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The field of ophthalmic imaging has grown substantially over the last years. Massive
improvements in image processing and computer hardware have allowed the
emergence of multiple imaging techniques of the eye that can transform patient care.
The purpose of this review is to describe the most recent advances in eye imaging
and explain how new technologies and imaging methods can be utilized in a clinical
setting. The introduction of optical coherence tomography (OCT) was a revolution in eye
imaging and has since become the standard of care for a plethora of conditions. Its most
recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities,
such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough
evaluation of patients and provide additional information on disease processes. Toward
that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye
imaging techniques has further allowed the histologic study of single cells in the retina
and anterior segment. Toward the goal of remote eye care and more accessible eye
imaging, methods such as handheld OCT devices and imaging through smartphones,
have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the
potential to become a new milestone for eye imaging while also contributing in social
aspects of eye care.

Keywords: optical coherence tomography, optical coherence tomography (angiography) (OCTA), adaptive optics,
visible light OCT, full field OCT, artificial intelligence – AI

Abbreviations: AI, artificial intelligence; AMD, age-related macular degeneration; AO, adaptive optics; AUC, area under
the receiver-operator characteristic curve; CNV, choroidal neovascularization; CSR, central serous retinopathy; DALK,
deep anterior lamellar keratoplasty; DED, dry eye disease; DL, deep learning; DR, diabetic retinopathy; FA, fluorescein
angiography; FAF, fundus autofluorescence; FD-OCT, fourier-domain optical coherence tomography; FFNN, feed forward
neural network; ILM, internal limiting membrane; IPL, inner plexiform layer; GA, geographic atrophy; GCL, ganglion
cell layer; INL, inner nuclear layer; IOP, intraocular pressure; IPL, inner plexiform layer; LDH, laser doppler holography;
ML, machine learning; NIR-OCT, near-infrared optical coherence tomography; NN, neural network; ONH, optic nerve
head; OCT, optical coherence tomography; OCT-A, optical coherence tomography angiography; ORG, optoretinogram;
POAG, primary open angle glaucoma; RGC, retinal ganglion cell(s); RNFL, retinal nerve fiber layer; ROP, retinopathy
of prematurity; RP, retinitis pigmentosa; RPE, retinal pigment epithelium; SD-OCT, spectral-domain optical coherence
tomography; SNR, signal-to-noise ratio; SS-OCT, swept-source optical coherence tomography; TD-OCT, time-domain
optical coherence tomography; VF, visual field(s); Vis-OCT, visible light optical coherence tomography.
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INTRODUCTION

No more than four decades ago, images of the eyes were limited
to just slit-lamp photographs, fundus photographs, fluorescein
angiography (FA), and ultrasounds. Since then, a tremendous
growth in technology has given birth to a plethora of techniques
to image the eye and has drastically transformed patient care.
The invention of optical coherence tomography (OCT) in 1991
was a breakthrough in the field of ophthalmology and has shifted
the way patients are managed. Several iterations of OCT are
currently utilized, and more are being investigated that would
allow researchers and clinicians to obtain a much more in-depth
insight into ocular diseases. More recently, evolutions in the field
of artificial intelligence (AI) and machine learning (ML), termed
by many the “fourth industrial revolution,” have been proved to
outperform human evaluations in several aspects, thus providing
potential as powerful supplementary tools to help physicians
in all aspects of ophthalmic care. The goal of this review is to
summarize major advances in the most important aspects of
eye imaging, describe novel emerging imaging techniques, and
evaluate their use in clinical settings. Hence, imaging modalities
widely used in clinical practice (OCT, fundus imaging) and
promising imaging techniques (AO) and analysis tools (AI) were
selected to be described in more detail.

OPTICAL COHERENCE TOMOGRAPHY

Optical coherence tomography was introduced in 1991 (1). It
is a non-contact and non-invasive technology that uses low-
coherence interferometry, in which a beam from a low coherence
interferometer is scanned by moving a reference arm that serves
as a reference for depth in the axial direction. In the eye,
backscattered light from retinal layers is detected sequentially
pixel by pixel to form a depth profile (A-scan) (2). Scanning this
beam in the transverse plane creates a B-scan, combining all the
acquired A-scans. This provides high resolution two-dimensional
images of tissue depth structure and can be applied to the entire
anatomy of the eye (retina, optic nerve, cornea, and angle). By
collecting a sequential series of B-scans, a three-dimensional
image can be produced, with volumetric information on the
tissue interrogated.

The first iteration of OCT was time-domain OCT (TD-
OCT), which interprets the location of the backscattered light
as described above. The image acquisition speed of TD-OCT is
constrained by the mechanics of the device; in the first TD-OCT
systems, a cross sectional image was acquired in roughly 190 s
(3). To address this limitation, high-sensitivity interferometric
receivers, optical fiber, and galvanometric beam steering devices
were implemented that resulted in an increase in scanning speed
(up to 100 A-scans/s), producing the first commercial OCT
device, launched in 1996 (4). Further developments in TD-OCT
allowed for a maximum speed of 400 A-scans/s (third-generation
TD-OCT) (3).

Ten years after the introduction of TD-OCT (2001), new
methods of signal acquisition were presented. Fourier-domain
OCT (FD-OCT) was the next generation of OCT imaging, with

the major changes being that the reference mirror remained fixed,
and the frequency spectrum of the reflected light was measured
simultaneously and transformed from the frequency to the time
domain using Fourier transform. These systems are divided
into spectral-domain OCT (SD-OCT) and swept-source OCT
(SS-OCT): for SD-OCT, the signals are separated by a grating
into different wavelengths, whereas, for SS-OCT (introduced in
2012), the light emitted from the laser source sweeps through
frequencies in sequence (3). The center wavelength of these
two techniques also differs: most commercial SD-OCT devices
use a center wavelength of 850-nm versus 1,050 nm of SS-
OCT; the longer wavelengths enable for better penetration
and thus improved imaging of deeper structures (5). These
implementations allowed for a tremendous increase in scan
acquisition speed of commercial devices, from 400 A-scans/s to
roughly 100,000 A-scans/s for SD-OCT and more than 200,000
A-scans/s for SS-OCT (5–7). Apart from the scanning speed,
these techniques also resulted in improved sensitivity and a
signal-to-noise ratio, overall better scan quality, and the ability
to perform 3-D imaging.

Optical coherence tomography has become standard in
ophthalmology, with multiple applications in diagnosis,
monitoring, and management of eye conditions across the board
(8). Major advances and implementations in OCT are discussed
in the following section, which provide novel and exciting
applications in the field of ophthalmic imaging.

Optical Coherence Tomography
Angiography
Optical coherence tomography angiography (OCT-A) utilizes the
motion of red blood cells within blood vessels to image vessels
and vascular flow. Commercially available devices developed in
2015 use different algorithms of signal decorrelation from 2 or
more repeated B-scans of the same region to display areas of
motion: AngioVue (OptoVue, Fremont, CA, United States) uses
split-spectrum amplitude-decorrelation angiography (SSADA),
whereas Cirrus AngioPlex and PLEX Elite (Zeiss, Dublin, CA,
United States) use an OCT-microangiography complex algorithm
that is a full-spectrum, complex number-based algorithm (9).
The benefits of OCT-A versus other vascular imaging modalities
(fluorescent angiography, indocyanine green angiography) are
the lack of extrinsic dye injection, leading to adverse effects,
and the ability to image vascular networks in different depths
(Figure 1). While dye-based angiography can reveal vessel
leakage, OCT-A cannot.

Scans acquired with OCT-A can be processed to improve
the signal-to-noise ratio (SNR) and display very small vessels
more accurately. Denoising methods, such as Gaussian filter (10),
compressive sensing (11–20), and Bayesian estimation (11, 21),
can suppress noise while maintaining vasculature information.
Filters that focus on the specific structure of vessels are also
applied, such as Frangi filter (22, 23), Gabor wavelets, and Fuzzy-
C-Means Classification (24). Quality limiting factors with OCT-
A imaging are the presence of artifacts (projection, motion),
visibility of vessels dependent on the rate of blood flow and scan
speed, and low output image contrast (25, 26).
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FIGURE 1 | Optical coherence tomography angiography (OCT-A) fields of
view and segmentation layers (Angiovue). The normal left eye of a 56-year-old
Caucasian man using the Angiovue optical coherence tomography
angiography (OCTA) software of the RTVue XR Avanti (Optovue, Inc., Fremont,
CA, United States). (A) Full-thickness (internal limiting membrane to Bruch’s
membrane) 3 mm × 3 mm OCT angiogram. (B) Full-thickness 6 mm × 6 mm
OCT angiogram. (C) Full-thickness 8 mm × 8 mm OCT angiogram. (D)
Fluorescein angiography cropped to approximately 8 mm × 8 mm or 30
degrees demonstrates a less capillary detail than (A–C). (E) 3 mm × 3 mm
OCT angiogram of the “Superficial” inner retina. (F) 3 mm × 3 mm OCT
angiogram of the “Deep” inner retina. (G) 3 mm × 3 mm OCT angiogram of
the outer retina shows absence of vasculature. The white represents noise.
(H) 3 mm × 3 mm OCT angiogram of the choriocapillaris is generally
homogenous. There is black shadowing from retinal vessels. (I) Enface
intensity OCT image. (J) Highly sampled OCT b-scan image. This figure was
reprinted from de Carlo et al. (507) with permission.

The OCT-A can be utilized for conditions involving vascular
damage or choroidal neovascularization (CNV) (25). Apart from
allowing the subjective identification of vascular abnormalities,
OCT-A can also provide quantitative data (vessel density, blood
flow, and foveal avascular zone size) that could be employed as
vascular biomarkers (27–32).

Diabetic retinopathy (DR) is a disease affecting, among
other tissues, the retinal microvasculature (33, 34). It is the
leading cause of blindness in the middle-aged and elderly
population (35). Early in the disease process, deeper retinal
capillary plexuses are primarily affected (36–40). OCT-A can
detect both microaneurysms (the hallmark of early DR) and
neovascularization (in proliferative disease) in various depths (25,
38, 41–44). Being non-invasive and high resolution, OCT-A can
be used for early diagnosis and possible screening of DR when
compared to fluorescein angiography (FA) (3, 45). Ong et al.
and Russell et al. have proposed new models for DR staging and
progression based on OCT-A findings (46, 47).

In the setting of age-related macular degeneration (AMD),
OCT-A can detect impaired blood flow at sites of drusen or
pseudodrusen (48, 49) and geographic atrophy (GA) (50–52)
with high reproducibility when compared to SD-OCT (53). It can
also identify CNV (sensitivity, 81% and specificity, ≥93%) with
more detail and better contrast than FA (54–64).

In glaucoma, various studies have demonstrated reduced
blood flow and blood vessel density at the level of the optic
nerve head (ONH) and peripapillary area (65–72). OCT-A scans
from macular and ONH scans in glaucoma have been shown to
display good reproducibility, which supports the use of OCT-A
longitudinally as well (73). Vessel density parameters have also
been associated with visual field progression (74, 75).

For other conditions, Zhu et al. have recently proposed
that OCT-A metrics can be used to assess and detect myopia
development in adolescents (76).

A limitation of OCT-A compared to other vessel imaging
techniques is the limited area visualized. Kawai et al. have
proposed the introduction of a front prism that would generate
ultra-wide field panoramic images and allow imaging of the
peripheral chorioretinal vessels, while applying image averaging
to correct for the drop-off in image quality (77, 78). Miao
et al. also introduced the use of megahertz-rate OCT-A as
a faster imaging technique that also yields better contrast
images (79). Post-processing methods (angiogram subtraction,
distortion correction) and eye tracking during scan acquisition
have also significantly improved the scan quality and reduced
artifacts (80–86). Furthermore, new types of software have been
developed to automate the analysis of OCT-A images; Viekash
et al. have also established software to automatically quantify the
foveal avascular zone, a region affected by various ocular diseases
(87), while tools have been constructed to automatically process,
segment, and quantitatively analyze the blood vessels (88–90).

Visible Light Optical Coherence
Tomography
Vis-OCT, first reported by Povazay and coauthors in 2002 (91),
has been developed most intensively in the last decade. It relies
on light sources from the visible spectrum (555–800 nm), which
provides a better axial resolution than typical OCT devices
that use near-infrared (NIR) illumination (1.2–1.4 µm versus
1.7–7.5 µm, respectively) (92–96). Other benefits of Vis-OCT
include a smaller bandwidth to achieve the same resolution,
leading to easier dispersion compensation, and higher image
contrast due to higher scattering coefficients (97). One of the
advantages of Vis-OCT is the ability to measure oximetry in
blood vessels. Blood, which contains oxyhemoglobin (HbO2) or
deoxyhemoglobin (Hb), exhibits more contrast at the isosbestic
point in the wavelengths of Vis-OCT than in the NIR. Combining
this property with simultaneous measurement of the blood flow
rate using Doppler OCT methods, many metabolic parameters of
retinal circulation can be extracted, such as O2 saturation (sO2),
O2 extraction fraction, total retinal O2 delivery, and the metabolic
rate; Vis-OCT has been validated and is superior to NIR-OCT for
these parameters (97–103).

Vis-OCT has been widely studied in disease models in animals
and is now transitioning to clinical practice. Rodents with DR and
retinopathy of prematurity (ROP) have been studied using Vis-
OCT, and metabolic changes in both conditions were apparent
before structural changes (103–105). The first use on humans was
performed by Yi et al. on a single healthy subject, with Vis-OCT
displaying increased contrast of the inner (the retinal nerve fiber
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layer – RNFL) and outer (a photoreceptor inner/outer segment, a
retinal pigment epithelial layer, Bruch’s membrane) retinal layers
compared to NIR-OCT (106). Vis-OCT has since been used for
calculating metabolic parameters with upgraded light sources,
decreased noise, and great axial resolution (96). Shu et al. also
developed a Vis-OCT platform than can be used for humans
and demonstrated it successfully in conditions such as retinal
occlusive diseases and DR (107). Given its ability to provide
metabolic information about oxygenation and circulation, and
its advantages of retinal layer imaging over NIR-OCT, Vis-OCT
might be a better imaging candidate for conditions affecting
these cell layers, for example, the RNFL, inner plexiform layer
(IPL), and inner nuclear layer (INL) in glaucoma or the outer
retinal layers and retinal pigment epithelium (RPE) in AMD.
Its ability to provide metabolic information about oxygenation
and circulation, contributors to retinal and optic nerve diseases,
reinforces this point.

Vis-OCT has continued to develop. Registration and averaging
of multiple volumes have allowed the visualization of single
cells, and the concept of Vis-OCT fibergraphy (Vis-OCTF)
of imaging-specific retinal ganglion cell (RGC) axon bundles
has been introduced in animal models (108–110). Ultrahigh
resolution Vis-OCT (UHR Vis-OCT) is capable of imaging
sublayers within retinal layers, such as the IPL (Figure 2),
and improvements in the axial resolution have also been made
using rapid spectral shaping, axial tracking, and in vivo spatially
dependent numerical dispersion compensation (111–113). Zhang
et al. have also developed a circumlimbal scanning method to
image the anterior segment, capable of visualizing the Schlemm
canal and the limbal microvascular network (114). In addition,
Wang et al. have recently devised a dual-channel system with

both Vis-OCT and NIR-OCT-A capable of simultaneous retinal
imaging and metabolic measurement acquisition; the use of
a fiber-based dual channel Vis- and NIR-OCT to image the
human retina was first reported by Song et al. (115, 116). In a
clinical setting, this dual channel system was initially reported to
quantify RNFL spectroscopic markers in glaucomatous subjects
and glaucoma suspects, which were correlated with disease
severity (117). A combination of both Vis-OCT and OCT-
A (Vis-OCT-A) has also been reported by Song et al., with
narrow bandwidth spectrometers, optimized image protocols,
and improved acquisition speed (100,000 A-scans/s) (118).

Handheld Optical Coherence
Tomography
In a typical OCT imaging session, the patient sits upright
with the head stabilized with a chin rest and headrest. The
use of portable or handheld OCT is indicated in cases where
this positioning is not possible. Populations included in this
category are bedridden or postoperative patients, the pediatric
population and cases where access to health care is limited or
difficult. Portable HH-OCT would potentially offer an easier-to-
use and less-expensive alternative to current commercial OCT
devices. Chen et al. displayed that measurements from HH-
OCT have good repeatability and reproducibility of both axial
and transverse measurements when compared to Heidelberg
Spectralis (119).

The HH-OCT is widely used nowadays for pediatric ocular
conditions. HH-OCT/OCT-A systems can reliably visualize
and measure vitreous opacities and bands, perifoveal vessels,
the macular shape, anterior chamber features, retinal tumors,

FIGURE 2 | Inner plexiform layer (IPL) sublayer visualization with Vis-OCT. (A) A speckle-reduced vis-OCT image from a healthy eye. A horizontal bar: 500 µ m; a
vertical bar: 50 µ m. (B) A magnified view of the region highlighted by the dashed box in (A) (15 srA-lines segments). (C) A depth-resolved OCT amplitude profile of
the IPL sublayers. We averaged 15 srA-lines, corresponding to approximately 88 µ m along the lateral direction within the highlighted region in (A). (D) Illustration of
the lamination of ganglion cells from RNFL to the IPL. The “red” ganglion cells (ON center) are laminating dendrites to the “b” sublamella of the IPL whereas “blue”
cells (OFF center) laminate to the “a” sublamella. The “green” ganglion cell is bi-laminating. (E) A speckle-reduced vis-OCT image from a glaucoma eye. (F) A
magnified view of the region highlighted by the dashed box in (E). (G) A depth-resolved line profile of the glaucoma eye IPL sublayers. This figure was reprinted from
Ghassabi et al. (113) with permission under a Creative Commons Attribution 4.0 International License.
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and ganglion cell complex (GCC)/IPL/RNFL thickness in
both premature and full-term infants (120–130). Hence, they
are useful in conditions, such as congenital and pediatric
glaucoma, macular edema, macular hole, epiretinal membrane,
retinoschisis, retinal dystrophies, and other conditions (128, 129,
131–133). Some measurements obtained, mostly from the fovea,
could potentially be used to screen for conditions like ROP
(132). HH-OCT-A in specific is extremely useful in cases of
CNV in children, such as ROP, retinal dystrophies, inflammatory
disorders, trauma or cases of unexplained visual loss (134–136).
Ocular measurements, specifically RNFL thickness, have been
shown to be associated with systemic health conditions in infants
(low birth weight, sepsis, and necrotizing enterocolitis) (137).

The approaches to making OCT devices more mobile
are promising. HH-OCT probes have been developed and
are currently used in animal experimental models (Leica,
Heidelberg); this allows for transportation of the device, although
the probes are tied to bulky mobile carts (138, 139). Smaller
versions of OCT machines have also been achieved that offer
comparable results to bench-top OCT devices, with some offering
en face reflectance, OCT-A volumes, combination with SLO
and supine imaging (140–148). Handheld SS-OCT devices have
also been created, containing ultrahigh speed and averaging
capabilities (Lu et al.) or capable of imaging both the anterior
and posterior segments in quick succession (Nankivil et al.) (149,
150). Ni et al. have recently proposed models for high-speed
scanning (the HH-SS-OCT model using a 400 kHz VCSEL light
source, scanning speed, 1,720 MHz; volume acquisition time,
1.875 s) and an increased field of view scanning to 105 degrees
(Figure 3) (151, 152).

Intraoperative Optical Coherence
Tomography
Intraoperative OCT (I-OCT) can aid surgeons by providing a
live imaging feedback during surgery. The devices currently used

FIGURE 3 | High-speed and widefield handheld SS-OCT-A with a VCSEL light
source. (A) A photograph of the front of fully assembled handheld OCTA
system in a portable cart. (B) A photograph of the handheld probe. This figure
was reprinted from Ni et al. (151) with permission.

for I-OCT are either handheld or integrated in microscopes
or probes (153). HH-OCT in this setting is best utilized when
mounted onto the surgical microscope to improve stability
and precise movement. The images obtained with that method
are fast, accurate, and reproducible; drawbacks include pausing
the surgery for image acquisition and potential requirement of
technician assistance (154). I-OCT integrated within the surgical
microscope partially resolves these issues, as it can be used
without pausing the operation or additional specialized technical
support; additionally, there are opportunities to enhance I-OCT
with decision-making algorithms and high-tech instrumentation
(e.g., heads-up display) (155). An advanced technique is
implementation of OCT scanners in ophthalmic probes, creating
an instrument for intraocular use, especially for vitreoretinal
surgery (156).

The I-OCT can provide insight into diagnosis and surgical
planning, optimal outcome confirmation, complication
prevention and control, prognosis, and education. Ehlers
et al. in two studies (PIONEER and DISCOVER) reported that
I-OCT findings can affect surgical decision-making in 29–68% of
select surgery types (154, 157). For epiretinal membrane peeling,
I-OCT can precisely locate the margins of the membrane, dictate
the best start and end points for peeling, and confirm successful
peels without further complications (a point of disagreement
between subjective observation and I-OCT) (154, 157–160). In
macular hole repairs, I-OCT can confirm the release of traction,
effectiveness of the tamponade or flap and hole closure; on
the latter, Kumar et al. recognized residual tissue at the hole
edge (a “hole-door” sign) as an imaging factor predicting the
rate of hole closure (161–166). Recently, Cehajic-Kapetanovic
et al. have reported to be the first group using I-OCT to guide
a robot-assisted drug delivery during vitreoretinal surgery; in
that context, I-OCT can be used to guide all kinds of retinal and
subretinal treatments, including highly promising gene therapies
for retinal conditions (167–169).

In surgeries of the anterior segment, the ease of imaging
of the cornea makes it an attractive I-OCT target (153). For
deep lamellar anterior keratoplasty (DALK), where the corneal
stroma is dissected, I-OCT allows the surgeon to evaluate
the depth of the dissection, make on-the-spot adjustments,
and confirm layer separation and integrity of Descemet’s
membrane (153, 170–173). Implementations of I-OCT in
DALK have been shown to lead to successful outcomes
(171, 174, 175). Posterior corneal procedures like Descemet
stripping (automated) endothelial keratoplasty (DSEK/DSAEK)
and Descemet membrane endothelial keratoplasty (DMEK) can
also benefit from the use of I-OCT. The handling, unfolding,
and positioning of the graft can be performed more quickly and
definitively with simultaneous I-OCT, which can also verify its
correct orientation (176–181). Apart from this, fluid between the
cornea and the graft (interface fluid) and areas of graft non-
adherence or folds can be assessed and addressed (176, 182–184).
In the setting of cataract extraction surgery, I-OCT could be
beneficial for identifying and handling complications, confirming
adequate placement of the lens and further improve the accuracy
of refractive calculations and aid in the development of future
lens designs (153, 185–187).
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Whole-Eye Optical Coherence
Tomography
Different parts of the eye require imaging configurations specific
to the area examined (anterior segment versus retina), mainly
due to different natural properties. For anterior segment,
imaging light has to pass only through the air to the tissue
of interest versus the refractive structures (cornea and lens)
for retinal imaging. The scan depth using standard OCT is
typically about 2 mm, well below the typical axial length
of the eye (188). Whole-eye OCT offers the opportunity to
acquire a view of the eye from anterior to posterior segments
with a single scan.

Multiple approaches have been implemented for that goal.
Commercial systems (Heidelberg Spectralis, OptovueiVue, Leica
Bioptigen C-series) are able to scan 2 areas in sequence by
changing the scan configurations, for example, the reference
arm length. In addition, changing the imaging optics (by
adding lenses or using an adjustable lens) or alternating the
volume frames helps decrease the differences of the structures
imaged (150, 189–191). The main drawback of switching scan
configurations is the time gap for changing the settings. Recently,
Luo et al. have demonstrated an SS-OCT prototype that utilizes
a single source and a single detection channel for sequential
imaging (192).

Newer approaches of whole-eye OCT aim to capture images
of all structures at the same time and be true whole-
eye scanners. Approaches include the use of 2 practically
separate subsystems (the first for anterior segment and the
second for retina) or a single system with either one or two
different imaging depths (193–196). The latter is the most
advanced method, with the dual-depth polarization system
focusing on both structures at the same time, using either
one or two interferometers (197, 198). Its big advantage
is the focusing of each area while also achieving standard
fields of view greater than 24 degrees to image both the
macula and the ONH.

In clinical application, whole-eye OCT can provide biometric
data for the entire eye (axial length and lens thickness); this,
along with information about possible retinal comorbidities
and/or microstructural lenticular changes (for example, posterior
capsule integrity), can be useful in planning of refractive
or cataract surgeries (199–202). Following cataract extraction
surgery, it can also verify correct lens positioning and capsule
integrity (202, 203). Moreover, visualization of the entire eye
could be relevant to patients with high myopia and potentially
provide insight into possible causes of pathologic myopia. In
certain conditions involving multiple ocular structures, such as
the anterior chamber angle and the RNFL in glaucoma, whole-eye
OCT could provide data for multiple regions of interest (204).

Anterior Segment Optical Coherence
Tomography
The interest of imaging the anterior segment became apparent
soon after OCT’s introduction in 1991. A decade and a half
later, OCT systems designed specifically for that purpose were
developed that utilized TD-OCT [Visante (Carl Zeiss Meditec,

Dublin, CA, United States; 2005), Slit-Lamp OCT (Heidelberg
Engineering GmbH, Heidelberg, Germany; 2006)] or SS-OCT
[Casia SS OCT (Tomey, Nagoya, Japan); 2008] and were able to
image the entire anterior segment.

The AS-OCT can be a tool in diagnosing conditions involving
the anterior segment. A common condition is dry eye disease
(DED), in which diagnosis can be a challenge due to poor
association of corneal findings and actual symptoms (205).
AS-OCT can measure the precorneal tear film thickness and
individual tear film layers (lipid and aqueous) and the tear
meniscus (area, height, depth, and radius) (Figure 4); these
parameters correlate with objective corneal findings, subjective
symptoms, and other tests used in DED (such as the Schirmer
test) or can be used to evaluate treatment response and
monitoring (206–214). For other corneal pathologies, AS-OCT
can also be an aid in diagnosing various types of keratitides
(fungal, viral, bacterial, and parasitic), ocular surface neoplasias,
corneal edema, corneal dystrophies, differentiate pterygium from
pseudopterygium and assessing keratoconus morphology (95,
215–223).

A special utilization of AS-OCT is in the setting of
glaucoma research. Elevated intraocular pressure (IOP) in
primary open angle glaucoma (POAG) is due to increased
resistance in the aqueous outflow system, and AS-OCT can
be used for evaluation and for better understanding of the
pathophysiology. In POAG, the decreased Schlemm canal
cross-sectional area has been reported compared to healthy
subjects (224, 225). AS-OCT can also visualize the anterior
chamber angle qualitatively and quantitatively (angle opening
distance, angle recess area, and trabecular-iris space area), with
these findings correlating well with ultrasound biomicroscopy
(226, 227). Baskaran et al. reported the correlation of angle
closure on AS-OCT and gonioscopic angle closure (228).
Risk factors for angle closure can be identified using AS-
OCT, such as iris thickness/area, anterior chamber width, lens
vault, and anterior chamber area/volume (229–231). Further
AS-OCT advances would allow better understanding of the
inciting events of angle closure glaucoma. The response of
the trabecular meshwork to elevated IOP can be visualized
and quantified (232). In the laboratory, using automated
software, a 3D reconstruction of the entire SC and collector
channels is now possible; changes in these structures can
help in guiding glaucoma surgeries and predict or monitor
IOP-lowering treatment success (both medical and surgical)
(233–237). Ruggeri et al. have recently combined AS-OCT
with a wavefront-based aberrometer, which was capable of
using the OCT beam to acquire refractive error measurements
and allow for simultaneous imaging, autorefraction, and
biometry (238).

Recent advances in the field of OCT have also been applied
to modern AS-OCT, namely, increased scanning speeds (up to 2
million A-scans/s), greater depth, and improved axial resolution
(up to 1 µm) (239–246). These have allowed the imaging of
most structures of the anterior segment, including all the corneal
layers and the precorneal tear film, the outflow system (trabecular
meshwork, Schlemm canal, collector channels, and scleral veins),
and the anterior chamber angle (247–250).
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FIGURE 4 | Assessment of tear meniscus using UHR-OCT. Automatic segmentation of the lower tear meniscus in a healthy subject. Calculated parameters
(represented in yellow) are (A) the tear meniscus area, (B) height, (C) depth, and (D) radius of curvature. Green crosses represent the points used for the estimation
of the radius of curvature. The yellow arrows indicate mirror artifacts of the true upper meniscus boundary due to internal reflectors in the optical setup of the system.
This figure was reprinted from Stegmann et al. (209) with permission.

Full-Field Optical Coherence
Tomography
In FF-OCT, a light emitting diode is used to illuminate the entire
scanning field simultaneously, which captures images orthogonal
to the optical axis (en face) and avoids transverse scanning (251).
Challenges to FF-OCT include eye movements and difficulties
matching of the length of the optical path; cameras with high
acquisition speeds and combinations with TD-OCT and FD-
OCT aim to resolve these issues. Although time-domain FF-OCT
(TD-FF-OCT) is possible, its slow volumetric capture capability
limits is use (252). Fourier-domain FF-OCT (FD-FF-OCT), on
the other hand, can capture 3D volumes of the cornea and retina
with scanning speeds reaching 38.6 MHz (253). The single phase
of FD-FF-OCT across the entire field does not introduce motion
artifacts seen between A-scans in conventional OCT and allows
for the use of higher scanning power, leading to fewer aberrations
and less signal loss (252, 254).

The FF-OCT can be used to image and study structures
of the anterior segment. Mazlin et al. presented the first
FD-FF-OCT system capable of corneal imaging the corneal
epithelium, stroma, and endothelium (255). The same team
later created a system, combining FF-OCT with SD-OCT

capable of cellular level imaging of the entire ocular surface
(256). Using a common path (NIR light-emitting diode),
the SD-OCT arm was used to track axial and lateral eye
movements and adjust the optical arm lengths of the FF-
OCT accordingly. This allowed for in vivo detailed imaging
of all the corneal layers, sometimes even to the cellular level
(superficial epithelium and stromal keratinocytes), including
nerve plexuses. Apart from the cornea, quantitative parameters
from structures, such as the tear film (tear flow velocity, amount
of particulate matter, and evaporation time after blinking)
and the corneal limbus (blood vessel morphology, blood
flow velocity, and blood flow direction), were also measured.
These can be useful for research studies of relevant anterior
segment pathologies (DED, anterior chamber inflammation, and
conditions leading to scarring). This approach is comparable
to confocal microscopy, as it images the same corneal
microscopic features much faster, in a non-contact manner
and from a broader (nine times larger) field of view,
with high axial resolution and without the requirement of
fluorescein administration. These features make FF-OCT an
excellent candidate for in vivo histological studies without
sample preparation.
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A similar approach with combination of FF-OCT and SD-
OCT has been used for retinal imaging. A device using that
principle was presented by Xiao et al., which was able to image
the RNFL and photoreceptor layer in great detail (orientation
of nerve fibers and cone photoreceptor mosaic, respectively)
(257). These images were comparable to AO-OCT commercial
devices (discussed below in greater detail), although the SNR
was lower in the photoreceptor layer and not adequate to
image other retinal layers, such as the ganglion cell layer and
RPE; visualization of layers also required averaging of multiple
images after acquisition. Other teams have also succeeded in
imaging the photoreceptor layer with FF-OCT (258). For remote
retinal scanning with FF-OCT, von der Burchard et al. have
also proposed a low-cost device, which patients can use to
examine themselves and monitor disease progression from their
homes (259).

ADAPTIVE OPTICS

By using wavefront technology first utilized in astronomy
and defense systems, adaptive optics (AO) systems have
been implemented in ophthalmology with the goal of
correcting for ocular anatomical and physiological higher
order (optical/wavefront) aberrations (cornea, lens, and pupil),
which cannot be corrected by glasses, contact lenses or refractive
surgery (260). As a result, AO vastly improves the transverse
(lateral) resolution as well as the speckle width and increases
the SNR via imaging through a larger pupil, allowing more light
to enter the eye. Further improvements in the lateral resolution
have also been made by the addition of mirrors and error budget
analyses (261–264). AO has so far been implemented in multiple
imaging modalities, such as OCT (AO-OCT), scanning laser
ophthalmoscopy (AO-SLO), and two-photon ophthalmoscopy
(AO-TPO) (265, 266).

The improved lateral resolution of AO systems has enabled
the visualization of single cells within the retina (Figure 5). By
combining this feature with the high axial resolution of OCT, a
resolution voxel smaller than most retinal cells is acquired: the
lateral resolution achieved (2–3 µm) is about 5 times higher and
overall resolution 36 times greater than commercial OCT (267–
272). The big advantage, therefore, of AO is the ability to track
cellular changes over time either for studying disease processes
or monitoring treatment responses, both of which could be very
useful clinical applications.

Cone photoreceptors are the cells most widely studied
using both AO-OCT and AO-SLO. Anatomically, they
have been shown to possess a wide range of reflectance
properties, and their major components (inner segment, outer
segment, somas, and axons) can be visualized, with results
corresponding to histology. They can also be functionally
distinguished by their light sensitivity in different types
(short, medium, and long wavelengths). Photoreceptors are
normally organized in a lattice hexagonal pattern in the retina,
and their architecture can be extracted by semi-automated
segmentation methods (273, 274). After identification, mapping
the structure formation (Voronoi analysis) allows for descriptive

quantitative measurements (cone density, cone spacing, and
mosaic regularity), which can be utilized with good inter-
device reproducibility (2.5–6.9%) as biomarkers or used
to construct normative databases for research or clinical
practice (Figure 6) (275–278). The calculation of functional
biomarkers (cone reflectance) is also possible (279). Rods are
more difficult to visualize than cones since they have a smaller
diameter (especially peripherally), different refractive indices,
and greater interference with the RPE (280). Despite these
drawbacks, AO-SLO studies using improved AO systems have
demonstrated visualization of rods in both normal and diseased
subjects (281).

Imaging of several retinal cell types is possible with AO.
These include individual RNFL bundles and sublayers of the
ONL, which has been shown to consist of two distinct sublayers
(somas and axons) (262, 269). These are mostly visible with
AO-OCT, since the limited axial resolution of AO-SLO cannot
easily image the transparent, multi-cell thick inner layers (280).
Confocal AO-SLO, in which light is focused on a single spot
and the backscattered light is refocused on a confocal aperture,
is capable of imaging some of these structures (photoreceptor
segments and nerve fibers), as well as blood vessels and the
lamina cribrosa (282). AO-SLO-FA can also capture blood flow
and detect vascular leaks. Other non-confocal detection modes
(offset aperture, dark-field, split-detection, and offset pinhole)
and the implementation of multi-volume averaging have also
been implemented in order to visualize the ganglion cells and
RPE (277, 283–285).

These features allow a detailed study of the retina and
its cellular microstructure both in normal eyes and in ocular
pathologies, making AO a useful adjunct to other OCT imaging
technologies. In AMD, retinal layer and RPE changes can
be monitored in areas of drusen/pseudodrusen or GA (286).
Panorgias et al. have demonstrated both losses in reflectivity
between the photoreceptor inner and outer segments in areas of
GA (287). This could be extremely helpful in determining the
progression of events in AMD and determining which tissues are
affected first during the disease onset (277, 288).

Decreased cone density in areas of RNFL thinning was
also displayed in glaucoma and other neuropathies (289, 290).
Multiple groups have demonstrated that RNFL bundles are lost
in areas of scotomas in glaucoma, and that the polarization
properties change in the disease course (270, 271, 291). The
increased transverse resolution of AO-OCT can also be utilized
to better visualize the microstructure of the lamina cribrosa in
glaucoma, a site of early damage, and, therefore, aid in earlier
diagnosis (291).

The 3D representation of retinal microvasculature with AO-
OCT can also make it a valuable tool in the assessment
of DR, especially in combination with OCT-A, for study of
microaneurysms, vessel tortuosity, and capillary dropout (270,
292–295). Decreased cone density has also been reported to be
10% lower in DR, which could suggest a method for earlier
detection (296).

Finally, the cellular identification of either AO-OCT
or AO-SLO can be used to study disease mechanisms of
inherited color defects and monitor treatment response
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FIGURE 5 | Adaptive optics optical coherence tomography (AO-OCT) volume image of the outer retina of a 52-year-old normal subject. Ten en face (C-scan) images
are shown selected from the volume and color-coded by depth in the outer retina, as denoted in the cross-sectional slice (B-scan) on the left. Each C-scan image is
normalized to itself and presented on a log intensity scale. The AO-OCT volume image is an average of approximately 2,200 registered volumes that were acquired
at 3.7◦ temporal to the fovea. AO-OCT, adaptive optics optical coherence tomography; COST, cone outer segment tip; ELM, external limiting membrane; INL, inner
nuclear layer; IS, inner segment; IS/OS, inner segment/outer segment junction; ONL, outer nuclear layer; OPL, outer plexiform layer; OS, outer segment; ROST, rod
outer segment tip; RPE, retinal pigment epithelium. This figure was reprinted from Miller et al. (262) with permission.

in stem cell transplantation therapies for said retinal
diseases or central serous chorioretinopathy (280, 297,
298). For treatment of retinitis pigmentosa specifically,
multiple AO modalities (AO-OCT and AO-SLO) can

be used to stage the disease based on individual cell
health, assess visual function from the cellular structure,
and select candidates that could benefit from treatment
(299, 300).
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FIGURE 6 | Voronoi analysis of photoreceptors from AO-OCT. An original AO-OCT image taken at ∼6.5◦ retinal eccentricity is displayed in (A), and the center of the
cones (magenta) and the Voronoi map (green) is overlaid onto the image in (B). In (C), the Voronoi cells are shaded based on the number of neighbors, and, in (D),
the cells are shaded based on their area. A scale bar, 50 µ m. This figure was reprinted from Heisler et al. (508) with permission.

The application of AO-OCT in routine clinical settings is still
challenging, mostly due to high cost, size, and complexity of
the devices, time-consuming image acquisition and analysis, a
limited scan area (generally no larger than 200 µm × 200 µm
transversely), data size, and the lack of established normative
databases (280). Some additional limitations are particularly
present with specific populations who would benefit from AO
applications, for example, unstable fixation in young children

with inherited retinal dystrophies. For these reasons, AO-SLO
and AO-OCT remain primarily research tools but are applicable
to a number of ongoing clinical trials (301).

Despite these challenges, there have been developments
over the last few years in the AO systems. Reumueller
et al. have recently though developed AO-OCT prototypes
that are promising and can be applied in patients with the
aforementioned pathologies (302, 303). Improvements over
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the standard AO-SD-OCT, such as point-scanning sensorless
SD-OCT, computational AO, and line-scanning SD-OCT, are
currently being investigated (277, 304, 305). The acquisition
speed of images has been improved by various groups up to 1
million A-lines/s, the fastest retinal SD-OCT at the time, while the
implementation of AO in SS-OCT systems allows for even higher
speeds (262, 269, 291, 306–308). The increased scanning speeds
have aided in resolving the issue of motion artifacts, an issue also
addressed by means of active retinal tracking (integration of AO-
SLO with wide field or tracking SLO) and registration of multiple
scans (306, 309–314). The registration and image averaging of
scans also allows for temporal tracing of cellular processes in
time and improves the SNR and contrast, which make individual
cells more apparent; examples include better visualization of the
RPE, RGC somas, IPL bands, and hyalocytes on the internal
limiting membrane (ILM) (262, 285, 315–319). These cellular
parameters are attractive, as they can be used as biomarkers
for screening or longitudinal follow-up. As an example, AO-
SLO can detect cell destruction in retinal degenerations before
the onset of symptoms, which would allow the formation of
therapeutic clinical trials, while vision is still salvageable in these
patients (280, 320). At the same time, improvements in the
axial resolution of OCT devices via increasing the bandwidth
of imaging sources (greater than 100 nm) have allowed the
development of AO ultra-high-resolution OCT (AO-UHR-OCT)
(267). Pandiyan et al. implement techniques (increased source
bandwidth, improved Nyqyist sampling, increased illumination
beam size at the pupil, spherical mirror-based telescopes instead
of lens-based telescopes, optimized design software and tools)
that improve the resolution of both structure and function,
achieving visualization of both individual foveal rods/cones in en
face projections and RGCs; this has also been achieved by other
groups (321, 322).

Phase-Sensitive Optical Coherence
Tomography and Optoretinogram
The AO has the potential to capture images of single cells
from a snapshot in time. Assessment of the temporal function
is also possible through the development of phase-sensitive
OCT. It is known that the reflectivity of retinal cells, caused
by photoisomerization of pigment chromophores, can vary after
application of visual stimuli (optical phase changes) (323).
Measurement of these changes is possible with either OCT, hence
the term “phase-sensitive OCT” (324). This is the foundational
basis of the optoretinogram (ORG), which allows recording
of responses to visual stimulation. The ability to detect the
function of individual photoreceptors would allow detection
of retinal dysfunction in a microscopic scale. As opposed to
OCT assessment, where the result is binarized (alive versus
lost photoreceptors), ORGs provide a spectrum of function and
identify cells that could be salvaged (280).

The implementation of ORG in a clinical setting still has
some drawbacks. Studies, so far, have only focused on healthy
individuals or patients without severe conditions, whose imaging
might pose challenges, such as poor fixation, pathologies
hindering image quality, and long periods of dark adaptation

not easily tolerable. Furthermore, even after image acquisition,
processing of these images is hours long. Despite these difficulties,
ORG can potentially be implemented in other devices currently
used (SLO and AO-SLO, OCT/OCT-A and AO-OCT) with
minimal additions (a stimulus channel and appropriate software)
to provide a functional component to structural measurements.

ARTIFICIAL INTELLIGENCE AND
INTEGRATED MACHINE LEARNING

The implementation of AI in the field of ophthalmology has been
a revelation. Ophthalmology offers a great basis for AI to grow
and be utilized, owing to the combination of data availability
for highly prevalent conditions (glaucoma, AMD, and DR),
which are always rising as the population ages, developments in
teleophthalmology, and the reliance of these conditions on low-
cost, easily performed images (predominantly fundus images and
OCT) (325). AI strives to solve some major obstacles in many
aspects of eye care: It can provide valuable feedback for diagnosis,
monitoring and follow-up, correct treatment decisions, and
prediction of disease course. These benefits are especially relevant
to conditions requiring highly specialized care by experts; its use
by comprehensive ophthalmologists can provide a highly reliable
solution to difficult specialist access, further hindered by the
impact of the ongoing pandemic. These obstacles impact specific
populations more than others, and broader access to eye care can
help unveil true racial variations otherwise attributed to merely
genetic differences. Improving medical decisions can also lead to
lower eye care cost since the cost of specialist access, referrals, and
treatment of advanced eye conditions is very high. As a result,
apart from the medical benefits, the implementation of AI also
has a strong social aspect, as it could provide solutions to health,
clinical, racial, and financial equity.

The utilization of AI in ophthalmic imaging requires the
cooperation of a variety of healthcare professionals, including
but not limited to physicians, patients, researchers, government
officials, and pharmaceutical and imaging device companies.
With the collective goal of improving patient care and fostering
equity as mentioned above, and with the potential of AI
to substantially transform the management of patients, the
Collaborative Community on Ophthalmic Imaging (CCOI) was
founded in 2019. Experienced experts of the CCOI operate under
the values of teamwork, transparency, innovation, and efficiency
in a patient-centered approach, strive to resolve any potential
issues in eye imaging, and establish the best strategies for the
practical use of software in ophthalmology in a way that respects
the basic principles of bioethics (325–328).

The Principles of Artificial Intelligence
The foundation of AI is the completion of tasks by computers
through mimicking human (natural) intelligence and cognitive
functions. Brain neurons receive signals (input), process that
information, and generate results (outputs); these neurons are
connected and form networks (neural networks – NNs) capable
of complex calculations. These calculations are not static, as the
brain can learn from previous data and experience. AI replicates
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that approach using computer networks, a process referred to
as machine learning (ML); inputs are provided to computer
models that process them under sets of parameters and give
outputs (329). The caveat in that process, which is the basis of
supervised learning (SL), is that the real outputs are provided
and, accordingly, the model learns to adjust these parameters
(training) to calculate the outputs as accurately as possible. Over
the past decade, the vast increase in data availability, computer
hardware improvement (mostly graphics processing units –
GPUs), and the theoretical improvements in NNs have led to an
exponential growth of AI.

There are multiple approaches to AI network arrangements,
and AI models range from very simple to highly complex. The
most simple form of SL is linear regression, where multiple inputs
are given to a model that then best adjusts the parameters of
each input to provide the most accurate result (330). Logistic
regression is an algorithm that adds a sigmoid function to linear
regression and displays these results in a probabilistic format
(values between 0 and 1) (330). Taking this approach a step
further, whereas linear regression tests inputs independently of
each other, non-linear regression has the ability to examine
interactions between inputs and outputs in several layers (known
as multilayer perceptrons), and this is the concept of feed
forward neural networks (FFNNs) (330). As the algorithm
processes many relationships in several layers, the NN can learn
these associations, hence the name deep learning (DL) (331).
The metrics of performance for these algorithms are the area
under the curve (AUC) in the receiver-operator curve (ROC),
sensitivity, specificity, and accuracy.

Specifically in ophthalmology and imaging, NNs have been
fine-tuned to process imaging data and are called convolutional
NNs (CNNs) (331). Convolution is a mathematical operation that
applies filters to images (matrix of parameters) to produce image
outputs with different channels (features), whose parameters are
continuously tested; this process can be repeated in sequences
and actually constructs an FFNN. Inputs can be images in
either two- or three-dimensional slices, which is preferred as eye
structures between slices are considered as a whole. The final
outputs mostly fall into two categories: classification (categorical
outputs) or segmentation (image outputs). These can provide
both accurate staging of conditions and better-quality images
through denoising for clinicians to interpret, since up to 46.3%
of SD-OCT scans are prone to artifacts or segmentation errors
(330, 332, 333).

Artificial Intelligence and Glaucoma
Glaucoma is a field that has recently attracted a lot of interest
in the integration of AI to ophthalmology and imaging due its
involvement of multiple eye structures (anterior chamber angle,
iris, retina, and ONH), high prevalence, and reliance on multiple
methods to establish a diagnosis. Current clinical assessment of
glaucoma relies on a combination of various diagnostic tools
to assess anatomy, structure, and function, such as gonioscopy,
fundus examination of the ONH, tonometry, OCT scans, and
perimetry (a visual field) testing, with none being totally sensitive
or specific of its own (325, 334). The interpretation of these results
also varies among clinicians (335).

The AI can significantly aid in differentiating glaucomatous
from healthy eyes. On this matter, emphasis should be given
on moderate glaucoma, where symptoms of early vision loss
are apparent or very likely (327). DL algorithms can provide
segmentation-free image analysis to quantify relevant structures
and can even perform better than traditional segmentation
approaches of retinal layers (332, 336). For structural assessment,
algorithms could detect changes and signs of optic neuropathy
from fundus pictures with greater sensitivity and specificity
than clinicians (up to 96.2 and 97.7%, respectively); this
can be advantageous, given the subjective and inconsistent
interpretation by physicians (325, 337–340). AI can be used
on fundus pictures to also differentiate glaucoma from other
pathologies of the optic disc, such as papilledema, ischemic
optic neuropathy, optic nerve atrophy, compressive optic
neuropathy, hereditary optic neuropathy, hypoplasia, and toxic
optic neuropathy (341–343). The standard modality of assessing
structure, though, is OCT imaging; algorithms can provide
assessment of the anterior chamber angle as well as segmentation
of the RNFL adjusted for other parameters (age, gender, and eye
biometry metrics) to improve the accuracy of the measurements
(344–346). Studies have focused on many parameters of the retina
and ONH (RNFL, prelaminar area, RPE, choroid, peripapillary
sclera, Bruch membrane opening, and minimum rim width),
and their performance was highly accurate in identifying
glaucomatous eyes (>94%); AI analysis of OCT-A vascular
abnormalities of the ONH also yields excellent results (347–
354). When comparing various ML classifiers, Wu et al. showed
that ganglion cell layer measurements were important in early
glaucoma detection, whereas RNFL metrics were more useful
during disease progression; in fact, Shin et al. showed that
wide-field SS-OCT scans can even outperform the conventional
parameter-based methods (355–357). In a recent meta-analysis,
including data from numerous studies, Wu et al. reported
remarkable overall performance in detecting glaucoma from
both fundus pictures (AUC, 97%) and OCT (AUC, 96%), with
similar outcomes in classifying glaucoma as well (358). Aside
from layer segmentation, the analysis of raw unsegmented OCT
volumes (feature agnostic approach) of the ONH has been
shown to provide better results than classical ML techniques
(AUC of 94% versus 89%) (359). The existing issues with AI
applications to OCT, though, are the potentially poor image
quality, limited generalizability of certain algorithms to multiple
devices and patient-specific factors (anatomy and comorbidities)
undermining OCT thickness values (325). To detect functional
changes in the visual fields, CNN algorithms have been developed
by various teams that mark visual field tests as either normal or
glaucomatous with high precision (87.4–87.6%) (360, 361).

A very attractive approach is to use AI to combine structural
information with functional outcomes. Glaucoma diagnosis is
improved when using both ONH parameters and VF outcomes:
algorithms capable of predicting 10-2 VF parameters from
macular OCT scans, and 24-1 VF parameters from both macular
and ONH OCT scans have been developed (362–365). Also,
various teams (Lazaridis et al., Christopher et al., Datta et al., and
Xiong et al.) have recently developed algorithms (RetiNerveNet
and FusionNet) capable of using both OCT metrics (various
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layer thickness values) and raw OCT or fundus images to predict
VF changes with high accuracy (366–370). Overall, combination
of structural and functional information has been shown to
outperform structural or functional assessment alone.

These results are especially encouraging when it comes to
screening for glaucoma; these imaging techniques are simple
and inexpensive and would allow for identification of glaucoma
at early stages. As opposed to diagnosis at a more advanced
stage, early treatment initiation can both prevent irreversible
vision loss and avoid expensive, invasive techniques used for
later glaucoma stages, as the cost of management increases with
glaucoma progression; its performance, however, still needs to be
improved (327). The implementation of DL to AS-OCT is a field-
attracting attention; Li et al. have very recently developed a novel
3D deep-learning-based digital gonioscopy system that identified
angle closure suspects and that could be used as a screening
method for primary angle closure glaucoma (371–376).

AI can also be a valuable tool in establishing the prognosis
of glaucomatous progression. Functionally, Wen et al. reported
that AI can estimate VF loss up to 5.5 years in the future
with minimal error, given only a single test as a starting point
(377). Algorithms are also capable of identifying slow disease
progression consistently earlier than conventional methods, too
(3.5 years versus >3.9 years) (378). Structurally, Christopher
et al. reported that RNFL analysis can also predict glaucoma
progression more accurately than VF testing (95% versus <86%),
and with less error than standard linear regression models (325,
379). Sedai et al. have developed multimodal models using a
combination of clinical, structural, and functional information to
predict RNFL changes in healthy subjects, patients with glaucoma
patients, glaucoma suspects with greater performance than
standard linear trend-based estimation (380). These predictive
algorithms, however, have not yet been implemented clinically.

Artificial Intelligence and Age-Related
Macular Degeneration
With more than 200 million people affected worldwide, AMD
constitutes the most common cause of blindness in developed
countries (381). Although no AI device has yet been made
commercially available for AMD yet, several algorithms to
potentially aid physicians’ decisions do exist.

Up to 25% of patients with AMD can remain undiagnosed
by primary care providers, and the use of AI would not require
an advanced skillset to operate or retinal expertise (328, 382).
An ideal method of AMD screening should be able to efficiently
detect AMD and distinguish it from other similar diseases,
be cost-effective, and autonomous. Hence, the low cost and
simplicity of fundus photographs make it a great candidate for
wide AMD screening; models that can classify AMD based on
the need for treatment have been developed, which function with
great accuracy compared to professional graders (up to 92%)
(383). This distinction is important when evaluating algorithms,
as early treatment can significantly prevent vision loss in select
cases of AMD (large drusen and intermediate AMD, CNV), and
the cost of error is high for missing wet AMD; high sensitivity
is, therefore, preferable (384). Macular OCT scans have the

advantage of depicting the pathological findings of AMD in
3 dimensions and with high resolution; hence, they can be
utilized as a next step, following the initial screening with fundus
photographs to rule out false positive cases and further classify the
true positives (385). De Fauw et al. have developed a screening
algorithm capable of identifying multiple retinal conditions,
which was able to outperform retinal specialists on both screening
success and avoidance of severe and costly errors (386).

Models can also substantially assist physicians in establishing
diagnosis of AMD. This can sometimes be challenging, as AMD
findings can potentially go unnoticed or appear similar to other
retinal conditions (polypoidal choroidal vasculopathy, macular
dystrophies, CSR, and others) (328, 384). For this purpose, a
variety of algorithms has been offered, focusing on different
imaging modalities (fundus pictures, OCT and OCT-A, FA) to
detect multiple pathological findings (drusen and pseudodrusen,
intra- and subretinal fluid, GA); similar to DR, structural and
vascular biomarkers are also utilized for AMD (387–392). As a
representative example, Yan et al. were able to utilize a model
for identification of drusen, inactive and active CNV with high
precision (84.3–97.7%) and AUC (94.–99.%) (393). Keenan et al.
also used SD-OCT data across 10 years from the AREDS2 study
to construct a model capable of identifying retinal fluid with
high accuracy, sensitivity, and specificity compared to retinal
specialists (85.1%, 82.2%, 86.5% versus 80.5%, 46.8%, 97.%,
respectively) (394).

Even though the use of AI tools in the context of AMD
has not been fully optimized, tools capable of prognosis and
monitoring the condition are starting to emerge. Algorithms
can perform better than specialists in some cases, but their
accuracy can be improved; classification accuracy has been
reported to be up to 76% and 5-year prognosis accuracy up
to 86% in recent studies (395, 396). For classification, Peng
et al. developed a model (DeepSeeNet) that more accurately
classified AMD, when compared to retina specialists (397).
This is especially important in the setting of edema in wet
AMD, where anti-VEGF injections are indicated; Potapenko
et al. have recently trained a CNN identifying retinal edema
with accuracy of 90.9% (398). Even more so when combined
with HH-OCT, algorithms can be proved to be a powerful
tool in self-monitoring of the condition and more easily
identify patients in need of antiangiogenic treatment. As to
predicting the disease course, algorithms will help tackle issues,
such as predicting conversion to wet (neovascular) AMD,
personalize anti-VEGF treatment and predict their response,
and increase the use of supplements to decrease the rate
of progression. Sarici et al. have recently reported a set of
outer retinal biomarkers (ellipsoid zone and RPE attenuation
and thickness) useful to predict evolution of dry AMD to
subfoveal GA, while Abdelfattah et al. used drusen volume to
predict development of wet AMD within 2 years (399, 400).
Finally, tools that could be utilized in predicting response to
anti-VEGF treatment have also been developed with accuracy
comparable to retinal experts (65.4% vs. 53.8–76.9%) (401).
A detailed review of tools for AMD progression prediction by
fundus photographs or OCT has been constructed by Romond
et al. (402).
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The implementation of AI on AMD care still faces some
challenges. The limitations of OCT (high cost, artifacts, low signal
strength, and poor focus) still apply in this field. There is also
a great need for dataset diversity in terms of age, race, and
socioeconomic status in data analysis to provide broader and
more accurate AI outputs, as baseline factors and phenotypes can
vary among populations (389, 403).

In general, the impact of AI tools in the setting of AMD can
be proved useful in screening, diagnosis, and differentiation of
similar appearing conditions, prognosis, and disease monitoring.
Whether or not they can benefit physicians and potentially
influence clinical decisions remains to be seen.

Artificial Intelligence and Diabetic
Retinopathy
Using AI in the setting of DR is one of the most promising
applications in medicine. As opposed to general monitoring of
diabetes, which can be performed easily (blood glucose testing,
HbA1c levels and others), DR requires qualitative evaluation.

The modalities more commonly used for diagnosis and
monitoring of DR are fundus pictures, OCT, and OCT-A scans
(as mentioned above). AI has the potential to detect disease in
early (even asymptomatic) stages, classify it, predict the disease
course, and thus guide treatment in select eyes (404–406). Tools
can match or even outperform physicians and can make access
to screening broader and less expensive; algorithms and devices
are already clinically available (IDx-DR by Digital Diagnostics,
Coralville, IA, United States; SELENA+ by EyRIS, Singapore) and
have been authorized for use in multiple fundus cameras (407–
412). Training models for AI has been steadily increasing for
diagnosing DR from fundus pictures, with accuracy, sensitivity,
and specificity improving over time (reaching 95.7, 97.5, and 98%,
respectively) (412–416).

Similar results are also seen when using CNNs for DR
severity grading; Ryu et al. have recently developed a fully
automated algorithm to classify DR stages with accuracy of 91–
98%, sensitivity of 86–97%, and specificity of 94–99% (417, 418).
Application of these models can also establish biomarkers useful
for diagnosis and treatment response; these could be structural
(retinal layer measurement, hyperreflective foci) or vascular
(areas of non-perfusion, vascular leakage, microaneurysm count,
and neovascularization) (387).

TELEOPHTHALMOLOGY AND
SMARTPHONE FUNDUS IMAGING

Telemedicine is defined as “the use of electronic information
and communications technologies to provide and support health
care when distance separates the participants” (419). In response
to its growing demand in recent years, further enhanced by
the COVID-19 pandemic, ophthalmologists have begun to
implement techniques and technologies more widely to better
facilitate patient care in a remote setting. This would make access
to eye care more accessible, easier and more convenient for
patients, faster, and more cost-effective. In terms of ophthalmic

care, teleophthalmology is mostly applicable to ophthalmic
emergencies, screening, and monitoring of chronic conditions.

One such technique is imaging of the eye with a smartphone
(smartphone imaging – SI). The use of smartphones for clinical
imaging in ophthalmology was first introduced by Lord et al. in
2010 (420). It was demonstrated that an iPhone could be used to
capture external photos of the orbit and surrounding structures,
indirectly image the anterior segment and the fundus of the eye
when used with a slit lamp fitted with a 78D lens or a handheld
20D lens (420).

Since its introduction, external attachments and phone
applications that offer features, such as image storage and
improved user-interface, have been developed with the aim of
improving the image quality and utility of SI. Although many
variations and distributors exist, a commonly used attachment is
a macro lens that can be clipped over the camera of a smartphone
to provide supplemental co-axial illumination, making imaged
features of the eye more distinguishable (421). The ability for
smartphones to be paired with additional attachments and other
devices has given rise to techniques that make it applicable in
a wider range of clinical scenarios than most other forms of
imaging (421).

The current capability of SI in the observation of anterior
segment features is promising. Refined techniques using either
gonio or macro lens combinations make it possible to capture
high-quality videos and standstill images of the iridocorneal
angle (422, 423). A trial conducted by Pujari et al. found
that inferior angle measurements acquired using the iPhone-
macro lens combination demonstrate excellent correlation with
measurements acquired using AS-OCT (424). SI can also
be used for the analysis of globe torsion. Using a 360◦

protractor application, the axis of the eye can be compared
between smartphone-macro lens images before and after surgical
intervention to quantify torsion of the iris and retina (425, 426). It
is possible to perform pupillometry using SI, giving smartphones
additional utility in the management of neuro-ophthalmological
disease (427, 428). McAnany et al. observed excellent agreement
when comparing smartphone pupillometry with infrared camera
pupillometry, and found significant correlations in pupillary
light reflex and re-dilation size between both methods (429).
Additionally, methods have been developed for smartphone
photography to be used in measuring implantable contact lens
vault and assessing the intraocular lens alignment of patients
(430–432).

With respect to posterior segment features and pathology,
SI can be used to assess and monitor the fundus of patients.
While studies have outlined successful techniques for imaging
of the optic disk with smartphones (Figure 8) (433–435), Pujari
et al. document a strategy to evaluate the ONH using a macro
lens phone attachment and 90D handheld lens (436). With a
combination of a battery, an LED light source, a barrier, and an
excitation filter fitted to an iPhone, Suto et al. also demonstrated
for the first time that fundus FA can be captured with a
smartphone, producing images comparable to those obtained
by indirect ophthalmoscopy (437). More recently, Sivaraman
et al. have come forward with a smartphone-coupled device
capable of capturing widefield images of the retina beyond
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FIGURE 7 | Funds autofluorescence (FAF) lifetime images (FLIO) and FAF
intensity images in diabetic retinopathy (DR). Mean funds autofluorescence
(FAF) lifetime images (FLIO) from two spectral channels, as well as FAF
intensity images from the retina of a healthy control (Left) and a diabetic
retinopathy patient (Right). The middle left panel comprises a standardized
ETDRS grid. This figure was reprinted from Bernstein et al. (455) with
permission.

the posterior pole, with a field of view of 65◦ with a single
take (438).

The SI is suited for the screening of common diseases, such
as glaucoma, AMD, and DR (439–441). SI-based screening for
glaucoma, using frequency doubling technology and a head-
mounted display, was found to be comparable to Humphrey
VF testing with good agreement and correlation between both
techniques (440). Photographs of the ONH can also be acquired
with SI, with moderate agreement with in-person evaluation
and respectable positive and negative predictive values (77.5
and 82.2%, respectively) (441–443). Home monitoring of IOP
with rebound tonometers or contact lenses is also possible (441,
444, 445). Teleophthalmology in the setting of AMD screening
mostly aims to detect conversion from dry to neovascular form;
Li et al. were the first group to demonstrate similar wait times
between remote screening in tertiary clinics and referral to retinal
specialists, although with increased wait times for treatment
initiation (446). Monitoring for AMD progression with Amsler
grids or macular VF testing (for example, a ForeseeHome device
by Notal Vision Ltd., Tel Aviv, Israel) is more promising and can
be beneficial for high-risk patients (441, 447). For DR, screening
can be accomplished with imaging modalities, such as non-
mydriatic ultrawide-field and multifield fundus photographs,
and has been proved to be reliable and cost-effective; Tan

et al. compared smartphone ophthalmoscopy to standardized
techniques and found that SI had an overall sensitivity of 87%
and specificity of 94% (441, 448–450).

Like with many other current ophthalmic imaging modalities,
the future of SI may lie in AI. Algorithms, such as AlexNet,
EyeArt, and Medios, are accessible and can be coupled with SI for
the screening for disease (451). Studies have demonstrated that SI
analysis performed using AI is able to improve the sensitivity and
specificity of SI in diagnosing retinal disease (452, 453).

FLUORESCENCE LIFETIME IMAGING
OPHTHALMOSCOPY

The retina exhibits intrinsic autofluorescence: reactive to light
stimulation, chemical compounds absorb photons, and promote
electrons to a higher power state that subsequently return to
their stable state, emitting red-shifted protons in the process. The
intensity and patterns of fluorescence can be detected with high-
sensitivity detectors in fundus cameras and ophthalmoscopes,
mapped and used to diagnose and monitor many macular
conditions (454). Since the majority of the signals originate
from lipofuscin in the RPE, its high intensity predominates and
shadows other retinal molecules that also emit fluorescence.
The new technique of FLIO measures the decay lifetime of
retinal fluorophores (FLIO lifetimes – FLTs), which are unique
to molecules (Dysli et al. have described the lifetimes of each
fluorophore in detail) and, therefore, more sensitive of weak
fluorophores that are masked using fundus autofluorescence
(FAF) (455–457). Hence, FLIO can reveal not only structural but
also metabolic and biochemical changes in the retina.

In a clinical setting, the first FLIO device used was developed
by Heidelberg Engineering in 2012 and has been shown to
be highly reproducible (458–460). FLIO patterns have been
identified for a variety of retinal diseases and can be valuable in
early detection and detailed monitoring. In AMD, FLIO displays
a characteristic pattern of ring-shaped prolongation of the FLTs
around the fovea, which is present in the early stages of the
disease even before the appearance of drusen and increases
as the disease progresses (greater in advanced AMD) (461).
Apart from this sign, areas of GA and drusen also display
FLT prolongation, and this information could be proved useful
in the understanding of their pathogenesis and metabolism as
well as monitoring their development (461–463). Since AMD
can appear similar to Stargardt disease, FLIO can be used to
differentiate the two, since FLTs in Stargardt disease are not
prolonged, and the typical ring pattern of AMD is not present.
Most importantly, retinal flecks in Stargardt disease appear in
FLIO about a year earlier than in other imaging methods like FAF
(464). In the case of hydroxychloroquine toxicity, where early
toxicity detection is challenging, FLIO could provide a better
alternative to electroretinogram (ERG) or OCT, since it can detect
prolonged FLTs before structural changes appear (465, 466). FLIO
has also been used to identify changes in other retinal conditions
as well, including DR (Figure 7), vascular occlusive diseases, CSR,
choroideremia, RP, and macular holes, and is believed to be a
promising diagnostic method (463, 467–473).
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FIGURE 8 | Representative retinal images taken with D-eye. (A) A normal optic disk in an undilated child. (B) A normal posterior pole in a dilated 29-year-old woman.
(C) Dry age-related maculopathy in an undilated 75-year-old man. (D) Optic nerve glioma in a 23-year-old undilated woman. (E) Posterior vitreous detachment in a
dilated 72-year-old pseudophakic woman. (F) Waxy disk pallor and pigmentary changes in a 50-year-old man with retinitis pigmentosa (G,H). Depiction of the same
optic nerve head by D-Eye and Canon CR-2 Retinal Camera. This figure was reprinted from Russo et al. (434) with permission.

MULTIMODAL IMAGING

Multimodal imaging involves the incorporation of two or
more imaging technologies for a single purpose. Combinations
of imaging modalities make it possible to perform a more
comprehensive examination of tissue by compensating for the
individual limitations of a single device. Multimodal imaging

is often used to improve the utility of commonly used
OCT technologies.

The OCT-A is an example of a modality that greatly benefits
from multimodal imaging. Although it provides significant
clinical utility through its ability to capture the vasculature of
the retina, limitations in the acquisition speed of OCT-A create
prolonged susceptibility to motion artifacts, and other reductions

FIGURE 9 | A summary of the modern ocular imaging modalities.
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TABLE 1 | Review and evolution of optical coherence tomography (OCT) imaging technologies in chronological order (3, 195, 196, 252, 255, 265, 308, 312, 499–506).

OCT
technology

Year
introduced

Commercial
availability

Axial
resolution in
tissue (µm)

Lateral
resolution
in tissue

(µm)

Maximum
scanning

rates
(A-scans per

second)

Major clinical
application(s)

Advantages Disadvantages

Time-domain
OCT
(TD-OCT)

1991 Yes 1.7–15 15–20 400 Most retinal
pathologies.

Non-contact,
non-invasive.

Low image acquisition
speed.

Poor spatial resolution.

Anterior
segment OCT
(AS-OCT)

1994 Yes 1.0 15 2,000,000 Anterior segment
conditions (dry eye
disease, corneal

pathologies).

Detailed imaging of
most structures of the

anterior segment
(corneal layers and
precorneal tear film,

outflow system,
anterior chamber).

Spectral
domain OCT
(SD-OCT)

2001 Yes 5–8 6–20 100,000
(clinical)

Most retinal
pathologies.

Higher imaging speed
and sensitivity than

TD-OCT.
Capture of 3D

volumetric data in vivo.
Retinal layer

segmentation.

Imaging artifacts
(projection, motion).
Segmentation errors.

Full-field OCT 2002 No 5.6 1.7–2.4 40,000,000
(research)

Ocular surface
conditions (dry eye
disease, corneal
inflammation).

Stable phase, no
motion artifacts.

Higher scanning power
supported.

Less sensitive to optical
aberrations and signal

loss.

Eye motion makes
scanning difficult.

Difficulties with optical
path matching.

Post-processing and
image averaging

necessary.
Only select retinal

layers visible.

Visible light
OCT
(Vis-OCT)

2002 No 1–1.4 4.6–10 30,000
(research)

Vastly improved axial
resolution.

Smaller bandwidth for
same resolution.

Higher image contrast.
Oximetry and

calculation of circulation
metabolic parameters.

Slow imaging.

Adaptive optics
OCT
(AO-OCT)

2004 Yes 5–8 2–3 1,000,000
(research)

Vastly improved lateral
resolution.

Improvement of
speckle width.

Increased SNR.
Visualization of single
retinal cells and their

function
(phase-sensitive OCT).

Improved lamina
cribrosa visualization.

Slow imaging.
Multiple scans required

for registration.
High cost.

High complexity of
devices.

Limited scanning area.
Large data size.

Handheld OCT
(HH-OCT)

2007 Yes
Yes

3–6 8–15 32,000
(clinical).
350,000

(research).

Pediatric conditions
(congenital and

pediatric glaucoma,
macular edema,

macular hole, epiretinal
membrane,

retinoschisis, retinal
dystrophies).

Intraoperative OCT (see
below).

Imaging of challenging
patient populations

(bedridden and
postoperative patients,

children, remote
access).

Less expensive than
benchtop OCT.

Imaging of anterior and
posterior segments in

quick succession.

Probes still connected
to bulky mobile carts.

(Continued)
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TABLE 1 | (Continued)

OCT
technology

Year
introduced

Commercial
availability

Axial
resolution in
tissue (µm)

Lateral
resolution
in tissue

(µm)

Maximum
scanning

rates
(A-scans per

second)

Major clinical
application(s)

Advantages Disadvantages

Intraoperative
OCT
(I-OCT)

Glaucoma surgeries
(trabeculectomies,
drainage surgeries,

canaloplasty,
sclerectomy, and angle

surgeries).
Cornea surgeries

(DALK, DSEK/DSAEK,
DMEK).

Cataract extraction
surgeries.

Retinal surgeries (ERM
peeling, macular hole

repair, gene therapies).

Live imaging feedback
during surgery.

Valuable information on
diagnosis and surgery

planning.
Confirmation of optimal

outcome.
Assessment of
intraoperative
complications.

Technician often
required.

Pausing of surgery
sometimes necessary.

Swept source
OCT (SS-OCT)

2012 Yes 8–9 20 200,000
(clinical).

6,700,000
(research).

Most retinal
pathologies.

Increased SNR.
Improved scan quality.
Improved imaging of
deeper structures.

Whole-eye OCT 2012 Yes 12.4–19 73 50,000–
580,000
(clinical).

Biometry.
Surgery planning

(cataract extraction and
refractive surgeries).
Identification of high

myopia causality.

Assessment of the
entire ocular anatomy
with a single scan in

standard fields of view.

Time gap for switching
scan configurations

between
anterior-posterior

segment

OCT
angiography
(OCT-A)

2015 Yes 5 15–24
8–16 (ultra

high-
definition)

200,000
(clinical).

Conditions involving
vasculature damage or

neovascularization
(glaucoma, AMD, DR,

BRVO).

Lack of extrinsic dye.
Vascular network

imaging at different
depths.

Vascular biomarker
identification.

No detection of vessel
leakage.

Imaging artifacts
(projection and motion).

Visibility of vessels
dependent on flow.
Low image contrast.

Limited area of
visualization.

in image quality. Combining OCT-A, as well as other OCT
variations, with SLO (OCT-SLO) allows for the implementation
of motion tracking to compensate for involuntary eye movements
during imaging (474–477). Commercially available systems
that already currently use integrated OCT-SLO technology
include the Zeiss PLEX Elite, Heidelberg Spectralis, and
Optos Silverstone. Handheld OCT-SLO devices have also been
implemented and have expanded the accessibility of multimodal
imaging for pediatric, bedridden, and immobilized patients (143,
144). Additionally, OCT-A devices can be combined with vis-
OCT to establish a complementary endogenous contrast, which
allows for blood oxygen saturation to be quantified and used as a
biomarker for DR and AMD (96, 102, 105, 106, 478–482).

While no clinical system is commercially available,
photoacoustic microscopy (PAM) is an imaging modality
that can be used in ophthalmology to detect the distribution
of emitted acoustic waves in vascular tissue, with the ability to
map blood absorption without the use of exogenous contrast.
Combining PAM with OCT imaging establishes complementary
structural and vascular contrast, which has been used to capture
neovascularization associated with DR and wet AMD in animal

models (483–487). Nguyen et al. further demonstrated that
the multimodal combination of PAM with OCT has utility
in monitoring vascular and structural changes associated
with vascular occlusion (488, 489). PAM has additionally
been combined with Doppler OCT to measure retinal oxygen
metabolism with the potential to aid in an earlier diagnosis of
DR, AMD, and glaucoma (478, 490).

Other experimental imaging techniques that have
begun to make headway in multimodal research include
polarization-sensitive OCT, photothermal OCT, and optical
coherence elastography, which, when combined with more
standard techniques, have been shown to allow for the
differentiation between depolarizing and birefringent tissue
(491, 492), establishment of molecular contrast (493–496), and
biomechanical assessment of tissue, respectively (497, 498).

CONCLUSION

The field of ocular imaging is rapidly advancing. The
sheer number of imaging modalities that exist nowadays

Frontiers in Medicine | www.frontiersin.org 18 June 2022 | Volume 9 | Article 891369

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-891369 June 24, 2022 Time: 15:29 # 19

Alexopoulos et al. Innovative Optical Ophthalmic Imaging Techniques

provides physicians and researchers with a substantially high
number to study eye conditions and gather information.
This variety of available technologies (Figure 9) provides a
multimodal approach to eye imaging, which will inevitably
lead to optimization of imaging techniques for each
condition individually.

Most innovations are centered around OCT, since it has
become the gold standard of managing most retinal diseases; a
summary of the OCT imaging modalities is displayed in Table 1.
As hardware components and image processing improve, OCT
is bound to be improved in multiple ways: faster and higher
quality scanning, lower costs, and greater population coverage.
These are applications that can be applied worldwide and elevate
the standard, commercially available OCT scanner. Some of
the new technologies described previously, such as AS-OCT,
I-OCT, and HH-OCT, are beginning to be used more widely and
are already making a significant impact on medical decisions.
Others, like Vis-OCT, FF-OCT, and AO-OCT, that are still
rapidly evolving, will undoubtedly be improved and optimized
for routine clinical use.

The most exciting prospect of eye imaging is the incorporation
of AI. AI is becoming more accessible and broadly studied,
and ophthalmology provides the perfect foundation for its rapid
evolution. As such, it is fairly safe to assume that ophthalmology
will be among the first medical specialties to transition from
a traditional, physician-only care approach to a collaboration
between human and software decision-making. The ability to
provide valuable data from simple images can help millions
of people get eye care in the first place but also improve and
optimize the way patients are managed and treated. There are
still, though, issues to be considered before safely applying AI in

the routine care; these range from mostly technical, namely, the
issue of performing AI tasks in most imaging devices, to medical
in order to ensure its efficacy and reliability, as well as ethical.
Despite these hurdles, AI will be a huge step toward ultimately
decreasing blindness and providing equal health care across the
entire population.

In conclusion, the evolution of ocular imaging is truly
fascinating. The next years will be critical in its evolution and
will definitely contribute to the ultimate goals of minimizing
blindness and ensuring optimal care for patients.
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