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An artificial intelligence algorithm 
is highly accurate for detecting 
endoscopic features of eosinophilic 
esophagitis
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Jakob Schlottmann1, Evan S. Dellon4, Helmut Messmann1, Christoph Palm2,3 & 
Alanna Ebigbo1*

The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during 
routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for 
detecting and quantifying the endoscopic features of EoE in white light images, supplemented by 
the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained 
to differentiate between EoE and normal esophagus using endoscopic white light images extracted 
from the database of the University Hospital Augsburg. In addition to binary classification, a second 
algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI 
algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill 
(UNC), and compared with the performance of human endoscopists with varying levels of experience. 
The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC 
was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoE-
EREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, 
and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy 
beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and 
quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS 
criteria improved the performance of the AI algorithm, which performed significantly better than 
endoscopists with a lower or medium experience level.
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Acc	� Accuracy
AI	� Artificial intelligence
CNN	� Convolutional neural network
DL	� Deep learning
EoE	� Eosinophilic esophagitis
EREFS	� EoE Endoscopic Reference Score
ExD	� External data
InD	� Internal data
SE	� Sensitivity
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SP	� Specificity
WL	� White light

The incidence of eosinophilic esophagitis (EoE) has risen significantly in the past decade and has become a 
significant cause of dysphagia and food impaction1–3. EoE is diagnosed in the setting of symptoms of esophageal 
dysfunction and histopathological demonstration of marked esophageal eosinophilia4,5. Endoscopic features 
associated with EoE include edema, rings, exudates, furrows, and strictures6. While the presence of these mor-
phological changes is not required for diagnosis, they are supportive and prompt the biopsies necessary for 
histopathological confirmation5. However, the endoscopic features of EoE may be missed, either because physi-
cians are not familiar with them or the morphologic changes are too subtle7,8.

The EoE Endoscopic Reference Score (EREFS), based on the endoscopic features described above, has 
improved the recognition, reporting, and classification of EoE7,9,10 but is still not used as a standard tool in 
many settings11. For enhanced detection of EoE, Artificial Intelligence (AI) with deep learning (DL) could be 
an additional diagnostic option. In general, the application of AI and machine learning (ML) in gastrointestinal 
(GI) endoscopy has made significant progress in the past few years, especially in the domain of image and pat-
tern recognition12,13. Clinical studies have applied AI in benign and malignant disorders with excellent results, 
including Helicobacter pylori diagnosis, esophageal and gastric cancer, as well as colorectal polyp detection14–19. 
For the diagnosis of EoE, however, there has been only one study to date in which endoscopic images of EoE were 
assessed using a convolutional neural network (CNN)20. EoE was distinguished from the normal esophagus and 
candidal esophagitis with promising results. In deep learning, CNN architectures use basic convolution modules 
and complement them with sigmoidal activation functions and pooling operations21. In the image-understanding 
domain, numerous CNN architectures for different tasks have been implemented, allowing for deep networks 
with 100 layers or more.

With this background, the aims of this study were to develop and then externally validate a deep learning-
based AI model to detect EoE and quantify EREFS and assess the ability to recognize endoscopic images of EoE 
and report EREFS of human endoscopists as compared to the AI model.

Methods
This was a 3-phase study in which an AI model was trained to detect EoE on endoscopic white light images. In 
the first phase, the AI model was trained and validated with an internal data set (InD). In the second phase, the 
performance of the AI model was tested on an external data set (ExD) from a separate hospital; in this phase, 
the benefit of using the EREFS scores in the AI model was studied. In the third phase, the performance of the 
AI model was compared with human endoscopists with different levels of experience.

Data and image acquisition.  The pathology reports archived in the laboratory information system 
(Nexus, Frankfurt a.M, Germany) of the Institute of Pathology and Molecular Diagnostics of the University 
Hospital of Augsburg, Germany, were screened for the german terms “Ösophagus” and “eosinophile Ösophagi-
tis”. The corresponding endoscopic reports and white light images of patients identified within a 10-year period 
between 06/2010 and 05/2020 were extracted from the endoscopy database (Viewpoint 5, GE Healthcare Sys-
tems (Germany)) of the University Hospital of Augsburg, Germany, by two board-certified gastroenterologists. 
Endoscopic images were selected for AI training according to the following criteria:

(1) Inclusion criteria:

•	 Images from patients with active EoE (≥ 15 eosinophils/HPF) who were diagnosed as per consensus 
guidelines5

•	 Images from patients with an endoscopically normal-appearing esophagus who also had normal esophageal 
biopsies

(2) Exclusion criteria:

•	 Images with other visible pathologies, such as reflux esophagitis, candida esophagitis, mass, or other findings
•	 Images with visible stricture formation and stenosis
•	 Poor quality images with blurring, inadequate focus, excessive bubbles, blood or mucus covering the mucosa

All images of the InD were taken with an Olympus gastroscope (GIF-HQ190, GIF-HQ-180; Olympus Medical 
Systems, Tokyo, Japan) at the University Hospital Augsburg, Germany.

EREFS.  The images were assessed for the EREFS by two board-certified gastroenterologists. EREFS were 
reported using the standard scoring system, including edema 0–1 point, rings 0–3 points, exudates 0–2 points, 
and furrows 0–2 points7,10. Images with obvious strictures were excluded (total score range, 0–8) because it was 
assumed that the additional benefit of AI support in patients with stricture formation or stenosis is limited, and 
the actual challenge lies in the identification of EoE patients with more subtle endoscopic features, who are prob-
ably in an earlier phase of the disease.

In addition to the main binary classification branch (EoE vs. normal), a specific auxiliary branch for each of 
the EREFS categories was included in the training phase of the AI system. In other words, two AI models were 
trained, one with (AI-EoE-EREFS) and a second without the auxiliary EREFS categories (AI-EoE).
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AI‑model construction and training.  The training of both AI models was based on a CNN with a ResNet 
architecture22. The models were pretrained on a non-medical dataset (ImageNet23) to learn basic abstract visual 
features. The final classification layer of the neural network was then adjusted to enable a binary classification—
the detection and classification of EoE. The threshold probability was set to 0.5. Before training, InD images were 
cropped to exclude black borders and resized for consistency across the dataset, after which data augmentation, 
including scaling and shifting of images, was applied. The intention of data augmentation was to enable the 
algorithm to be more robust to slight variations in the input images. During training, the model’s parameters 
were optimized to minimize the cross-entropy loss with label smoothing, achieve a global binary prediction, and 
accurately classify the particular EREFS features. The models were trained for 6000 iterations with a batch size 
of 48 and a sampling strategy such that both classes are equally represented in each batch. The initial learning 
and weight-decay for the Stochastic Gradient Descent algorithm were set to 0.01 and 5e−4. Over the course of 
training, the learning rate was decayed with a cosine annealing schedule. All models were implemented in the 
PyTorch Deep-Learning framework.

Internal validation.  To internally validate the models, we performed five repeated runs of five-fold cross-
validation. In five-fold cross-validation, the dataset is split into five disjoint subsets. Four of the five folds are used 
as training data for the algorithm. The remaining one is the held-out validation set. The procedure is repeated 
such that each fold was in the role of the validation set once. We did not perform hyperparameter optimization 
or early stopping techniques on the validation set but trained our algorithms for a fixed number of iterations. The 
cross-validation scheme is repeated five times with randomized subset compositions and seeds for the random 
number generators from 0 to 4.

Test set with external data.  After constructing the AI models, we evaluated their performance on an 
independent and externally acquired test set (ExD). ExD comprised a total of 200 WL images, including 100 WL 
images from EoE patients with active disease (≥ 15 eos/hpf) diagnosed per consensus guidelines and 100 WL 
images of normal esophagus in patients without any visible, histologic, or known esophageal pathology. The test 
set was provided by the University of North Carolina, Chapel Hill (UNC), with patients who underwent endos-
copy between August, 2020, and January, 2021. Both AI algorithms had never seen the ExD images before the 
evaluation. The evaluation and analyses for these images were performed in a blinded fashion, with the code of 
EoE vs. normal only revealed after the results of AI-EoE and AI-EoE-EREFS had been finalized and transmitted 
to the UNC. Exemplary images are shown in Figs. 1 and 2. For the external evaluation, an ensemble of the five 
individual models from the first cross-validation run was employed.

Figure 1.   Endoscopic white light images of eosinophilic esophagitis showing furrows, exudates, edema, and 
rings.
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Image evaluation by endoscopists.  To better understand the performance of AI-EoE and the impact of 
EREFS on the diagnostic accuracy, ExD images were evaluated by six endoscopists who were rated according to 
their level of experience, including:

1.	 Endoscopy beginners (n = 2)
2.	 Senior fellows (n = 2)
3.	 Consultant endoscopists (n = 2)

Endoscopists were asked to assess the images for the presence of EoE according to the following process:

Group 1.  Assessment of all 200 ExD images (1–200) according to the clinical impression of the endoscopist 
after looking at the images without explicit use of EREFS.

Group 2.  Assessment of the first 100 ExD images (1–100) according to the clinical impression of the 
endoscopist. After this, the endoscopists were asked to review the initial description of the EREFS criteria by 
Hirano et  al.10; they were also shown 30 representative endoscopic white light images of EoE with the cor-
responding EREFS scores. Following this training phase, an additional assessment of the second 100 images 
(101–200) using the EREF score was performed. The assessment of the first 100 images was done for adjusting 
the individual performance of the endoscopists. The assessment of the second 100 images was done to quantify 
the enhancement of diagnosis having the EREFS explicitly in mind. Each group contained one endoscopist from 
each experience level.

Statistical analysis and outcome measures.  The sensitivity, specificity, accuracy, the area under the 
ROC curve (AUC), and the harmonic mean (F1) between sensitivity and precision on the ExD images were used 
to measure the performance of the models, AI-EoE and AI-EoE-EREFS, trained without and with the additional 
EREFS branches, respectively. These statistics are calculated from the true positives (TP), false positives (FP), 
true negatives (TN), and false negatives (FN) produced by the algorithm.

Harmonic mean (F1) = 2TP/(2TP+ FP+ FN)

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN+ FP)

Figure 2.   Endoscopic white light images of a normal esophagus.
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Statistical significance between groups was determined with the McNemar test.
By testing multiple models, we investigated whether the inclusion of the EREFS criteria led to an improve-

ment in the performance of AI-EoE.
The performance of the human endoscopists on the same data set (ExD) was also evaluated using the same 

parameters described above.

Ethics.  Ethics approval was granted by the Institutional Review Board of the University Hospital Augsburg 
(BKF Nr. CCE03022021_0002, date: 04/07/2020), as well as by the Institutional Review Board of UNC (number 
20-3655; date of initial approval: Jan 28, 2021). All methods used in this study were carried out in accordance 
with the declaration of Helsinki and in accordance with relevant guidelines and regulations. All images used in 
this study were obtained from endoscopic procedures for which patients had provided their informed consent. 
For patients under 16 years, parents or legally authorized representatives provided informed consent.

Results
A total of 401 images of EoE from 61 patients and 871 images of a normal esophagus from 393 patients were 
used to internally train and validate the AI models. The baseline characteristics of patients are shown in Table 1. 
The distribution of the EREFS on the InD images with EoE was 0–3 (n = 303), 4–6 (n = 98), and 7–8 (n = 0) with 
a mean EREFS of 3.1 and standard deviation of 0.89.

Performance of AI‑EoE and AI‑EoE‑EREFS on the internal data.  In the internal validation, the 
mean scores and standard deviations achieved with the AI-EoE model for sensitivity, specificity, accuracy and 
harmonic mean (F1) were: 0.857 (0.016), 0.959 (0.007), 0.927 (0.003), 0.881 (0.005).

The results for the AI-EoE-EREFS algorithm for the respective metrics were: 0.866 (0.006), 0.957 (0.007), 
0.928 (0.005), 0.884 (0.005).

The AUC values for AI-EoE and AI-EoE-EREFS were 0.947 and 0.954, respectively (Fig. 3).
There was no significant difference between AI-EoE and AI-EoE-EREFS in the internal validation using 

cross-validation.

External validation: performance of AI‑EoE on the external data set (ExD).  The overall sensitiv-
ity, specificity, accuracy, and F1 of AI-EoE were 0.93 for all measures (Table 2). The AUC for AI-EoE was 0.986.

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN).

Table 1.   Baseline characteristics of patients whose images were included in the study.

EoE
n = 61

Control
n = 393 P

Age (mean ± standard deviation) 35.1 ± 19 31.9 ± 25 0.039

Sex (Male/Female) 39/22 (64%/36%) 180/213 (46%/54%) 0.006

Symptoms

Dysphagia 37 (61%) 65 (17%) 0.000

Figure 3.   ROC curves and AUC values of AI-EoE and AI-EREFS on the internal data set (InD).
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External validation: performance of AI‑EoE‑EREFS on the external data set (ExD) (Table 2).  The 
sensitivity, specificity, accuracy, and F1 of AI-EoE-EREFS were 0.96, 0.94, 0.95, and 0.95, respectively (Table 2). 
The AUC for AI-EoE-EREFS was 0.992.

While the AI-EoE-EREFS was numerically superior to AI-EoE, the performance did not differ significantly.

Performance of endoscopists on ExD data set (Table 2).  Six endoscopists (three per group) assessed 
the ExD images as follows:

Group 1 (ExD images 1–200 based solely on image review).  The endoscopy beginner, senior fellow and consult-
ant endoscopist had an overall sensitivity, specificity, accuracy, and F1 of 0.56, 0.97, 0.77 and 0.70; 0.87, 0.97, 
0.92 and 0.92, as well as 0.96, 0.99, 0.97 and 0.97, respectively. Accuracy and F1 differed by + 10% and + 22%, 
respectively, for the beginner, − 2% and − 3%, respectively, for the senior fellow and + 1% and + 1%, respectively, 
for the consultant endoscopist regarding the first 100 images and the second 100 images.

Group 2 (ExD images 1–100 based solely on image review; ExD images 101–200 based on EREFS).  On the first 
100 images, the endoscopy beginner, senior fellow and consultant endoscopist had a sensitivity, specificity, accu-
racy, and F1 of 0.40, 0.46, 0.43 and 0.41; 0.60, 0.92, 0.76 and 0.71, as well as 0.88, 0.68, 0.78 and 0.80, respectively. 
After education and information on the EREFS scores, the endoscopy beginner, senior fellow and consultant 
endoscopist improved their performance with a sensitivity, specificity, accuracy, and F1 of 0.58, 0.96, 0.77, and 
0.72; 0.66, 0.98, 0.82, and 0.79, as well as 0.98, 0.52, 0.75, and 0.80, respectively. Therefore, the accuracy and F1 
differed by + 79% and + 76%, respectively, for the beginner, + 8% and + 11%, respectively, for the senior fellow 
and − 4% and 0%, respectively, for the consultant endoscopist regarding the first 100 images and the second 100 
images.

Comparison of endoscopists with the AI models.  The overall performance of the AI models with 
and without auxiliary EREFS was better than the performance of the beginners, senior fellows, and consultant 
endoscopists. Using the McNemar test, we found a statistically significant difference in the accuracy and sensi-
tivity between AI and beginners. The AI-EoE-EREFS algorithm also shows statistically significant improvements 
in sensitivity over the senior fellow group. The specificity did not improve significantly for both models. In the 
comparison between AI and consultant endoscopists, no significant difference could be found. The ROC curve 
comparing human endoscopists with AI is shown in Fig. 4; the AUC of AI-EoE and AI-EoE-EREFS was 0.9862 
and 0.9924, respectively.

Table 2.   Performance of human endoscopists and AI- models in diagnosing eosinophilic esophagitis on 
endoscopic white light images. Group 1 endoscopists relied on their clinical experience, while Group 2 was 
educated on the EREFS criteria for the second batch of images. AI-EoE was trained with binary classification, 
while AI-EoE-EREFS was trained additionally using auxiliary branches generated from the EREFS scores.

Group 1 Group 2 Overall

1–100 101–200 all data 1–100 101–200 (after EREFS training) All data All data and both groups

Beginner

Sens 0.46 0.66 0.56 0.40 0.58 0.49 0.53

Spec 1.00 0.94 0.97 0.46 0.96 0.71 0.84

Accuracy 0.73 0.80 0.77 0.43 0.77 0.66 0.68

F1 0.63 0.77 0.70 0.41 0.72 0.55 0.63

Fellow

Sens 0.90 0.84 0.87 0.60 0.66 0.63 0.75

Spec 0.96 0.98 0.97 0.92 0.98 0.95 0.96

Accuracy 0.93 0.91 0.92 0.76 0.82 0.79 0.86

F1 0.93 0.90 0.92 0.71 0.79 0.75 0.83

Consultant

Sens 0.94 0.98 0.96 0.88 0.98 0.93 0.95

Spec 1.00 0.98 0.99 0.68 0.52 0.60 0.80

Accuracy 0.97 0.98 0.97 0.78 0.75 0.77 0.87

F1 0.97 0.98 0.97 0.80 0.80 0.80 0.89

AI-EoE AI-EoE-EREFS

1–100 101–200 All data 1–100 101–200 All data

Sens 0.96 0.90 0.93 0.98 0.94 0.96

Spec 0.94 0.92 0.93 0.94 0.94 0.94

Accuracy 0.95 0.91 0.93 0.96 0.94 0.95

F1 0.95 0.91 0.93 0.96 0.94 0.95
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Discussion
EoE is becoming increasingly important due to its rising incidence, but endoscopists may still have difficulty 
detecting and diagnosing EoE during routine EGD, leading to diagnostic delay1,2,24,25. The suspicion of EoE 
during routine EGD and based on the endoscopic image alone is challenging7,8, and the presence of EoE must 
be suspected either clinically or macroscopically to prompt taking esophageal biopsies. A study from Den-
mark illustrates that even in dysphagia patients, adequate biopsy sampling is often not performed26. With the 
advancement of AI and ML, assistance can be offered to endoscopists in various detection and characterization 
of pathologies. A first paper on the use of AI in the detection of EOE demonstrated excellent sensitivity and 
specificity on an internally validated image dataset20. Guimarães et al. were able to show an overall accuracy of 
0.91 in their study. Interestingly, the CNN model was also able to distinguish esophageal candidiasis, which has 
white plaques representing an important differential diagnosis of EoE during EGD. This shows the enormous 
potential of AI and especially deep learning.

Our study sought to demonstrate the robustness of a trained CNN model by additionally evaluating and 
validating its performance on externally acquired data. Testing on external data is essential because AI models 
should work for and generalize towards new data to avoid overfitting bias27. On external endoscopic WL images, 
our AI model, which was trained not only with a binary classification but also with the auxiliary EREFS data, 
produced an overall sensitivity, specificity, and accuracy of 0.96, 0.94, and 0.95 in the detection of EoE. It must 
be stated that the results of the external validation were even better than the internal cross-validation because 
the internal validation was done without additional hyperparameter tuning.

Interestingly, the addition of the auxiliary EREFS categories (AI-EoE-EREFS) improved the performance of 
the AI model. Grad-Cam visualizations (Gradient-weighted Class Activation Mapping) point to the inclusion of 
EREFS, forcing the model to detect features in the input that more cleanly align with the human understanding 
of the image (Fig. 5)28. The visualizations in combination with the improved metrics hint that augmenting the 
network with EREFS is beneficial, although we could not prove this result with statistical significance in this study.

The EREFS system was developed and validated to improve and standardize the reporting of endoscopic fea-
tures of EoE, but also to aid with diagnosis and monitoring, both in practice and in trials9,10,29–33. For endoscopists, 
being aware of the EREFS criteria may lower the threshold of biopsy sampling in the esophagus, which could 
subsequently lead to higher sensitivity for EoE during routine EGD. An essential aspect of this may also be 
the experience of the physician performing EGD. We divided the participating endoscopists into two groups 
to investigate whether the EREFS categories also affected their performance. Group 1 assessed all ExD images 
based on their clinical impression and experience. Group 2 was not reminded of the EREFS criteria and was 
also asked to assess the first 100 images based on their clinical impression. After this, physicians in group 2 were 
educated on the EREFS criteria and then asked to evaluate the second batch of ExD images. Similar to the AI 
model, the EREFS criteria improved the beginner endoscopists’ performance as well as the senior fellows’ per-
formance in this process. In our experiment, the performance improved for the beginners using EREFS, adjusted 
to the baseline performance of the individual for accuracy and F1, by 69 and 54 percentage points. Even senior 
fellows profited, given the improvement in accuracy and F1 by 10 and 14 percentage points, respectively. These 
results suggest that the training of endoscopists with the EREFS scores, especially beginners, can improve their 
diagnostic accuracy for eosinophilic esophagitis considerably. Eluri et al. showed that the proportion of patients 
with a normal esophagus decreased significantly after the introduction of the first EoE guidelines, suggesting 
improved recognition of endoscopic findings with the EREFS criteria7. The overall performance of the endos-
copy beginners and senior fellows was well below the more experienced consultant endoscopists. Comparing 
the overall results for all data of the group of beginners, senior fellows, and consultant endoscopists with the 
AI results, AI performs best, irrespective of whether the EREFS criteria were used or not. However, AI models 

Figure 4.   ROC curves and AUC values of AI-EoE and AI-EoE-EREFS on the external data set (ExD) compared 
with human endoscopists who had varying experience levels.
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may be particularly suitable for the support of endoscopists with lesser experience. In addition, the training and 
education of beginners may improve with the help of an AI model.

As with most studies showing the construction and validation of endoscopic AI models, the major limitation 
of this study is the amount and diversity of data available for training and validation. In addition, the number 
of endoscopists who underwent evaluation of the dataset was small, thereby limiting the validity of the com-
parison to the human endoscopists. Also, the fact that data was collected retrospectively may have influenced 
the quality of the proposed algorithm. Nevertheless, the excellent results on the test data set may show that the 
generalizability of the AI model was sufficient, at least on the images provided by the external partners. Another 
limitation is that only a two-class differentiation, EoE vs. normal esophagus, was done. This may not depict the 
real-life situation sufficiently, where other pathologies, such as reflux esophagitis, candida esophagitis, lympho-
cytic esophagitis, lichen planus, and others, must be considered. Finally, even though our first step was to use 
static endoscopic images, video images, or even real-time assessment during EGD will be necessary to assess for 
this AI tool to be used in clinical situations. In real-life, blurry images, bubble formation, and even blood and 
mucus may influence the quality of vision, making it difficult to detect and diagnose pathologies such as EoE.

In conclusion, our study showed that an AI model can be developed to identify EoE using endoscopic still 
images and validated from an external data set with excellent performance. Additional training with the EREFS 
scores improves the diagnostic ability of human endoscopists as well as the AI model. Future directions will 
incorporate video so that this tool can ultimately be used at the point of care.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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