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Abstract

Motivation: The overwhelming size and rapid growth of the biomedical literature make it impos-

sible for scientists to read all studies related to their work, potentially leading to missed connec-

tions and wasted time and resources. Literature-based discovery (LBD) aims to alleviate these

issues by identifying implicit links between disjoint parts of the literature. While LBD has been

studied in depth since its introduction three decades ago, there has been limited work making use

of recent advances in biomedical text processing methods in LBD.

Results: We present LION LBD, a literature-based discovery system that enables researchers to

navigate published information and supports hypothesis generation and testing. The system is

built with a particular focus on the molecular biology of cancer using state-of-the-art machine

learning and natural language processing methods, including named entity recognition and

grounding to domain ontologies covering a wide range of entity types and a novel approach to

detecting references to the hallmarks of cancer in text. LION LBD implements a broad selection of

co-occurrence based metrics for analyzing the strength of entity associations, and its design allows

real-time search to discover indirect associations between entities in a database of tens of millions

of publications while preserving the ability of users to explore each mention in its original context

in the literature. Evaluations of the system demonstrate its ability to identify undiscovered links

and rank relevant concepts highly among potential connections.

Availability and implementation: The LION LBD system is available via a web-based user interface

and a programmable API, and all components of the system are made available under open

licenses from the project home page http://lbd.lionproject.net.

Contact: ltllionproject@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The enormous size and exponential growth of the scientific litera-

ture make it increasingly difficult for researchers to stay up to date

on all developments in their field, let alone on those in related areas

of study (Simpson and Demner-Fushman, 2012). This issue is

particularly challenging in complex and tightly interconnected areas

of biomedical research such as cancer, which is addressed in millions

of existing publications. In the last two decades, there have been ex-

tensive efforts to address these challenges through the application of
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machine learning, natural language processing (NLP) and text min-

ing methods to automate the processing of the biomedical scientific

literature.

Literature-based discovery (LBD), first introduced and developed by

Swanson in a series of seminal papers (Swanson, 1986a, 1987, 1988),

seeks to uncover undiscovered public knowledge (Swanson, 1986b) by

connecting pieces of information from disjoint literatures. The key idea

behind the original LBD formulation is that concepts that are never ex-

plicitly associated in the literature may be implicitly linked through inter-

mediate concepts in disconnected subsets of that literature. For example,

Swanson (1988) found that while the literatures concerning migraine

and magnesium were (nearly) isolated, they were indirectly connected

through a number of concepts common to both, such as spreading cor-

tical depression. Following Swanson’s work, LBD approaches are now

commonly divided into open discovery and closed discovery. The former

starts with a single concept of interest and aims to recognize potential in-

directly associated concepts (hypothesis generation), while the latter

assumes known start and end points and seeks to identify the most

promising ways the two can be linked (hypothesis testing).

Since its inception as a largely manual exploratory process, LBD

has been formalized and automated in a number of online systems

such as Arrowsmith (Swanson and Smalheiser, 1997), BITOLA

(Hristovski et al., 2005) and FACTA (Tsuruoka et al., 2008), and

aspects of LBD system design and evaluation explored in a range of

domain studies (Preiss et al., 2012; Weeber et al., 2005; Yetisgen-

Yildiz and Pratt, 2008). Early LBD systems worked directly on the

surface forms of words and thus lacked any way to account for the

ambiguity and variability of language and biomedical terminology

(Lindsay and Gordon, 1999). Such approaches necessarily miss

some connections and generate other spurious ones: on one hand,

they have no way to identify that e.g. p53 and TP53 refer to closely

associated entities; on the other, they cannot determine whether e.g.

DBP refers to diastolic blood pressure or D site binding protein.

A number of more recent systems have incorporated NLP methods

to map from words to concepts, most commonly using the

MetaMap tool (Aronson, 2001) to map to the UMLS terminology

(Bodenreider, 2004). While dictionary- and rule-based systems such

as MetaMap can offer broad coverage of domain concepts, their ac-

curacy in recognizing and disambiguating names of specific biomed-

ical entities falls notably behind that of more recent machine

learning-based methods. The recognition of biomedical entity names

and their grounding (or normalization) to specific database or ontol-

ogy identifiers has been a major focus of the biomedical natural lan-

guage processing community for more than a decade, and a wealth

of resources and methods targeting entities such as genes, proteins,

drugs, chemicals and diseases have been introduced (Do�gan et al.,

2014; Krallinger et al., 2015; Kim et al., 2004; Smith et al., 2008;

Wei et al., 2016). Although machine learning methods trained on

manually annotated resources are well established as outperforming

other approaches in the recognition of biomedical entity mentions in

text, there has been very limited application of these technologies in

LBD systems to date.

In this work, we bring together state-of-the-art methods for bio-

medical entity recognition and literature-based discovery to create

an LBD system realizing the opportunities of both lines of study.

The system scales to cover the entire available literature and is built

on open data, open standards and open source technologies. It sup-

ports both closed discovery and open discovery queries over very

large graphs while remaining responsive in interactive use and

allows users to ‘drill down’ to the source literature supporting candi-

date discoveries. In the text analysis, we focus on the recognition

and comprehensive grounding of mentions of entities such as genes,

proteins and chemicals as well as hallmarks of cancer (Hanahan and

Weinberg, 2000), thus assuring coverage of concepts relevant to the

molecular basis of cancer. Cancer is a complex and as of yet incom-

pletely understood class of diseases that are the second leading cause

of death and involve a large number of chemical and biomolecular

entities, reactions and pathways. These are directly addressed in a

massive and fast-growing subset of the biomedical research litera-

ture that is further intertwined with other biomolecular research in

ways that make comprehensive manual analysis impossible. The

public health implications, biomolecular complexity and the scope

of the associated literature make cancer an important and potential-

ly highly fruitful application area for LBD. To support this and other

applications of LBD to the domain, we additionally introduce a new

LBD evaluation dataset focused on cancer research discoveries.

2 Approach

The following sections detail the approach taken in the design and

implementation of the LION LBD system.

2.1 Task setting
Open and closed discovery can both be defined in terms of search in

graphs where nodes represent relevant domain concepts and

weighted edges the strength of association between these concepts in

literature (Fig. 1). We consider simple weighted graphs G ¼ ðN;EÞ
where N is the set of nodes and E the set of edges E � N �N and

each edge ði; jÞ 2 E has a weight (wði; jÞ). In closed discovery, given

nodes a; c 2 N the goal is to identify the set of nodes B � N such

that ða; bÞ; ðb; cÞ 2 E for each b 2 B and assign each such node a

score based on the weights of the edges (wða;bÞ;wðb; cÞ) on the path

(a, b, c). We term the functions that score a path based on its edge

weights aggregation functions and denote them by fg. In open dis-

covery, given a node a 2 N, the goal is to identify nodes C � N such

Fig. 1. Illustration of closed and open discovery settings. In closed discovery, the goal is to identify nodes (b1, b2,. . .) connecting a given start and end node (a1

and c1). In open discovery, only a start node (a1) is given, and the aim is to find indirectly connected nodes (c1, c2,. . .). Identified candidate nodes are ranked based

on the edge weights w
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that ða; cÞ 62 E and there exists a b 2 N : ða; bÞ; ðb; cÞ 2 E for each

c 2 C and assign each c a score based on the weights of edges on all

paths connecting a to c. We assume with some loss of generality that

the score is based on an accumulation function fc over the values of

an aggregation function fg for each such path. The algorithmic im-

plementation of these tasks is detailed in Supplementary

Information.

The general formulation above can be parameterized through

the edge weight functions wði; jÞ, the aggregation function fg and the

accumulation function fc to realize a variety of specific open discov-

ery and closed discovery methods. As a simple example, the edge

weight can be defined as co-occurrence count and both fg and fc as

sum, giving a method that prioritizes the total frequency of co-

occurrence in ranking candidates. If we then assume that

wða1; b1Þ ¼ 10, other edge weights shown in Fig. 1 and there are no

other (non-zero) weights, then for closed discovery the score of b1 is

wða1; b1Þ þwðb1; c1Þ ¼ 10þ 2 and that of b2 is

wða1; b2Þ þwðb2; c1Þ ¼ 2þ 2. For open discovery, the score of c1 is

wða1; b1Þ þwðb1; c1Þ þwða1;b2Þ þwðb2; c1Þ ¼ 10þ 2þ 2þ 2, and

similarly for c2. A substantial number of variants for edge weighting

and scoring have been proposed in the literature, and we implement

and evaluate a number of prominent alternatives in the LION LBD

system (see Section 3.3). We further note that the above formulation

of discovery tasks for paths of length two (one intermediate node)

can be extended straightforwardly to longer paths with several inter-

mediate nodes. However, due to the exponential growth of com-

plexity and diminishing practical returns, these more general LBD

settings are rarely used and not considered in the current implemen-

tation of the LION LBD system.

2.2 System architecture
The differentiation between mention and entity levels of data is cen-

tral to our approach and key to allowing the LION LBD system to

be both comprehensive in its coverage and computationally feasible

for interactive use. On the mention level, we separately store each

instance in the literature where any entity of interest is mentioned,

including e.g. 270 000 mentions of p53. However, for the purposes

of search and ranking, we formulate the graph in terms of the real-

world entities that the mentions refer to, represented by their identi-

fiers in relevant databases and ontologies. For example, p53 is repre-

sented by the graph by a single node with the Protein Ontology

identifier PR:000003035. This two-level design is also applied to the

relations representing associations between concepts in the system.

While in the entity-level graph there is a single edge between the

node representing p53 and the node representing cancer, to allow

users to drill down to the evidence supporting this association, we

also store and index each of the over 100 000 instances in which

mentions of these entities are found together in the literature.

The graph search components of the system operate solely on the

basis of database and ontology identifiers, but it is necessary to

allow users to query the graph using natural language strings such as

p53 and cancer. To implement this feature, we analyze the grounded

annotations to determine the identifiers commonly associated with

each string in text. For example, finding that p53, TP53 and Trp53

are frequently grounded to PR:000003035 in source data, we create

a mapping from the strings to that identifier. To help resolve am-

biguous cases (e.g. the species and disease senses of Salmonella),

users are presented with alternative strings mapping to each applic-

able identifier (e.g. Salmonella enterica and Salmonella infection).

This data is also used to determine the strings to display on the web

interface to identify each node in the graph. The LION LBD system

components are illustrated in Figure 2.

3 Materials and methods

3.1 Text and annotations
The literature that the current release of the LION LBD system

builds on is retrieved from PubMed (http://pubmed.com) and covers

Fig. 2. LION LBD system components. Users interact with the system through

text-based queries (A) that are mapped to ontology identifiers (B) used to

search the entity-level graph (C). Mentions of entities in context can be

retrieved from a separate database (D)

Fig. 3. LION LBD system build process. Source data (1–5) is processed by cre-

ating a merged identifier mapping (6), metadata extraction (7), text classifica-

tion (8) and identifier mapping (9). Following mention co-occurrence analysis

(10), entity-level data and metrics are aggregated from mention-level data (11)

and the two layers of information stored in separate databases (12 and 13)
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all of the nearly 27 million citations (titles and abstracts) in PubMed

at the time of data import. We draw our annotations for physical

biomedical entities, mutations and diseases from PubTator (Wei

et al., 2013), an online annotation resource building on state-of-the-

art methods for named entity recognition and grounding. PubTator

is unique among available literature-scale biomedical NLP resources

in terms of its coverage of entity types and their comprehensive

grounding to relevant domain databases: genes and proteins are

assigned identifiers from the NCBI Gene database (Maglott et al.,

2004), diseases and chemicals identifiers in MeSH (Lipscomb, 2000)

and ChEBI (Degtyarenko et al., 2007), NCBI Taxonomy (Federhen,

2012) is used for species names, and SNP identifiers for single-

nucleotide polymorphism mutations. We refer to Wei et al. (2013)

for detailed descriptions of the methods applied for entity recogni-

tion and grounding in PubTator. To further account for cancer-

related processes, we apply a dedicated machine learning system to

categorize each sentence in the dataset according to the hallmarks of

cancer (HoC) taxonomy of Baker et al. (2016, 2017), a 37-category

hierarchical extension of the well-established cancer hallmarks of

Hanahan and Weinberg (2000, 2011). The system classifies each

sentence into zero or more of the 37 hallmark categories using a

convolutional neural network. Baker and Korhonen (2017) detail

the architecture of this system as well as its training and evaluation.

We convert the annotations from PubTator and the HoC classifier

into the uniform Web Annotation linked data representation

(Sanderson et al., 2017) using the JSON for Linked Data serializa-

tion (WWW Consortium, 2014) for combination and further proc-

essing using a custom pipeline implemented in Python. The choice of

JSON-LD allows us to consistently use a single, standard linked

data representation in all components of the system. The primary

steps of the processing pipeline are shown in Figure 3. We note that

the data the system is initialized with is its only major domain de-

pendency, and the LION LBD system is already applicable to bio-

molecular LBD tasks in general and can be readily adapted to

specifically target domains other than cancer.

3.2 Identifier mapping
In evaluation of early development versions of the system it was

found that the granularity of the gene and protein identifiers

assigned by grounding methods did not match user expectations. In

particular, systems developed to address the popular BioCreative

community challenge setting (Morgan et al., 2008) assign NCBI

Gene database identifiers to ground gene and protein mentions, thus

differentiating e.g. between homologous genes in different species.

While this level of detail is valuable in many applications, it was

found to produce apparently redundant results in the LBD system:

for example, the genes closely associated with apoptosis would sep-

arately include Homo sapiens TP53, Mus musculus Trp53, Rattus

norvegicus Tp53, etc.

To address this issue, we chose to map the source NCBI Gene

identifiers to the relevant identifiers in Protein Ontology (PRO)

(Natale et al., 2014) and then use the hierarchical structure of PRO

to generalize the identifiers to a level that abstracts over homologs

(Gene level in PRO terms). This mapping was initially implemented

using the resources introduced by Huang et al. (2011) to map from

NCBI Gene to PRO via UniProt and later extended to additionally

use HomoloGene (Wheeler et al., 2003) to account for genes for

species outside the current scope of PRO (e.g. Canis familiaris).

The resulting merged mapping can identify the relevant PRO identi-

fier for approx. 95% of the NCBI Gene identifiers in the source

data.

Annotations that are not associated with an identifier in one of

the applied resources are stored in the mention-level data but not

included in the entity-level graph. These annotations are thus

included in document-level visualizations of annotations and ac-

cessible via various API functions, but cannot currently be part of

discovery queries. In addition to the NCBI Gene identifiers that

cannot be mapped to PRO, this filtering includes any mention in

the source data that is not grounded to an external resource, includ-

ing in particular many PubTator Mutation annotations (see Section

4.1).

3.3 Metrics and scoring functions
The LION LBD system design allows any number of edge weight

metrics to be calculated over the graph and can switch between

metrics on a query-by-query basis. The following edge weight met-

rics are currently implemented in the system: Co-occurrence count

(Count) and Document count (Doc-count) are the number of sen-

tences and documents (resp.) in which mentions of the entities con-

nected by the edge co-occur. Jaccard index (Jaccard) is the ratio of

the size of the intersection over the size of the union of the sets of

sentences in which the entities occur. Symmetric conditional prob-

ability (SCP) is the product of the conditional probabilities of one

entity being mentioned in a sentence where another occurs, and

normalized pointwise mutual information (NPMI) is a measure of

the independence of the mention occurrence distributions. Finally,

Chi-squared (v2), Student’s t-test (t-test) and log-likelihood ratio

(LLR) are statistical tests measuring whether the mention distribu-

tions are independent of each other. We refer to the

Supplementary Information for the detailed definitions of these

metrics.

A number of alternatives for the scoring functions operating over

the edge weights have also been implemented, and the choices be-

tween these can likewise be made independently for each query. For

the aggregation function fg, the alternatives min, avg and max are

currently supported. As the names suggest, these functions assign as

the score for a path the minimum, mean and maximum (resp.) of the

edge weights on the path. For the accumulation function fc, the

choices sum and max are supported. When multiple paths lead to

the same node, the former assigns as the node score the sum of the

path scores while the latter takes the maximum of these scores.

We evaluated all combinations of metrics and scoring functions

to determine the best system defaults (Section 4.2), and also offer

users the option of selecting other configurations.

3.4 Database design
The differentiation between entities and their mentions (Section 2.2)

is reflected in the two-level database design of the LION LBD sys-

tem. Mention-level data is stored in a conventional SQL database.

To support flexible and fast search of the entity graph, entity-level

data is stored redundantly in a graph database and in a custom in-

memory graph storage. For document texts and mention-level data

we use PostgreSQL (https://www.postgresql.org/), an open source

relational database supporting many advanced features such as full

indexing for JSON data, which allows us to consistently use the flex-

ible Web Annotation JSON-LD representation of annotations also

in the database. The data of both mention and relation annotations

is stored primarily in binary JSON columns, with performance-

critical fields such as the ontology identifiers of related entities

denormalized and separately indexed to directly support specific

queries such as retrieving all sentences where entities with given

ontology identifiers co-occur.
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The entity and relation graph is stored in Neo4j (https://neo4-

j.com/), a specialized database available under open source licensing

that supports native graph storage and querying using a custom

graph-oriented query language. The use of Neo4j allows arbitrary

queries over the graph to be expressed in a flexible and intuitive

way. Finally, to support also the most demanding open discovery

queries in a responsive manner, we have created a custom in-

memory graph storage and search system specialized for LBD

queries. This subsystem is implemented as a separate service with its

own API and written in Python, with performance-critical sections

in the Cython superset, which allows the generation of efficient C

code.

3.5 Interfaces
To support direct browser-based use and programmatic access, we

implement both a web-based user interface and an Application

Programming Interface (API) to the LION LBD system, both imple-

mented using the Python Flask (http://flask.pocoo.org) framework.

The LION LBD web interface is responsive across devices, and is

built on established web frameworks: we use Semantic UI (https://se-

mantic-ui.com/) for layout and styling, and client-side functionality

is implemented with jQuery. The Cytoscape.js library (Shannon

et al., 2003) is used for graph visualization, and Chart.js (http://

www.chartjs.org/) for rendering charts. The API implements a con-

ventional REST-like interface (Fielding and Taylor, 2000) using

JSON for primary result data and Web Annotation JSON-LD for

annotation data. Both the browser interface and the API are found

along with detailed documentation at http://lbd.lionproject.net.

Figure 4 illustrates the browser-based LION LBD UI.

3.6 Evaluation
LBD systems are commonly evaluated through the replication of

previously published discoveries, most frequently using those

reported by Swanson and colleagues over the years (e.g. Gordon and

Lindsay, 1996, Weeber et al., 2001). The basic approach is straight-

forward: the LBD system is set up to only use literature up to some

cut-off date before the discovery and queried with terms relevant to

the discovery (e.g. migraine); the system is successful if it identifies

the reported associated concepts (e.g. magnesium). The performance

of a system can be quantified e.g. by determining the rank of the

expected response in the returned list of candidates (Srinivasan,

2004). Following previous work, we include the replication of

Swanson’s discoveries as part of the evaluation of the LION LBD

system. However, as the set of these discoveries is limited in size,

somewhat dated and not directly relevant to cancer, we chose to

also curate a new dataset of cancer-related discoveries from the lit-

erature for the primary evaluation of our proposed system.

To identify discoveries, we first surveyed articles published be-

tween 2006 and 2016 in journals that cover biomolecular cancer re-

search (e.g. Science, Nature, The Lancet, British Journal of Cancer,

and Cell). In the initial survey pass, we sought to identify specific

cancer-related discoveries that can be characterized as a causal chain

of three concepts (A-B-C). From the literature survey, we chose 50

candidate discoveries. In the second stage of processing, we filtered

the candidates to identify discoveries that could have potentially

been found by an LBD approach: namely, the two connections A-B

and B-C should be found in the literature at some point in time be-

fore the connection between A and C is proposed. Specifically, we

identified cases where in some year in the past, (A, B) and (B, C)

each co-occur in at least 100 publications but are no (or very few)

publications where (A, C) co-occur. This filtering was performed

manually using PubMed searches, thus avoiding any possible bias

toward specific NLP methods or LBD tools. Using this approach, we

filtered the 50 candidates to 16. These candidates were then assessed

by project participants to exclude connections that the domain

experts judged to be too obvious (e.g. involving entities that are very

well-studied in cancer biology) or insufficiently novel. This filtering

selected a final set of 5 triples that represent specific recent discov-

eries on the molecular biology of cancer that could have potentially

been suggested by an LBD system in the past. Finally, the relevant

ontology and database identifier in the applied resources was manu-

ally identified for each of the concepts in the dataset. The dataset is

presented in Table 1.

Fig. 4. LION LBD user interface. The user query (p53) is shown together with controls switching between different discovery modes above the result graph, where

nodes represent related concepts and edges their associations
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We additionally evaluate the system using a set of Swanson’s dis-

coveries. For each publication reporting such a discovery, we manu-

ally mapped the A and C terms to their associated database or

ontology identifiers. We excluded the pair (Fish oil, Raynaud’s syn-

drome) Swanson (1986a) as the term Fish oil is not in scope for the

entity types currently included in the LION LBD system. The evalu-

ation dataset derived from Swanson’s discoveries is summarized in

Table 2. We note that in addition to evaluation on confirmed bio-

logically relevant discoveries, LBD systems can also be evaluated

based on their ability to predict later edges based on earlier versions

of the graph (Yetisgen-Yildiz and Pratt, 2009). We performed pre-

liminary experiments using this type of time-slicing, but chose to for-

go this setting due to the lack of ground truth in our data: there is no

way to distinguish arbitrary co-occurrence from statements of bio-

logically significant association.

To evaluate the system using these datasets, we consider all com-

binations of metrics and scoring functions (Section 3.3) and perform

an open discovery query and a closed discovery query for each (A,

B, C) triple (open discovery only for Swanson’s discoveries) using a

version of the system data that only includes literature up to five

years before the year of the relevant publication (Tables 1 and 2)

and further excludes any document where A and C co-occur

(Available from http://lbd.lionproject.net/downloads). In open dis-

covery, we query the system for nodes indirectly connected with the

A node and determine the rank of C in the results. In closed discov-

ery, we query the system for nodes connecting A and C and identify

the rank of B. This part of the evaluation does not assess the quality

of responses differing from the expected one. We summarize the

results over the different test cases by reporting the median rank of

the expected node among the candidates retrieved by the system,

which represents a typical number of responses a user would see be-

fore encountering the ‘correct’ response.

Finally, to assess the overall quality of the system responses, we

manually analyze 100 candidates that were ranked higher than the

expected response. This analysis is presented in Section 4.3.

4 Results and discussion

4.1 Data statistics
Key statistics for the mention and entity-level annotation are sum-

marized in Table 3. The data covers nearly 170 M sentences in 27

M citations, and the overall density of annotation is high, averaging

more than 1.5 entity mentions per sentence. Excepting for

Mutation, tens of millions of mentions of each entity type are anno-

tated. The fraction of all mentions that are grounded is high (82%),

ranging 68–88% for types other than Hallmark and Mutation. For

the former, all annotations are grounded by design; for the latter,

only the SNP subset (16%) of PubTator Mutation annotations can

be associated with an external database resource. The 217 M

grounded mentions refer to 195 000 unique entities, thus averaging

over 1000 mentions per entity. It is this difference in magnitude that

allows the entity-level graph to be searched efficiently while repre-

senting all mentions in the literature: it would not be feasible to per-

form the queries over either a mention or unique string graph. The

number of co-occurrence relations in the mention-level data is 258

133 610, and there are 12 797 488 edges representing these relations

in the entity-level graph. The graph is thus densely connected, with

an average of 66 neighbours per node, and highly connected nodes

such as PR:000003035 (p53) have thousands of neighbours. As the

neighbours of highly connected nodes also tend to be highly con-

nected in a co-occurrence graph, open discovery searches starting

from such nodes can visit a high fraction of the total number of

nodes.

4.2 Evaluation results
The results of the evaluation are summarized in Tables 4 and 5 for

the cancer discoveries dataset and in Table 6 for Swanson’s discov-

eries. Full details for all are found in Supplementary Information.

We first note that the system succeeds in recovering the expected

term in all 15 cases, demonstrating its ability to replicate both dis-

coveries used in previous LBD work and discoveries specifically

Table 1. Evaluation dataset from cancer research discoveries

A (id) B (id) C (id) Reference

NF-jB (PR:000001754) Bcl-2 (PR:000002307) Adenoma (MESH:D000236) Van Der Heijden et al. (2016)

NOTCH1 (PR:000011331) senescence (HOC:42) C/EBPb (PR:000005308) Hoare et al. (2016)

IL-17 (PR:000001138) p38a (PR:000003107) MKP-1 (PR:000006736) Gaffen and McGeachy (2015)

Nrf2 (PR:000011170) ROS (CHEBI:26523) pancreatic cancer (MESH:D010190) DeNicola et al. (2011)

CXCL12 (PR:000006066) senescence (HOC:42) thyroid cancer (MESH:D013964) Kim et al. (2017)

Table 2. Evaluation dataset from Swanson’s discoveries

A (id) C (id) Reference

Migraine (MESH:D008881) Magnesium (MESH:D008274) Swanson (1988)

Somatomedin C (PR:000009182) Arginine (CHEBI:29016) Swanson (1990)

Alzheimer’s disease (MESH:D000544) Estrogen (MESH:D004967) Smalheiser and Swanson (1996b)

Alzheimer’s disease (MESH:D000544) Indomethacin (MESH:D007213) Smalheiser and Swanson (1996a)

Schizophrenia (MESH:D012559) Calcium Independent Phospholipase A2 (PR:000012942) Smalheiser and Swanson (1998)

Table 3. Data statistics

Type Mentions (Grounded) Entities

Disease 81 993 034 (72 352 890) 9849

Chemical 68 839 682 (46 691 595) 110 024

Species 52 902 078 (45 937 366) 9765

Gene 31 545 993 (24 581 542) 27 089

Hallmark 26 769 779 (26 769 779) 37

Mutation 1 062 702 (174 531) 37 929

Total 263 113 268 (216 507 703) 194 693
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relevant to cancer research. However, as the numbers of retrieved

candidates can be large—here up to 425 in closed and 137 522 in

open discovery—it is critical for usability that the system not only

finds the target but also ranks it highly among the various candi-

dates retrieved.

In closed discovery, the median rank ranges between 56 and 299

for the different parameterizations. The min aggregation function is

preferred for all but the two basic count metrics (Count and Doc-

count), which favor avg but perform below the more advanced edge

weight metrics for the best aggregation functions. The best overall

result is found for the t-test metric, and there is somewhat limited

variation in results between this and the other non-count functions.

The evaluations using the open discovery task setting show much

starker differences between different parameterizations, with the

median rank of the target term ranging from 15 to 118 753 for can-

cer discoveries and 5 to 41 837 for Swanson’s discoveries. The sum

accumulation function is preferred over max in all but two cases and

produces the best overall results for both evaluation sets. For the ag-

gregation function, min produces the best results in most cases, but

both the avg and max alternatives are preferred for a number of

metrics. By contrast to the closed discovery evaluation results, the

basic count metrics perform quite competitively in open discovery,

and results for other metrics are mixed: while SCP and Jaccard per-

form well for the sum(min) functions, many of the more advanced

statistical metrics show very poor median ranks for this preferred

combination. The best overall results are found for

sum(min(Count)) for the cancer discoveries and sum(max(t-test)) for

Swanson’s discoveries, with sum(min(Jaccard)) as a close second.

Based on consistent and competitive performance in both set-

tings and evaluation datasets, we chose to set min as the default ag-

gregation function and Jaccard as the default metric in the system.

In open discovery, the accumulation function is fixed to sum as it

clearly outperformed the alternative (max). By contrast, we noted

that the best results in individual cases were found for a variety of

combinations of metric and aggregation function (see

Supplementary Information), and have made the choice of these

parameters available on the system interface to allow users to ex-

plore different combinations for their specific discovery tasks.

4.3 Manual analysis
While the above evaluation permits effective comparison of system

variants, it is unrealistically demanding in only recognizing a single

‘correct’ target response for each case. In practice, a given A can be

indirectly associated with several C concepts in open discovery, and

there can be connections between A and C via more than one B in

closed discovery.

To further quantify overall system performance and identify

common sources of error, we manually analyzed ten system

responses differing from the target response for each of the five can-

cer discovery cases in both open and closed discovery settings (i.e.

100 responses in total). To focus the analysis on cases that a user

would be likely to see when using the system, we selected ten ran-

dom responses ranking higher than the target response, or the ten

highest-ranked responses excluding the target when the target was

ranked in the top ten. The default metric and aggregation and accu-

mulation functions were used in all cases.

In closed discovery, we found that 22 of the analyzed 50

responses (44%) represented potential connections between the

given A and C, and in open discovery 17/50 (34%) were potential

new indirectly connected concepts for the given A (the task setting

and results are detailed in Supplementary Information). By far the

most frequent type of error found in open discovery consisted of the

system returning C terms that were judged to have a known direct

connection with the given A (instead of a new, indirect connection),

indicating that the graph lacks connections that are known or dis-

coverable to human experts. Errors in closed discovery were more

diverse, with common cases including unverifiable connections sug-

gested by the system as well as instances where the flow of causality

did not allow A-B-C chaining (e.g. A and C both affected B). These

errors are likely due to the co-occurrence analysis generating spuri-

ous connections and only generating undirected edges in the graph.

Table 5. Open discovery evaluation results for cancer discoveries

Metric Accumulation function fc (Aggregation function fg)

sum

(min)

max

(min)

sum

(avg)

max

(avg)

sum

(max)

max

(max)

NPMI 98 698 15 476 121 5897 36 2268

SCP 276 926 400 1176 399 727

v2 547 3582 402 1159 402 1159

t-test 118 751 63 98 406 325 125 176

LLR 98 677 187 344 646 319 645

Jaccard 29 1089 78 962 93 1122

Count 15 1005 55 52 62 54

Doc-count 23 738 72 68 74 68

Note: Best result in each row underlined, best in column in bold.

Table 6. Open discovery evaluation results for Swanson’s

discoveries

Metric Accumulation function fc (Aggregation function fg)

sum

(min)

max

(min)

sum

(avg)

max

(avg)

sum

(max)

max

(max)

NPMI 41 837 8869 16 714 9715 74 5545

SCP 124 427 154 250 154 250

v2 37 827 7820 156 263 155 263

t-test 40 103 1808 37 368 116 5 105

LLR 37 820 3404 9 45 10 43

Jaccard 6 1075 6 237 9 240

Count 8 43 20 29 21 261

Doc-count 7 21 20 31 21 237

Note: Best result in each row underlined, best in column in bold.

Table 4. Closed discovery evaluation results for cancer discoveries

Metric Aggregation function fg

min avg max

NPMI 86 119 170

SCP 70 196 299

v2 74 196 270

t-test 56 136 261

LLR 65 163 264

Jaccard 81 213 282

Count 245 181 245

Doc-count 231 169 222

Note: Best result in each row underlined, best in column in bold.
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The overall results of this analysis indicate that at least a third of the

candidates suggested by the system are likely to be of potential interest

to users, a result we consider very positive in the challenging LBD task.

The analysis also suggests that system performance could be improved

further through more extensive literature analysis (e.g. inclusion of full

texts) and replacing co-occurrence analysis with a method that recog-

nizes explicit causal statements and identifies connection directionality.

4.4 Case study
We demonstrate the use of the system by using it to assess whether ar-

senic increases the levels of the autotaxin (ATX) protein. By using the

closed discovery mode in the LION tool, we entered search query ar-

senic as term A and autotaxin as term C. No direct connection was

shown, which was expected as a search on PubMed using the combin-

ation of same two keywords (arsenic and autotaxin) gave no result.

However, six intermediate genes were suggested by the LION LBD tool

as appeared top ranked. The connection between arsenic—Nrf2—ATX

was shown as having the strongest association. Nrf2 is a gene known to

respond to oxidative stress and arsenic is an established inducer of oxi-

dative stress, so this connection is in line with common knowledge and

a search on PubMed for the terms arsenic and Nrf2 gives 141 referen-

ces. Searching Nrf2 and autotaxin on PubMed gives only one reference

(Venkatraman et al., 2015). This reference shows that LPA (the product

of ATX enzymatic activity) increases Nrf2 and antioxidant genes. Even

though this information does not answer our question directly, it sug-

gests a clear connection, possibly involving an altered redox signaling.

This seemed credible, and might include an arsenic-induced ATX in-

duction. Four other suggested genes (c-jun, MMP9, Rac1, cdc42) also

gave references documenting connections to ATX in PubMed searches.

AQP9 gave no references, but using ENPP2 (the ATX gene) gave one.

Thus all genes suggested by the LION LBD tool were relevant.

Furthermore, we tested this hypothesis in an experimental cell model

and confirmed that arsenic induces ATX.

5 Conclusion

We have presented the LION LBD system for literature-based dis-

covery focusing on molecular biology and cancer. The system is built

using open data, open source and open standards, and is unique

among available LBD systems in being based on state-of-the-art

methods for named entity recognition and grounding and including

references to the hallmarks of cancer in text. The LION LBD system

offers both an interactive web-based interface for users and a pro-

grammable API. Evaluations of the system on cancer-related discov-

eries and Swanson’s discoveries demonstrated its ability to identify

indirect connections and rank relevant concepts highly in both

closed and open discovery settings. The system is presently limited

to discovery over paths of length two and its source data to PubMed

abstracts, and error analysis showed that the use of co-occurrence

relations is a major factor affecting the quality of results. In the fu-

ture, the LION LBD system will be maintained and further devel-

oped to address these and other limitations and to keep up to date

with the most recent literature and advances in literature-based dis-

covery. The system and all of its components are available under

open licenses from the project home page http://lbd.lionproject.net.
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