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Searching for the ground state 
of complex spin‑ice systems using 
deep learning techniques
H. Y. Kwon1*, H. G. Yoon2, S. M. Park2, D. B. Lee2, D. Shi3, Y. Z. Wu4,5, J. W. Choi1 & C. Won2*

Searching for the ground state of a given system is one of the most fundamental and classical 
questions in scientific research fields. However, when the system is complex and large, it often 
becomes an intractable problem; there is essentially no possibility of finding a global energy minimum 
state with reasonable computational resources. Recently, a novel method based on deep learning 
techniques was devised as an innovative optimization method to estimate the ground state. We apply 
this method to one of the most complicated spin-ice systems, aperiodic Penrose P3 patterns. From the 
results, we discover new configurations of topologically induced emergent frustrated spins, different 
from those previously known. Additionally, a candidate of the ground state for a still unexplored type 
of Penrose P3 spin-ice system is first proposed through this study. We anticipate that the capabilities 
of the deep learning techniques will not only improve our understanding on the physical properties 
of artificial spin-ice systems, but also bring about significant advances in a wide range of scientific 
research fields requiring computational approaches for optimization.

Searching for the ground state, the lowest energy state of a system, is one of the most important problems in a 
wide range of scientific research fields. However, the only way to definitively determine the true ground state is by 
scanning all the possible states and comparing their energies, and hence, the difficulty of this problem increases 
exponentially as the system size increases. Various computational approaches, such as the simulated annealing 
implemented by the Monte-Carlo method, are utilized to estimate the ground state of a system. Yet, only local 
energy minimum states close to the ground state, rather than the exact ground state, can be reasonably obtained 
using the conventional methods.

Given the dire situation, researchers in various research fields have great hope toward deep learning tech-
niques. These computational techniques make it possible for computers to solve problems without being explicitly 
programmed to do so, thus they have been extensively adopted to solve complex problems in scientific research1–3. 
Indeed, the deep learning techniques have also been utilized in a classical topic of condensed matter physics, 
searching for the ground state of a system4–8. Several previous studies have been performed to show the possi-
bilities that deep learning techniques can be used to enhance conventional methods by reducing computational 
costs9,10 and to devise novel simulation methods generating various energetically stable physical states11–13. 
However, these methods still do not include the process for effectively reducing the total degrees of freedom in 
the system, and hence, the difficulty of searching for the true ground state cannot be significantly reduced even 
with the methods.

Recently, an innovative ground state estimation method based on a novel deep generative model, Energy-
minimization variational autoencoder (E-VAE), was devised14. The E-VAE model is composed of the encoder 
and decoder network structures similar to the original variational autoencoder (VAE) model15, and the encoder 
part compresses input data into a new representation in the reduced data dimension. It is expected that the com-
pression process can reduce the search area of the possible solutions, thus the problems that were unreachable 
with traditional methods can be reasonably handled with the available computational resource. Additionally, 
the Hamiltonian of a given system is considered explicitly in the training process of the E-VAE model, so that it 
can learn not only revealed features but also unrevealed physics in the training dataset. This implies that, even 
though the dataset does not include the ground state of a given system, it is possible to generate the ground state 
using a well-trained E-VAE model. As suggested in a previous study14, to obtain a spin state close to the ground 
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state of the system, we can deliberately utilize a collapsing phenomenon of the E-VAE model by increasing the 
influence of the Hamiltonian considered in the training process.

In this study, we apply the E-VAE model to search for the ground states of complex dipolar artificial spin-ice 
systems. Artificial spin-ice systems are typically composed of interacting magnetic dipole moments located on the 
frame structures designed to generate frustrated spin systems. These systems have been studied intensively due to 
their interesting physical properties including emergent magnetic monopoles16–18, vertex-based frustration19,20, 
and thermal excitations21,22. A representative research objective in the field of artificial spin-ice systems is to 
search for the highly-degenerate ground states induced by the geometrical frustration of the systems23–25. How-
ever, it is known that the probability of obtaining the ground state of artificial spin-ice systems usually decreases 
dramatically as the size of the system increases. As an example, in the case of the artificial Kagome spin-ice 
system, as the number of building block structures increases there is a dramatic decrease in the ability to achieve 
the ground state26–28. In the cases of artificial magnetic quasicrystal spin-ice systems with Penrose patterns29–32, 
obtaining the ground states of the systems becomes a more challenging problem; a locally low-energy spin con-
figuration in a small system cannot be generally extended to the ground state of a larger system, owing to the 
lack of translational symmetry in the aperiodic patterns33. Here, we construct two types of different Penrose P3 
patterned dipolar spin-ice systems, Type-I and -II, that we apply our E-VAE model to.

The Type-I system has been studied experimentally by Shi et al.34 through a real-space implementation of the 
system with many narrow magnetic islands. They proposed a ground state candidate of the system, composed 
of a quasi-one-dimensional rigid part (skeleton part) and the topologically induced emergent frustration part 
(flippable part). We apply the E-VAE model to confirm whether the proposed candidate of the ground state is the 
lowest energy state of the system. Through a detailed analysis, we reveal that the skeleton and flippable configura-
tions shown in our result are not exactly the same as the one proposed by Shi et al. in the previous study34. This 
discovery implies that the problem to find a global rule determining the frustrated parts, is not entirely solved. 
In this study, we propose a new skeleton and flippable configuration.

The Type-II Penrose P3 spin-ice system, which has a different network frame structure compared with Type-I 
system, has never been clarified before to the best of our knowledge. We apply the E-VAE model to search for 
the uncharted ground state of the Type-II system, and obtain a spin state which has a significantly lower energy 
value compared with those found using a conventional simulated annealing method29,35. In addition, we find a 
general characteristic of Penrose P3 spin-ice system, regardless of the type of patterns, in that there are topologi-
cally induced emergent frustration parts.

Strategy
Network structure.  To search for the spin states close to the ground state of spin-ice systems considered 
in this study, we implement an E-VAE model using the neural network structure shown in Fig. 1. The detailed 
information for the network structure is given in the “Methods” section. Here, we focus on the modifications 
made to fit the E-VAE network structure to the spin-ice systems.

First, we represent the input data as a series of binarized numbers (− 1 or 1). We numerically implement 
several spin-ice systems using point dipoles, and generate numerous metastable spin states using a conventional 
simulated annealing method29 on each system. More discussion about the generated data, specific to each spin 
system, is given in the “Results” section. Each data is composed of N dipoles, and each dipole is considered to 
behave like an Ising spin; it has a normalized magnetic moment that can only flip, but not rotate. Thus, input 
data can be transformed into an N-dimensional vector including N binarized numbers, and each number implies 
one of the two directions for each dipole.

Second, the output data is composed of N numbers in the range of − 1 to 1; there is no normalization process 
that forces each component of output data to be exactly − 1 or 1. The training process of typical neural network 
models uses a differentiation process to update their network parameters, which is called the back-propagation 
process36. Therefore, there should be at least one differentiable variable to train the network properly. For that 
reason, we do not apply the normalization process in our network since the magnitude is the only continuous and 

Figure 1.   Deep learning process to search for the ground states of complex spin-ice systems. A schematic 
diagram for the dataset generation and the training process of E-VAE model used in this study. Simulated 
annealing implemented by a Monte-Carlo simulation (MC Sim.) is used to generate spin configuration datasets. 
Fully-connected neural network layers are used to implement the network structure, and the numbers indicate 
the hidden units of each layers. See “Methods” section for a detailed explanation.
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differentiable variable to determine each component of the output data through our network structure. Instead, 
the hyperbolic tangent function is used as the activation function of the output layer, mapping each component 
of the output data between − 1 to 1. We consider each component of the output data as indicator of the certainty 
regarding the direction of each Ising-like spin.

Loss function and training process.  In a typical training process of a deep learning algorithm, the neural 
network is updated to minimize a loss function consisting of multiple loss terms, with each minimization of the 
loss term representing a distinct training goal. Likewise, the E-VAE model is trained to minimize the total loss 
function LTotal  consisting of the conventional VAE loss LVAE and the Hamiltonian loss LH : LTotal = LVAE + γ LH
14, where γ is the coefficient of LH . The LVAE is composed of two losses, the reconstruction loss LRC and the 
Kullback–Leibler (KL) loss LKL . The mathematical expressions and the training objectives of these terms in the 
E-VAE model are given in the “Methods” section and previous studies14,15,37. The Hamiltonian loss term, LH , is 
related to the physics of the target system. In this study, we consider the dipole–dipole interaction between the 
magnetic moments in the spin-ice systems, thus, the Hamiltonian loss term becomes the dipole–dipole interac-
tion energy calculated from the output data of the E-VAE model.

Increasing γ during the training process of E-VAE model makes the spin states from the trained model 
energetically more stable14. In particular, when γ exceeds a certain value, the trained E-VAE model collapses 
drastically and the output states converge into a single state. The state has the lowest energy value of all the states 
that the trained E-VAE network produces, and hence, is possibly the ground state of the system. Utilizing this 
feature of the collapsed E-VAE model, we initially start a training process of an E-VAE model with γ = 0 condi-
tion and gradually increase to γ = 5 so that the model can successfully approach the ground state of spin-ice 
systems (see the “Methods” section for more details).

Results
Type‑I Penrose P3 system.  Target system.  One of the main objectives of this study is to confirm that the 
E-VAE model can be used as an efficient computational approach to search for energetically stabilized spin states 
on a complicated spin-ice system. For this, we implement a Penrose P3 dipolar spin-ice system which is referred 
to as a Type-I system in this study (Fig. 2a).

This system has a quasi-crystalline pattern composed of seven different types of unit vertices34; Each magnetic 
moment is centered on the side of two types of rhombuses composed of Penrose tiles, and its direction is strongly 
constrained to be parallel with the side. Translational symmetry is not available on this system33, thus the diffi-
culty of searching for the true ground state increases exponentially with the size of the system. Nevertheless, Shi 
et al. have proposed a method to build up the ground state for this system through elaborated logical steps34 (see 
Fig. S1 in Supplementary Information, SI). They found that the proposed ground state consists of two different 
spin groups, the skeleton and flippable parts. The skeleton part is a quasi-one-dimensional rigid part, and it has 
a unique (up to time-reversal symmetry) ground state with long-range ordering. The flippable part is composed 
of topologically induced emergent frustrated vertices or spins20,34. These are usually surrounded by the skeleton 

Figure 2.   Structure and generated spin states of the Type-I Penrose P3 system. (a) The frame structure of 
Type-I system composed of 805 spins. Each circular dot represents where each spin is located. The sub-figure 
shows the dipole–dipole interaction scheme considered in this system, where blue dots indicate the spins 
interacting with the one on the red dot. (b) A sample spin state in the test dataset. (c, d) Spins of the spin state 
(b) that are located at the skeleton (c) and flippable (d) parts. (e) ε distribution for the training dataset. εG 
indicates the energy density value of the proposed ground state. (f) ε distributions of the test dataset and the 
generated states from the trained E-VAE model with each γ value. (g) The lowest energy spin state obtained 
from a trained E-VAE model with γ = 5.0 . The black dotted circle represents the clockwise flow formed by the 
black and red spins.
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part, and they can be flipped to other degenerate spin configurations with identical energy. To demonstrate the 
utility of E-VAE model in searching for the ground states of spin-ice systems, we set this Type-I system as our 
first target system and investigate whether the E-VAE model can generate the proposed ground state properly.

As shown in the sub-figure of Fig. 2a, the dipole–dipole interaction model is considered only between the 
nearest neighbors as indicated by Eq. (1),

where ε is a unitless energy density parameter, E is the total energy of the system, D is the dipole–dipole inter-
action strength written in energy unit, m̂i is a magnetic moment located at ith spin site, and �rij is the unitless 
displacement vector between the dipole moments m̂i and m̂j . The ij index pair under the summation refers to the 
nearest neighbor pairs. This short-range interaction scheme is adopted to exactly follow the logical steps that Shi 
et al. used to obtain the ground state by tiling vertices.

Dataset generation.  To secure the dataset composed of numerous metastable spin states, we independently 
perform multiple simulated annealing processes on the system and gather the final local energy minimum states. 
The total dataset is composed of 50,000 spin states, and it is divided into three sub-datasets: training, validation, 
and test datasets with 30,000, 10,000, and 10,000 data, respectively. The details about the simulated annealing 
process and data generation are given in the “Methods” section.

A sample of the simulated annealing results is shown in Fig. 2b. Here, we first show that simulated annealing 
is not an appropriate method to search for the ground state of complex spin-ice systems. To demonstrate this 
clearly, we separated the spins in this sample into two groups which are composed of the spins located on the 
skeleton (Fig. 2c) and flippable (Fig. 2d) parts of the proposed ground state (Fig. S1a in SI). It is clearly shown 
that the two colors (red and blue) form several domains, and the domains are intermixed in most regions in 
Fig. 2c. Considering that the magnetic moments in the skeleton part in the proposed ground state make a specific 
long-range ordering, the intermixed domains indicate that the simulated annealing method which is one of the 
representative conventional optimization methods is not enough to investigate the true ground state due to the 
enormous complexity and the existence of numerous metastable states of this system. In addition, there are lots 
of vertices in their excited states as shown in Fig. 2d, and it clearly indicates that the spin state shown in Fig. 2b 
is not in the lowest energy state.

We investigated the energy density histogram for the 30,000 spin states in our training dataset (simulated 
annealing results) as shown in Fig. 2e. The εG , which is the energy value calculated using the Eq. (1) and the spin 
configuration of the proposed ground state by Shi et al., is significantly lower than the ε values of the histogram. 
This fact qualitatively supports that the simulated annealing method has limitations for solving this complex 
spin-ice system.

Training results.  We train our E-VAE model using the metastable spin states in the training dataset and inves-
tigate the energy distributions of generated states from the trained E-VAE models for each γ value as shown 
in Fig. 2f. As γ increases, the energy distribution shifts to a lower energy region. Considering the Hamiltonian 
loss, LH , is related to the energy of the generated state and γ is the controlling parameter for the independent 
variation of the magnitude of LH , the behavior of energy distribution shown in Fig. 2f indicates that the LH is 
properly minimized during the training process of E-VAE model. (The behaviors of each loss term during the 
training process are given in Fig. S2 and Note 1 in SI) In addition, the energy distribution collapses into a sharp 
peak when γ exceeds a certain value; in Fig. 2f, it is approximately 3.0–4.0. In other words, the collapsed E-VAE 
model generates a sufficiently lower energy spin state in the Type-I system compared with the simulated anneal-
ing results. Hence, we confirm that the E-VAE model can be utilized as an innovative numerical method sig-
nificantly outperforming conventional methods in estimating the ground state of the complex spin-ice system.

The generated spin state from the collapsed E-VAE model trained with γ = 5.0 is shown in Fig. 2g. Compar-
ing with the skeleton and flippable parts of the simulated annealing result shown in Fig. 2c, d, there is a perfectly 
ordered skeleton structure with the fivefold rotational symmetry which is implied in the frame structure of the 
system, and all vertices in the flippable part are in one of their degenerate ground state configurations. Thus, the 
state found by the E-VAE model is one of the possible configurations of the spin state proposed by Shi et al. ( ε of 
the generated spin state is exactly the same as εG ), clearly supporting that it is a candidate for the lowest energy 
state of the Type-I system.

In addition, the E-VAE reveals a surprising fact: the spins highlighted as the black arrows in Fig. 2g at several 
specific five-fold vertices, though known as representative flippable vertices34, should actually be classified as the 
skeleton part, and not the flippable part. One can notice that there is an anti-clockwise flow formed by the black 
and red spins, as indicated by the black dotted circle in Fig. 2g, which can be found repeatedly throughout the 
spin states at the specific five-fold vortex sites. If the five-fold vertices are truly independent flippable vertices, 
then the anti-clockwise and clockwise flows of black arrows should appear randomly. Thus, we suspect that the 
spins highlighted as the black arrows are not flippable but rigid. All possible configurations are checked for the 
rigidity of these sites (see Fig. S3 in SI), and we confirm that the spins cannot be flipped until the entire skeleton 
structure is inversed. Consequently, we propose a new skeleton-flippable configuration of ground state includ-
ing the newly revealed additional skeleton parts as shown in Fig. 2g. It displays accurately which spins are truly 
flippable when the system reaches its lowest energy state.

Observing these newly revealed additional skeleton parts, one can notice that the degeneracy of the flippa-
ble parts is greatly reduced. In other words, not all the spin configurations that are previously proposed as the 
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ground states are the ground state. For each of the specific five-fold vertices including the black arrows, only 
four configurations are degenerate as the ground state. This is less than half of the previously proposed ten-fold 
degeneracy (five-fold and time-reversal symmetry) as shown in Fig. S1b in SI. The six excluded configurations 
have higher energies than the four ground state configurations. Specifically, in these excluded configurations, 
a flippable vertex (VII-type vertices shown in Fig. S1b) neighboring the five-fold vertices should be in the first 
excited state, not in the ground state. The energy difference between the excluded states and the true ground 
state is 0.9653× µ0m

2

4πa3
 , where µ0 is vacuum permeability, m is the magnitude of a magnetic moment, and a is 

intervertex spacing. The value is estimated to be about 14 meV using the experimental condition in a previous 
study34, as m = MsV  , Ms = 800 kA/m , V = 6.67× 10−22 m3 , a = 500 nm . Ms is the saturation magnetization 
of permalloy at room temperature and V  is the volume of a magnetic island used in the experiment.

The ground state configuration proposed using our method has not been experimentally realized yet; so far, 
the experimentally observed states have much higher energy that our proposed ground state configuration. More 
ordered states can be approached as the coupling strength between the spins increase. Nevertheless, a previous 
experimental study34 shows that this target system can only reasonably reach locally stable states with a multi-
domain structure, and not its true ground state, due to the complex and aperiodic pattern of the Penrose P3 
tiling. Further experimental studies are required to examine how further ordering can occur to access the true 
ground state of this system.

Type‑II Penrose P3 system.  Target system.  To search for the ground states of unexplored spin-ice sys-
tems, we use a different type of aperiodic Penrose P3 pattern to implement complicated spin-ice systems which 
are referred to as Type-II systems in this study. We construct three Type-II systems including 640, 1195, and 
2150 spins; Fig. 3a shows the frame structure of a Type-II system with 640 spins. Note that the frame structure 
of the system is clearly distinct from the Type-I system as shown in the sub-figures in Fig. 3a. The ground states 
of Type-II systems have never been investigated before to the best of our knowledge. The short-range interaction 
scheme shown in Eq. (1) is also considered in Type-II systems to generate datasets and to define the Hamiltonian 
losses for each system.

Proposing the ground state.  We first apply the E-VAE model to the Type-II system with N = 640 . The same 
network structure shown in Fig. 1 is also used to implement the E-VAE model for this case. We generate datasets 
and train the E-VAE model using the same strategy as for the Type-I system.

After the training process, we obtain a spin state from the trained E-VAE model. The energy value of the spin 
state is significantly lower than the values in the energy distribution of the simulated-annealing-generated spin 
states (Fig. 3b). Figure 3c shows the spin state obtained from the trained E-VAE model, and we propose it as a 
candidate of the ground state of the Type-II system. Similar to the Type-I system, the Type-II system also shows 
a robust skeleton part, although it has a different quasi one-dimensional ordering. We also confirm the existence 
of the flippable part: each vertex can be replaced by a different spin configuration with identical energy. Although 
only applied to two different spin-ice systems, we believe our E-VAE model has the potential to be utilized to 
estimate the ground state of various complex spin systems.

System size dependency.  As discussed earlier, the difficulty of determining the ground state of the Penrose P3 
spin-ice systems using conventional methods increases exponentially with the system size, owing to the system 
being composed of aperiodic patterns with no translational symmetry in the spin network structures. On the 
contrary, we speculate that the difficulty of searching for the ground state using the E-VAE model may not be 
greatly affected by the size of the system owing to an efficient grouping process of the encoder network structure.

Figure 3.   Structure and generated spin states of the Type-II Penrose P3 system. (a) The frame structure of 
Type-II system composed of 640 spins. Each circular dot represents where each spin is located. Two sub-figures 
show the magnified views around the center of Type-I and -II frame structures. (b) ε distribution for the training 
dataset. (c) The lowest energy spin state obtained from a trained E-VAE model with γ = 5.0 in Type-II system. 
εE−VAE in (b) indicates the energy density value of the spin state shown in (c).
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The E-VAE model is designed to include an encoder and decoder structure as shown in Fig. 1. The encoder 
network compresses the given input data into a single latent code. Through this encoding process, it is expected 
that several essential features from the vast amount of information implied in the input data are extracted and 
encoded into the latent code. Therefore, each component in the code represents collective characteristics (usually 
called high-level features in the deep learning field), combining several simple characteristics of the input data. In 
the case of the spin-ice systems considered in this study, each component in the latent codes can be connected to 
various collective states composed of multiple spins. Especially, if there is a long-range ordered structure in the 
ground state of the target system, such as the spins in the skeleton parts which has two degenerate time-reversed 
configurations, it is expected that the total information of the multiple-spin-ordered-structure can be encoded 
into a few components of the latent code. In other words, the encoder part in the E-VAE effectively reduces the 
total degree of freedom of the raw data through an efficient grouping process.

In order to validate this claim, we apply E-VAE model to two other Type-II systems with different N 
( N = 1195 and 2150). The spin states found by the trained E-VAE models for each of these N cases are shown 
in Fig. S4 in SI, while the ground state energies are shown in Fig. 4.

For all cases, the trained E-VAE model discovers a significantly lower energy state than the energy distribution 
of the simulated-annealing-generated dataset used to train each model. Considering that standard deviation value 
of each distribution, σSA , represents the energy difference between the spin states that can be reasonably obtained 
through the simulated annealing process, it is surprising that the energy value of each spin state obtained from 
the trained E-VAE model is several times of σSA away from the mean value of each distribution, µSA.

To quantitatively show the remarkable performance of our method, we investigate the �ε/σSA which is a 
measure of the energy difference between εE−VAE and µSA ( �ε/σSA graph in Fig. 4). Note that �ε/σSA increases 
with the system size ( N  ). For instance, in the case of N = 2150 , �ε is as large as 13σSA . Following empirical 
rule, the probability ( P ) of obtaining a spin state with the energy value of εE−VAE through the simulated anneal-
ing process is infinitesimal ( P ≈ 10−38 for 13σSA ). Therefore, our E-VAE method significantly outperforms the 
simulated annealing method; this advantage becomes more prominent when the system size increases.

Our method shares general limitations and drawbacks existing in common deep learning algorithms, such 
as the requirement of a big dataset and difficulty in explaining how the trained machine obtains the solution38. 
Nevertheless, we believe that this method can transcend the performance of conventional methods in the prob-
lems of searching for the ground state of various spin-ice systems, particularly those with novel complex tiling 
patterns, intractable interaction terms, and large sizes.

Conclusion
We adopted a novel optimization method based on the E-VAE model, which is a deep generative model, to study 
complicated spin-ice systems. We confirmed that the E-VAE model can be used as an efficient computational 
approach to find energetically minimized spin states of two distinct types of aperiodic Penrose P3 patterns. As a 
result, we discovered for the Type-I Penrose P3 spin-ice system that topologically induced emergent frustration 

Figure 4.   Estimating the ground states using E-VAE for systems of different sizes. Comparison between 
results of simulated annealing and our method using the E-VAE model for the N = 640 , 1195, and 2150 
cases. ε histograms are calculated using the training datasets, and εE−VAE,N s indicate the energy density 
values of the spin states obtained from the trained E-VAE models for each of the N cases. �ε/σSA represents 
(µSA − εE−VAE)/σSA , where µSA and σSA are the mean and standard deviation values of ε histograms.
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part (flippable part) appears in a modified configuration from the previously known one, and we presented the 
new skeleton-flippable configuration including the additionally revealed skeleton parts. Moreover, we proposed a 
candidate of the ground state of a Type-II Penrose P3 spin-ice system which has never been clarified before, and 
it is confirmed that there are topologically induced emergent frustration parts regardless of the types of Penrose 
P3 patterns. In addition, we found that our method can efficiently estimate the ground states even when the size 
of the spin-system increases, up to sizes that would render conventional optimization method nearly useless.

Our work shows that the E-VAE model transcends the limitations of the conventional optimization methods 
in searching for ground state problems. We believe that our method can be generalized and applied to explore 
various complex systems, thereby leading to a broad and deep impact in various research disciplines.

Methods
Structural information of network structure.  As shown in Fig. 1, the encoder part consists of four 
fully-connected neural network layers with 512, 384, 256, and 256 (128 + 128) hidden units, and the last 256 
components are divided into two groups to be used as the mean ( µ ) and log-variance ( ln σ 2 ) values. A Batch-
Normalization (BN) and a leaky-ReLu activation layer are attached after each neural network layer except the 
last neural network layer in the Encoder part. After the Encoder part, z , which is usually referred as a latent 
code, is sampled from a set of normal distributions constructed using the µ and σ . Lastly, in the decoder part, z 
is decoded into an output data composed of N numbers through four fully-connected neural network layers with 
256, 384, 512, and N hidden units. A BN and a leaky-ReLu activation are also attached after each neural network 
except the last layer. For the last neural network layer in the decoder part, a tanh activation is used to ensure that 
all components of an output data are in the range of − 1 to 1. The Adam optimizer39 was employed to train this 
network structure. The learning rate, β1 , and β2 which are the hyper-parameters of the Adam optimizer are fixed 
at 0.001, 0.9, and 0.999, respectively.

E‑VAE loss function.  As introduced in a previous study14, the total loss function of the E-VAE model, 
LTotal , is composed of conventional VAE losses and the Hamiltonian loss as shown in Eq. (2),

The LTotal is minimized during the training process of E-VAE model. The minimization of each loss term 
represents distinct training objectives. The goal of minimizing the reconstruction loss, LRC , is to make output 
data identical to input data, where mIn,i and mOut,i are the ith components of input and output data. The goal of 
minimizing the KL loss, LKL , is to increase the similarity between a standard normal distribution and the feature 
distributions, which are the set of normal distributions constructed using the µ and σ values; LKL is minimized 
when all µn and σn are 0 and 1, respectively. β , the coefficient of LKL term, is set to be 0.005 with the appropri-
ate rationales given in the Fig. S5 and Note 2. The goal of the Hamiltonian loss term, LH , is to minimize the 
dipole–dipole interaction energy calculated using the generated spin state (output data); the interaction scheme 
shown in Eq. (1) is used to calculate this LH term, with only difference being that the magnetic moments in the 
Eq. (1) are replaced by the components of output data. The γ is controlled during the training process of the 
E-VAE model.

Training process.  We initially start a training process of a E-VAE model with γ = 0 condition (same as the 
conventional β-VAE model37), and increase γ every 200 training epochs with a 0.05 step size until it reaches 5. It 
is confirmed that the condition γ = 5 is sufficient to collapse the energy distributions of the spin states generated 
from all E-VAE models trained in this study. The batch size used in all training processes is 500.

Simulated annealing process and data generation.  We implement a simulated annealing process 
using the Metropolis–Hastings algorithm which is one of the representative Monte-Carlo methods29. During a 
simulated annealing process, the temperature of the system decreases linearly from a high enough temperature 
to zero temperature to obtain various metastable spin states; initial temperature is set to T = 30 , confirming that 
the initial temperature is sufficient to make all systems considered in this study paramagnetic. We independently 
perform the simulated annealing process multiple times to generate 50,000 metastable spin states for each sys-
tem. The total dataset is divided into three sub-datasets to train the network structure (30,000 data for training 
dataset), to monitor the training process (10,000 data for validation dataset), and to evaluate the performances 
of the trained network (10,000 data for test dataset). It is confirmed that there is no duplicate data (same spin 
states) in all total datasets.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. Additional data related to this paper may be requested from H.Y.K.

(2)
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(
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