
with ventricular tachycardia. Circulation. 2017;136(25):2491–2507.
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catheter–electrode contact at the myocardial surface; 
(2) there is no possibility of inaccuracy due to extrap-
olation, lack of catheter contact, confounding effects 
of far-field electrograms, or the influence of wavefront 
activations; (3) it provides information about adjacent 
anatomical structures, which may affect mapping and 
ablation, such as papillary muscles, coronary arteries, 
phrenic nerves, and epicardial fat. However, there are 
also limitations in imaging techniques in terms of feasi-
bility (eg, magnetic resonance imaging in some patients 
with old ICDs, MDCT in patients with severe chronic 
kidney failure), the availability of images with 3D map-
ping systems, and registration issues.

Recently, in an attempt to refine targeted VT ablation 
strategies further, several studies have focused on iden-
tifying specific scar regions that harbor critical VT isth-
muses.29,67,89 At this time, scar regions with increased 
transmurality, scar border zones, and regions at the 
scar-core–border-zone transition point have been identi-
fied as potential targets.29,90 CMR has been widely used 
in this regard, and several studies have shown good 
correlation with EAM30,31,62,83,88 and a positive clinical 
impact.27,52,87 Further potential benefits of real-time CMR 
guidance91–93 could include improved procedural super-
vision without exposure to radiation/contact EAM as 
well as improved substrate detection and lesion visual-
ization according to CMR-defined endpoints. However, 
CMR may be unavailable, contraindicated, or of subopti-
mal quality because of ICD-related artifacts, and MDCT 
represents a valuable alternative for imaging integration. 
MDCT has been used in combination with EAM to accu-
rately identify dense scar and border-zone regions with 
significantly higher special resolution29,68 as compared 
with CMR and with high clinical effectiveness.27 Stud-
ies have mostly included patients with ICM,29 while the 
correlation in patients with NICM is less robust.67,68,87,89 
A further advantage of MDCT is in the definition of 
high-resolution cardiac anatomy.47,94 CMR and MDCT 
may visualize potential isthmuses as VT substrate; how-
ever, a certain proportion of circuits are at least partially 
functional95 and the registration needs to be accurate and 
reproducible.

Other modalities such as intracardiac echocardiogra-
phy96,97 and nuclear imaging98,99 may also help to iden-
tify substrate. In addition, electrocardiographic imaging 
incorporated with CMR or MDCT has the potential to 
identify VT isthmuses noninvasively.100 Furthermore, 
an entirely noninvasive approach that combines ana-
tomical imaging with electrocardiographic imaging and 
noninvasive cardiac radiotherapy for ablation has been 
reported, which represents another intriguing strategy 
that employs cardiac imaging.101

Clinical outcomes of substrate-based ablation

Overall, the clinical outcome of substrate-based abla-
tion is a VT recurrence-free rate of approximately 54% 
to 91% in mid- to long-term follow-up (Table 1). As 

described above, the success rates, however, vary widely 
with different strategies and across studies. We have 
also compared clinical outcomes between substrate- 
and nonsubstrate-based ablation (Table 2). Di Biase 
et al.11 demonstrated a superior VT-free survival rate at 
12 months in conjunction with extensive scar homog-
enization in patients with ICM in a randomized trial 
[ie, the Ablation of Clinical VT versus Addition of 
Substrate Ablation on the Long-term Success Rate of 
VT Ablation (VISTA) trial], while Fernández-Armenta 
et al.102 also conducted a randomized study compar-
ing substrate-based ablation to conventional ablation 
and demonstrated comparable VT-free survival rates 
between the two strategies. A recent meta-analysis has 
also revealed similar acute procedural efficacy, complica-
tion, VT recurrence, and mortality rates while comparing 
a predominantly substrate-based ablation strategy to a 
strategy guided by activation and entrainment mapping 
of inducible and hemodynamically tolerated VTs.103 A 
separate meta-analysis104 also showed a significantly 
lower risk of the composite primary outcome of long-
term VA recurrence and all-cause mortality among those 
undergoing substrate modification in comparison with 
standard ablation in a cohort of mostly patients with 
ICM. Furthermore, in this study, long-term success was 
improved when performing complete substrate modifi-
cation.104 Hence, substrate ablation may be superior to 
a conventional strategy in terms of VT recurrence when 
extensive substrate ablation is performed.11

However, despite the substantial progress that has been 
made in the use of cardiac imaging to guide VT abla-
tion, there is insufficient evidence at present to suggest 
that the use of imaging can add value to clinical out-
comes. Although observational, nonrandomized studies 
suggest that image integration may have an impact on 
procedural outcomes,27,83,87,88 well-designed, prospective 
randomized studies are needed to assess the true impact 
of image integration as well as to evaluate the potential 
mechanism(s) of any benefit.

Conclusion

Several substrate-based ablation strategies have been 
developed, which include extensive or less-extensive 
ablation lesions according to the preset mapping and 
endpoints of the procedure. Although multipolar map-
ping catheters with smaller and more-narrowly-spaced 
bipolar electrodes are now widely used, most currently 
available studies use data acquired by way of ablation 
catheters. Advances in cardiac imaging may be helpful in 
providing refined anatomical substrate details.

At this time, clinical outcomes of substrate-based ablation 
are at least comparable with and possibly superior to con-
ventional VT ablation. The further development of map-
ping technologies, cardiac imaging, and novel modalities 
and the incorporation of these modalities in delineating 
VT substrate may additionally improve the clinical out-
comes of substrate-based ablation.
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