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Major efforts are currently made promoting neuronal plasticity and brain remodeling in the postacute stroke phase.
Experimental studies evaluating new stroke therapies are mostly performed in rodents, which compared to humans
exhibit a short lifespan. These studies widely employ young, otherwise healthy, rodents that lack the vascular risk factors
and comorbidities of stroke patients. These risk factors compromise postischemic neurological recovery and brain
plasticity and in several contexts reduce the brain responsiveness to recovery-inducing plasticity-promoting treatments. By
examining risk factor models, which have hitherto been used for studying experimentally induced ischemic stroke, this
review outlines the possibilities and limitations of risk factor models in the evaluation of plasticity-promoting and

restorative stroke treatments.

1. Introduction

Recent advances in recanalization therapies, ie., the
combination of thrombolytic drugs with interventional
thrombectomy, have considerably increased clinical outcome
in ischemic stroke patients [1]. Despite this progress, the
large majority of ischemic stroke patients still exhibit
neurological deficits in the long run, and ischemic stroke
continues to be the most frequent cause of long-term disabil-
ity. Neuroprotection therapies aiming at promoting the sur-
vival of previously ischemic tissue have failed in clinical
trials. As a consequence, there has been a shift of focus from
acute to postacute restorative therapies in the stroke field [2].
Indeed, major efforts are currently made to identify strategies
allowing promoting neuronal plasticity and remodeling in
the ischemic brain.

In view of the translation failure of neuroprotectants in
clinical settings, the question arises if inadequate animal
models may be responsible for the lack of action of new treat-
ments in human stroke patients [3]. Animal studies are

mostly performed in rodents, which compared to humans
exhibit a short lifespan, a high ratio of grey to white matter,
and a much smaller brain. These differences may result in
inadequate conclusions, particularly when mechanisms of
long-distance neuronal plasticity contributing to stroke
recovery are analyzed. Compared with rodents, nonhuman
primates apparently represent the far better stroke models.
Due to ethical concerns, these models are rarely accessible.
Experimental stroke studies in rodents widely employ
young, otherwise healthy, animals that lack the risk factors
and comorbidities of stroke patients [2, 3]. Risk factors com-
promise neurological recovery. Studying risk factors is there-
fore important in the development of stroke therapies.
Animal models of ischemic stroke have been reviewed by a
number of papers in the past [3, 4], and in addition, aspects
of risk factor modeling have more recently been evaluated
by our group [5, 6]. By examining risk factor models, which
have previously been used for studying experimentally
induced ischemic stroke and stroke therapies, we now
expanded previous works [5, 6], in which we evaluated
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stroke therapies from a more general perspective. The
present review specifically highlights the possibilities and
limitations of risk factor models in the evaluation of
plasticity-promoting and restorative stroke therapies.

2. Insights from Hypercholesterolemia Models:
Utility as Models of Cerebral
Microangiopathy Resulting from Metabolic
Syndrome, But Not as Cerebral
Macroangiopathy Models

Hypercholesterolemia models used in ischemic stroke
models have been established by targeted genetic mutations
and/or high-cholesterol feeding in mice, rats, and rabbits.

The ApoE (apolipoprotein-E)”” mouse is the most widely
used ischemic stroke model (Table 1). ApoE, which is
expressed on chylomicrons, mediates reverse cholesterol
transport to the liver. In comparison to wild-type controls,
ApoE”" mice reveal ~4.3-8 times increased blood cholesterol
concentrations [7, 8]. These concentrations are further
elevated 1.4-2.7 times, when ApoE”" mice are kept on a
high-cholesterol diet [7, 8]. Upon high-cholesterol diet,
ApoE”" mice show fatty streaks in the aorta and extracranial
carotid arteries after 6-10 weeks, which progress to athero-
sclerotic plaques after 6 months [7, 9]. Intracranial athero-
sclerosis is almost absent. In transient proximal or distal
MCAO, infarct volume and neurological deficits were
increased at 24-48 hours in ApoE” mice on high-
cholesterol diet [9, 10]. VEGF-induced angiogenesis was
attenuated [11], and vasorelaxation was compromised,
resulting in reduced cerebral blood flow upon MCAO [9,
11]. The exacerbation of infarct volume and neurological
deficits involved excessive extracellular matrix breakdown
and brain invasion of polymorphonuclear neutrophils
[7, 8, 10]. Neutrophil depletion using anti-Ly6G antibody
or neutrophil blockade using anti-CXCR-2 antibody pre-
vented hypercholesterolemia-associated infarct volume
exacerbation and neurological deficits [10].

Other models of hypercholesterolemia are the LDL
receptor”” [12] and human ApoB- (apolipoprotein-B-)
transgenic (hApoBTg) [13] mice (Table 1). LDL receptor
controls cellular LDL and VLDL uptake by binding ApoB
on LDL and VLDL. In humans, homozygous LDL receptor
deficiency induces familial hypercholesterolemia that is char-
acterized by more than 2.5 times increased blood cholesterol
concentrations. When receiving regular diet, LDL receptor”
and hApoBTg mice show 1.9-2.4 times and 1.3-1.8 times
elevated cholesterol concentrations, respectively [12, 13].
Blood cholesterol concentrations further increase 1.5
times and 2.2 times, respectively, on high-cholesterol diet
[12,13]. LDL receptor”’” and hApoBTg mice reveal subtle vas-
cular abnormalities when receiving normal diet [12, 13].
Upon high-cholesterol diet, the animals exhibit atheroscle-
rotic plaques in the aorta and coronary arteries after 4-7
months [12, 13]. LDL receptor’” and hApoBTg mice on
high-cholesterol diet reveal spontaneous cerebral microvas-
cular occlusion and rarefication at ~6 months [14, 15]. Micro-
vascular injury after unilateral common carotid artery
occlusion was not influenced by transgenic ApoB [15], and
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infarct volume after transient proximal MCAO unaffected
by LDL receptor’”" [16]. Platelet deactivation by
glycoprotein-Ib and glycoprotein-VI antibody reduced
infarct volume and neurological deficits in 12-month-old
LDL receptor”” and wild-type mice exposed to transient prox-
imal MCAO without increasing hemorrhagic transformation
[16]. Glycoprotein-IIb/IIIa inhibition had no effect.

ApoE”" mice have been crossbred with mice carrying
LDL receptor’”" [17], ATP-binding cassette transporter
(ABCA1™") [18], endothelial nitric oxide synthase”” [19] or
fibrillin-1 (C1039G) mutations [20], and LDL receptor'/'
mice with hApoBTg mice [21]. Some of these mice exhibit
exacerbated atherosclerosis [17-19, 21] and others peculiar
features, such as aneurysm formation [19] or intracranial
atherosclerosis indicated by arterial wall thickening [21].
A particular feature of ApoE”" fibrillin-1 (C1039G)*"
mice on high-cholesterol diet is atherosclerotic plaque
rupture [20]. Unlike humans, mice and rats normally
do not develop plaque rupture, which is a consequence
of plaque vascularization and hemorrhage [20]. In
humans, fibrillin-1 C1039G mutations are responsible
for Marfan disease. The latter mice have not been studied
in ischemic stroke models. ApoE™", LDL receptor””, and
hApoBTg mice have strongly elevated blood cholesterol
concentrations, which, if at all, are comparable to hered-
itary hypercholesterolemia. In vitro, LDL cholesterol dose-
dependently reduces VEGF receptor-2 abundance on
endothelial cells over a wide concentration range, result-
ing in the abrogation of VEGF-induced angiogenesis
[22]. The clinical relevance of excessive blood cholesterol
concentrations is vague. Care should be taken that poten-
tially efficacious treatments are not prematurely aban-
doned by selecting risk factor conditions that hardly
reflect conditions in humans.

When fed with a high-cholesterol diet, wild-type mice
reveal 2.2-3.9 times elevated blood cholesterol concentra-
tions (Table 1) [11, 13]. These mice exhibit only subtle
fatty streaks in the aorta [13] but present a metabolic syn-
drome characterized by obesity, type-2 diabetes, and
hypercholesterolemia [23] with lipid deposition in
cerebral arterioles [7]. Despite elevated blood-brain barrier
permeability and edema, neuronal injury and infarct vol-
ume after transient proximal MCAO were not altered in
wild-type mice on high-cholesterol diet [7, 11]. This corre-
sponds to human ApoE-e3-transgenic (hApoEe3Tg) and
ApoE-¢e4-transgenic (hApoEe4Tg) mice exposed to perma-
nent distal MCAO, in which infarct volume was also not
elevated by high-cholesterol diet, although blood choles-
terol concentration is increased 1.4 and 1.9 times, respec-
tively [24]. Infarct volume is larger in hApoEe4Tg than
in hApoEe3Tg mice on a regular diet [25], which has been
attributed to direct neuroprotective effects of ApoEe3.

In response to high-cholesterol diet, rats showed 2.1-4.2
times increased blood cholesterol concentrations (Table 1)
[26, 27]. In transient proximal MCAO, infarct volume,
blood-brain barrier permeability, brain edema, brain lipid
peroxidation, and leukocyte infiltration were increased by
high-cholesterol diet [26, 27]. Simvastatin and ginkgolide-B
prevented these changes [26].
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Upon high-cholesterol diet, rabbits exhibited 34.7 times
elevated LDL concentrations (Table 1) [28]. After 5 weeks,
atheromas were noted in the internal carotid and basilar
arteries [28]. When exposed to focal cerebral ischemia
induced by sephadex-G75 polymer injections, a high-
cholesterol diet increased the mean infarct size probably
as a consequence of platelet-rich thrombus accumulation,
but reduced brain hemorrhage formation [28].

2.1. Lessons from Hypercholesterolemia Models. By
promoting vascular lipid deposition in cerebral microvessels,
hypercholesterolemia attenuates postischemic angiogenesis.
Cerebral microangiopathy induced by high-cholesterol diet
is similarly noted in wild-type and ApoE'/ " mice [7]. It is
associated with disturbed cerebral hemodynamics [8, 9]. In
view of the tight interactions of cerebral microvascular and
brain parenchymal cells, cerebral microangiopathy compro-
mises parenchymal brain remodeling and plasticity [7-11,
22, 26-28] and disturbs responses to restorative stroke
treatments [9, 11, 22]. Importantly, rodents develop little
intracranial large artery atherosclerosis, and atherosclerotic
plaques lack plaque rupture, which as a precipitating event
resulting in cerebral thromboembolism is responsible for
the majority of ischemic stroke events. Wild-type mice with
long-term exposure to high-cholesterol diet is a valuable
model of metabolic syndrome [23], a frequent health prob-
lem in humans. This model is well suited for studying
plasticity-promoting treatments.

3. Insights from Models of Arterial
Hypertension: Utility as Models Unmasking
Complication Risks and as Models of
Premature Brain Ageing

Rat and mouse models of arterial hypertension were gener-
ated by inbreeding, targeted mutations, or pathophysiologi-
cal stimuli. Although hypertensive strains exist in species
other than rodents (e.g., spontaneously hypertensive rabbit),
these strains have not been examined in ischemic stroke
models.

Spontaneously hypertensive rats (SHR) were obtained by
breeding Wistar-Kyoto rats (Table 2) [29]. Systolic blood
pressure values of 180-200 mmHg are noted in these rats.
SHR display hypertensive end-organ damage features includ-
ing cardiac hypertrophy and renal insufficiency. Apart from
impaired endothelial reactivity, gross vascular abnormalities,
specifically atheromatosis and vascular thrombosis, are
absent [30]. In permanent focal cerebral ischemia induced
by transcranial MCAO or photothrombosis, the deactivation
of the axonal growth inhibitor NogoA, which limits neural
plasticity postinjury [31], by delivery of a NogoA-
neutralizing antibody increased sensorimotor recovery and
contralesional corticospinal plasticity after 12 weeks in SHR
and normotensive rats, when delivered 24 hours poststroke
[32]. In the brains of SHR, only subtle changes of neuro-
trophic factors and their receptors were found [33]. Postis-
chemic neurogenesis and oligodendrogenesis were reduced
in middle-aged (i.e., 12-month-old) compared to young
(3-month-old) SHR with transient proximal MCAO [34],

indicating premature brain ageing as a consequence of
chronic hypertension.

By mating SHR with high blood pressure values, stroke-
prone SHR (SHR-SP) were generated (Table 2). Their
offspring reveal severe hypertension (systolic blood pressure
>200mmHg) and spontaneous stroke at 9-13 months.
Stroke development is accelerated upon salt-rich diet [35].
Neurological symptoms are observed at ~12 weeks. Prior to
brain infarcts, cerebral blood flow decreases in the whole
brain, reaching critical thresholds for neuronal injury [35].
Following unilateral common carotid artery occlusion, tissue
oxygen is markedly decreased in SHR-SP white matter,
resulting in extracellular matrix degradation, perivascular
immune cell infiltrates, and myelin breakdown [36].

The Dahl salt-sensitive rat (DSR) was raised by breeding
Sprague-Dawley rats exhibiting severe hypertension upon
exposure to high-salt diet (Table 2). Gene sequencing
revealed mutations in the angiotensin-converting enzyme
and atrial natriuretic peptide receptor genes. Systolic blood
pressure increases to 200-240 mmHg [37]. Cardiac hypertro-
phy and glomerular sclerosis are found, with cardiac failure
at ~4-5 months. Up to 54% of DSR on high-salt diet
developed fulminant spontaneous ischemic brain infarcts
associated with massive aortic thickening, neurological defi-
cits, and death [37]. Adenoviral kallikrein delivery prevented
infarct development [37].

The mRenTg mouse expresses mouse renin under a liver-
specific albumin promoter/enhancer, resulting in systolic
blood pressure values of 160-180 mmHg at 3-8 months,
cardiac hypertrophy, and proteinuria (Table 2). 50% of males
died at 6-8 months. After transient proximal MCAOQ, infarct
volume did not differ between mRenTg and wild-type mice
[16]. Platelet deactivation by antiglycoprotein-Ib or
antiglycoprotein-VI antibody reduced infarct volume in
mRenTg and wild-type mice without increasing hemorrhagic
transformation [16]. Glycoprotein-IIb/IIIa inhibition did not
influence infarct volume, but increased brain hemorrhages
more strongly in mRenTg than in wild-type mice [16].

The hRenAngTg mouse expresses human renin and
human angiotensinogen flanked by their regulatory
sequences, resulting in systolic blood pressure values of
160-180 mmHg (Table 2). Blood pressure in mice expressing
human renin or human angiotensinogen is normal. When
exposed to high-salt diet and treated with an endothelial
NO synthase inhibitor, spontaneous brain hemorrhages
appeared in hRenAngTg mice [38]. After permanent proxi-
mal MCAQO, infarct volume and neurological deficits were
increased in hRenAngTg mice compared to wild-type mice
[39]. Effects were attributed to neuronal death-promoting
actions of angiotensin-II. Ex vivo, neuronal injury after
oxygen-glucose deprivation was more severe in brain slices
obtained from hRenAngTg than from wild-type mice [39].
This effect was abolished by the angiotensin type-1 receptor
inhibitor losartan [39].

Secondary renovascular hypertension in the rat has been
modeled by renal artery clipping, by either leaving the con-
tralateral kidney intact (“two kidneys, one clip”) or clip-
ping both kidneys (“two kidneys, two clips”) (Table 2)
[40, 41]. Systolic blood pressure values of 200-225 mmHg
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Neural Plasticity

are noted [40]. Cardiac hypertrophy is found. After per-
manent proximal MCAO, “two kidneys, one clip” rats
revealed increased infarct volume [41]. Five to twelve
weeks after clipping, spontaneous cortical and subcortical
infarcts, petechial hemorrhages, and brain atrophy were
noted [40, 41]. These spontaneous strokes were not associ-
ated with overt neurological deficits.

3.1. Lessons from Arterial Hypertension Models. Arterial
hypertension models are very suitable models for character-
izing complication risks of stroke treatments, namely
blood-brain barrier breakdown, brain edema, and intracere-
bral hemorrhage [16, 36]. Besides, they might be suitable
for studying premature brain ageing [34]. In response to
stroke, neuronal plasticity responses are apparently only
modestly altered in hypertension models. An important
aspect in the selection of hypertension models is associated
comorbidities. Hypertensive end-organ damage, such as car-
diac failure, compromises neurological recovery and animal
survival [16, 37, 40, 41]. Models exhibiting end-organ dam-
age are not ideal for evaluating restorative stroke treatments,
since end-organ damage dramatically increases data variabil-
ity and compromises animal survival. It should however be
noted that associated diseases similarly reduce the recovery
potential of human stroke patients. For the sake of data inter-
pretation, arterial hypertension models should be studied at
stages prior to end-organ damage development.

4. Insights from Models of Diabetes and
Obesity: Utility as Models Turning Beneficial
Neurorestorative Effects into
Detrimental Ones

Rat and mouse models of type-1 and type-2 diabetes have
been established by inbreeding, targeted mutations, or toxin
delivery. In ischemic stroke models, species other than rats
or mice have not been studied.

Streptozotocin delivery results in near-complete f3-cell
loss resembling type-1 diabetes when repeatedly applied in
rats (Table 3) [42]. Fatty streaks are noted in the heart and
aorta. When submitted to cerebral thromboembolism, per-
manent or transient proximal MCAO, infarct volume, brain
edema, hemorrhagic transformation, and neurological defi-
cits were increased in streptozotocin-induced type-1 diabetic
rats compared to nondiabetic rats [42-44]. Following cere-
bral thromboembolism, infarct volume was only modestly
reduced and brain hemorrhages increased by tissue-
plasminogen activator- (tPA-) induced thrombolysis in
streptozotocin-induced type-1 diabetes [43]. Insulin treat-
ment restored the efficacy of tPA-induced thrombolysis,
reducing infarct volume, brain edema, and hemorrhagic
transformation [45]. The streptozotocin model was adapted
by applying streptozotocin only once in middle-aged rats
[46] or applying streptozotocin in rats receiving high-
cholesterol diet (Table 3) [47]. Single streptozotocin injection
provokes partial 3-cell loss, which is associated with periph-
eral insulin resistance upon high-cholesterol diet exposure
[47]. Both models are type-2 diabetes models. Single strepto-
zotocin injection in middle-aged rats resulted in microvascu-

lar thrombosis, blood-brain barrier leakage, and cognitive
dysfunction [46]. Following cerebral thromboembolism,
middle-aged diabetic rats revealed increased sensorimotor
deficits and microvascular injury, reduced neurogenesis and
oligodendrogenesis, and impaired dendritic and synaptic
plasticity compared to nondiabetic controls [46]. Infarct vol-
ume was unchanged [46]. Streptozotocin-induced type-1 and
type-2 diabetic rats displayed different responses to neurores-
torative therapies. In transient proximal MCAO, mesenchy-
mal stem cell delivery improved neurological recovery,
increased angiogenesis, and increased white matter remodel-
ing over up to 28 days in streptozotocin-induced type-2 dia-
betic rats [47], but induced poor neurological recovery
accompanied by aberrant angiogenesis, brain hemorrhages,
and animal deaths in type-1 diabetic rats [44]. Extracellular
matrix degradation was more severe in type-1 than type-2
diabetic rats, resulting in massive neuroinflammation charac-
terized by M1-macrophage infiltrates [44, 47, 48]. Upon mes-
enchymal stem cell treatment, macrophage infiltrates shifted
to an anti-inflammatory M2-phenotype in type-2, but not
type-1 diabetic rats [44, 47, 48]. This process was controlled
by advanced §lycation end-product receptor [48].

The Lep®™°® mouse is leptin deficient and the Lepr
mouse deficient for leptin receptor. Both mice reveal hyper-
phagia, obesity, hyperinsulinemia, and hyperglycemia, repre-
senting models of type-2 diabetes. In transient proximal
MCAO or unilateral hypoxia-ischemia induced by perma-
nent carotid occlusion combined with transient 8% hypoxia
(Vannucci model), infarct volume, brain edema, extracellular
matrix breakdown, and brain neutrophil and macrophage
infiltration were increased at 1-3 days in Lep®°® and
dbrdd hice compared to control mice [49-52]. Rosuvas-
tatin decreased infarct volume after transient proximal
MCAO in Lep®°® but not wild-type mice by reducing inter-
cellular adhesion molecule-1 level and decreasing brain leu-
kocyte entry [51]. The peroxisome proliferator-activated
receptor-y activator darglitazone decreased infarct volume
after unilateral hypoxia-ischemia (Vannucci model) in
Lep®™°®, but not control mice, by downregulating interleu-
kin-1$ and tumor necrosis factor-a [52]. Oligodendrocyte
precursor cell proliferation and white matter myelination
were compromised after transient distal MCAO in Lepr®™®
compared to wild-type mice [53]. White matter compound
action potential conduction and sensorimotor performance
were impaired [53]. Microglia/macrophage polarization was
shifted towards the M1-phenotype [53]. In cell culture, M1
microglia/macrophages suppressed oligodendrocyte precur-
sor cell differentiation under high-glucose conditions [53].

The KK-A” mouse is an obese, diabetic heterozygous KK
mouse expressing spontaneously mutated yellow obese AY
agouti gene (Table 3). After permanent proximal MCAO,
low-dose telmisartan decreased infarct area, neurological def-
icits, and brain tumor necrosis factor-« levels at 24 hours in
KK-AY, but not in wild-type mice [54]. The peroxisome
proliferator-activated receptor-y inhibitor GW9662 reversed
these effects [54].

The Zucker diabetic fatty rat (ZDF) exhibits a combina-
tion of hyperphagia, obesity, and diabetes resulting from a
spontaneous leptin receptor mutation in the otherwise
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insulin-resistant Zucker rat strain (Table 3). Compared to
Zucker lean controls, ZDF reveal significantly elevated
CD11b levels on blood neutrophils [55]. Infarct volume, neu-
rological deficits, brain edema, cerebrovascular neutrophil
adhesion, and cerebral interleukin-1f expression after tran-
sient proximal MCAO were increased [55].

The Goto-Kakizaki rat is a nonobese type-2 diabetic
rat obtained by breeding Wistar rats with compromised
glucose tolerance (Table 3), after transient proximal
MCAO hemorrhagic transformation, but not infarct vol-
ume, was increased [56].

4.1. Lessons from Diabetes and Obesity Models. Diabetes
models are Janus-faced conditions, which may turn bene-
ficial treatment effects into detrimental ones, resulting in
poor neurological outcome. They are important assays
for evaluating risks of treatment failure. In the acute stroke
phase, diabetes models can be used for examining exacer-
bated brain injury, edema, and hemorrhage [42-46, 49-52,
55, 56]. In the postacute phase, they can be used for
exploring the risk of maladaptive neuroplasticity and aber-
rant angiogenesis [44, 47, 48, 53]. An added value is the
utility of diabetes models for studying neuroinflammation
[44, 47-55], which is augmented by diabetes and obesity.
Thus, diabetes models are very suitable for studying anti-
inflammatory treatments. Open questions remain how
the duration of preexisting diabetes and antidiabetic treat-
ment influences restorative treatment responses. It needs
to be shown whether and how fast glucose lowering rees-
tablishes neurorestorative responses.

5. Conclusions from Studies on Risk
Factor Models

Risk factor models possess important features allowing us
to study treatment concepts in ischemic stroke. Useful
models have been developed for evaluating ischemic injury
associated with risk factor exposure. Useful models have
been established for studying impaired angiogenesis and
neuroplasticity. Useful models have been presented for
spontaneous stroke. Despite these features, risk factor
models have so far not been able to identify treatments that
subsequently succeeded in clinical trials in the acute neuro-
protection field. A downside of current animal models is
that several models require genetic manipulations or artifi-
cial surgical interventions (i.e., delivery of toxins/drugs)
raising questions about their relevance to human stroke.
Some models exhibit risk factor manifestations rarely noted
in human stroke patients (i.e., excessive hypercholesterol-
emia, hypertension, or hyperglycemia). Such models should
be interpreted with caution. Reproducible models of stenos-
ing large artery atherosclerosis, intracranial large artery ath-
erosclerosis, or spontaneous thromboembolic stroke are
largely lacking. The major reason for the lack of spontane-
ous thromboembolic stroke models is that rodents normally
do not exhibit plaque rupture.

How should risk factor models be refined for stroke
studies? Animal models should as closely as possible
reproduce risk factor states in stroke patients, which
requires that the duration, type, and severity of risk factor

Neural Plasticity

exposure are mimicked. Stroke typically develops as a con-
sequence of chronic risk factor exposure. Patients mostly
exhibit more than one, often several risk factors. Hence,
future animal studies should more stringently model long-
term risk factor exposure and exposure to combinations of
risk factors. From this perspective, animal models of cerebral
microangiopathy associated with metabolic syndrome are
particularly promising [7, 23]. Attention should be paid to
modest risk factor manifestations, such as disturbed glucose
tolerance and prediabetes, which are highly prevalent in
stroke patients [57]. If possible, treatment studies should
involve middle-aged or aged animals [46].

How should risk factor models practically be applied in
the evaluation of new therapies? The most widely used
approach is an approach, in which treatment concepts iden-
tified in young, otherwise healthy, animals are tested in risk
factor animals before studies in stroke patients are per-
formed. The main advantage of this bottom-up strategy is
the stepwise translation from simple (healthy animal) to
more complex (risk factor animal) models. Its disadvantage
is that treatment responses may be attenuated by risk factors
or comorbidities, which reduces success chances of later clin-
ical trials. In the opposite approach, treatment concepts are
first examined in vascular risk factor animals, subsequently
evaluated in otherwise healthy animals and then tested in
stroke patients. The main advantage of this top-down
approach is the known efficacy of treatments in risk factor
settings, which increases the chances that treatments will also
be acting in the clinical setting. The main message of this
overview is that careful risk factor modeling will allow us to
increase the validity of animal studies, which should facilitate
the translation of new treatments to stroke patients. Without
such risk factor modeling, we might end up in another series
of clinical translation failures. The principles underlying neu-
ronal plasticity and brain remodeling in the post-acute stroke
phase are complex, probably more complex than those con-
trolling acute postischemic neuronal survival and death. We
need to develop a thorough understanding how risk factors
and comorbidities compromise postacute stroke recovery
processes. Such understanding may guide us to the develop-
ment of new stroke treatments.
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