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Abstract
The analysis of large datasets describing reproductive isolation between species has 
been extremely influential in the study of speciation. However, the statistical methods 
currently used for these data limit the ability to make direct inferences about the fac-
tors predicting the evolution of reproductive isolation. As a result, our understanding 
of iconic patterns and rules of speciation rely on indirect analyses that have clear sta-
tistical limitations. Phylogenetic mixed models are commonly used in ecology and evo-
lution, but have not been applied to studies of reproductive isolation. Here I describe 
a flexible framework using phylogenetic mixed models to analyze data collected at 
different evolutionary scales, to test both categorical and continuous predictor varia-
bles, and to test the effect of multiple predictors on rates and patterns of reproductive 
isolation simultaneously. I demonstrate the utility of this framework by re-analyzing 
four classic datasets, from both animals and plants, and evaluating several hypotheses 
that could not be tested in the original studies: In the Drosophila and Bufonidae data-
sets, I found support for more rapid accumulation of reproductive isolation in sympa-
tric species pairs compared to allopatric species pairs. Using Silene and Nolana, I found 
no evidence supporting the hypothesis that floral differentiation elevates postzygotic 
reproductive isolation. The faster accumulation of postzygotic isolation in sympatry is 
likely the result of species coexistence determined by the level of postzygotic isolation 
between species. In addition, floral trait divergence does not appear to translate into 
pleiotropic effects on postzygotic reproductive isolation. Overall, these methods can 
allow researchers to test new hypotheses using a single statistical method, while rem-
edying the statistical limitations of several previous methods.
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1  | INTRODUCTION

The divergence of lineages, in the process known as speciation, is only 
complete after gene flow is reduced following the evolution of repro-
ductive isolation. The two general modes of reproductive isolation 
are prezygotic and postzygotic barriers to reproduction. Patterns of 

reproductive isolation inferred from comparative analyses of species 
willingness or ability to mate (i.e., prezygotic isolation) and produce 
viable and fertile offspring (i.e., postzygotic isolation) have generated 
important and influential observations about the evolution of repro-
ductive isolation. These studies have been especially important for 
making generalizations about comparisons between allopatric and 
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sympatric species pairs, or prezygotic and postzygotic barriers to 
reproduction (Coyne & Orr, 1989; Funk, Nosil, & Etges, 2006; Malone 
& Fontenot, 2008; Meiners & Winkelmann, 2012; Mendelson, 2003; 
Moyle, Olson, & Tiffin, 2004; Presgraves, 2002). These analyses have 
produced iconic patterns and rules of speciation including that repro-
ductive isolation accumulates more quickly between sympatric spe-
cies pairs compared to allopatric species pairs and, specifically, that in 
sympatry prezygotic reproductive isolation appears more quickly than 
postzygotic reproductive isolation. Nonetheless, the contemporary 
methods used to analyze these data are known to suffer from both 
statistical errors and analytical limitations that prevent a more robust 
simultaneous assessment of the factors that most strongly influence 
the accumulation of reproductive isolation.

The two methods most typically used to analyze comparative data 
on reproductive isolation are Mantel tests, including partial mantel 
tests (Mantel, 1967; Smouse, Long, & Sokal, 1986), and phylogenetic 
regression based on independent contrasts (PICs; Felsenstein, 1985; 
Grafen, 1989). These two methods (Mantel and matrix regression vs. 
PICs) reflect differences in the scale of relationships between lineages 
that are being tested. Studies that use PICs, or node-based averages 
(Fitzpatrick & Turelli, 2006), generally have some information about 
phylogenetic relationships across the clade or use pairs of sister spe-
cies, which is needed to accurately calculate independent contrasts. 
The use of PICs, or methods that assume independence of lineages, 
is not appropriate for intraspecies data (Felsenstein, 2002; Stone, 
Nee, & Felsenstein, 2011). Thus, Mantel tests are applied when spe-
cific phylogenetic relationships are unknown (if few molecular mark-
ers are used) and when the lineages being tested include extensive 
sampling from only a few closely related species. The main limitations 
of these approaches are threefold: lack of statistical power, failure to 
deal adequately with nonindependence, and the inability to test cat-
egorical variables or multiple variables simultaneously. The first two 
limitations have been discussed in detail for the Mantel test, and it has 
been determined that Mantel tests can have unacceptably high type-I 
error rates (Harmon & Glor, 2010; Legendre, 2000). The last limitation 
results in the inability to test biologically interesting hypotheses, and 
applies equally to both Mantel test and PIC type tests. For example, 
in many of the classic studies, the comparisons between sympatric vs. 
allopatric rates of evolution were never formally tested with a statisti-
cal model. Recent attempts to refine the patterns of the accumulation 
of reproductive isolation have also included other explanatory vari-
ables, including ecological differences, range size overlap, and other 
traits (Turelli, Lipkowitz, & Brandvain, 2014; Yukilevich, 2012), but 
have not tested multiple variables simultaneously or the interaction 
between these variables.

Categorical variables are of particular interest to most researchers 
as they can describe geographic relationships (allopatry vs. sympatry), 
mating systems (animals: monogamy vs. polygamy, plants: outcrossing 
vs. selfing), or phenotypic traits (e.g., pigmentation, patterning) that 
could have very strong influence on the rate and strength of isolation 
accumulation. Categorical variables can be difficult to model in Mantel 
tests because they rely on pairwise distance matrices that require 
no missing data (Mantel, 1967). When categorical variables can be 

represented as distances, multiple matrix regression can be used for 
analysis (Legendre & Fortin, 2010; Wang, 2013). This is typically only 
occurs with binary categorical variables because creating predictor 
variables based on distances for categorical variables with multiple 
levels becomes unfeasable. Therefore, Mantel tests based on pair-
wise distance cannot accommodate hypotheses that test differences 
between levels of categorical variables.

Regression models are the most promising for incorporating cat-
egorical variables, but the analysis is not simple when the regression 
is carried out using PICs. Continuous variables can be accommodated 
in PIC models because they are assumed to evolve under Brownian 
motion; this is what enables node values to be estimated and contrasts 
to be evaluated. No analogous model exists for categorical variables, 
unless all daughter taxa (taxa derived from a common ancestor) share 
the same categorical trait value (Burt, 1989). Even with this conser-
vative approach, the number of contrasts would be reduced tremen-
dously in studies of reproductive isolation and may not be applicable 
to most systems. One way of circumventing this issue would be to 
analyze the cross product of a categorical and continuous variable 
(Garland, Harvey, & Ives, 1992). Although this method would take 
the model a step further by analyzing differences in slope (assuming 
genetic distance is a covariate), it cannot be used to estimate mean 
reproductive isolation because regression in PICs is constrained to 
pass through the origin.

To accommodate more complex hypotheses, a more appropriate 
and powerful analytical framework should: (1) have the flexibility to 
test explicit hypotheses with multiple variables, both continuous and 
categorical, and (2) able to handle different data types to cover differ-
ences in taxonomic scale. Here I describe a framework that overcomes 
several limitations of current approaches to analyzing these data. 
Specifically, this framework can be used to test whether geographical 
context, or any other trait hypothesized to be important to speciation, 
contributes to patterns of reproductive isolation using comparative 
crossing data and phylogenetic linear mixed effect models (similar to 
phylogenetic least squares, PGLS). Using linear models affords the 
flexibility to test many different hypotheses and can include multiple 
predictors and their interactions simultaneously. The advantage of this 
framework over PICs is that the phylogenetic structure is modeled as a 
covariance matrix, and thus, contrasts for categorical predictors do not 
have to be calculated. The use of this covariance matrix accounts for 
phylogeny by either using a pairwise distance matrix or a phylogeny.

I use this framework to reanalyze classic datasets (Drosophila, 
Bufonidae, Silene) making explicit statistical comparisons between 
allopatric and sympatric conditions as an example of how categorical 
variables can be included in these types of analyses. I test the hypoth-
esis that the rate of accumulation of reproductive isolation differs 
between these geographic contexts. This test allows new insight into 
how the process of speciation may be driven by species interactions. 
In addition, I test two new hypotheses about the relationship between 
floral differences and reproductive isolation in each of the plant gen-
era Silene and Nolana. Floral differences are most commonly thought 
to contribute to prezygotic isolation because flower color and shape 
(together making up a pollination syndrome; Fenster, Armbruster, 
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Wilson, Dudash, & Thomson, 2004) can determine premating repro-
ductive isolation through pollinator preference (Kay & Sargent, 2009; 
Schemske & Bradshaw, 1999) and mechanical isolation, including pol-
len placement (Grant, 1992; Hodges & Arnold, 1994; Smith & Rausher, 
2007). New hypothesis have focused on how pollination syndromes 
can contribute to postmating isolation if there are differences in the 
ability of pollen to reach the ovary depending on differences in style 
length (Lee, Page, McClure, & Holtsford, 2008). Moreover, genes 
that control floral development are active throughout several devel-
opmental processes including gametogenesis and embryonic devel-
opment (Smaczniak, Immink, Angenent, & Kaufmann, 2012), so that 
postzygotic isolation may evolve as a by-product of floral divergence 
(Haak et al., 2014). I use the comparative approach to ask whether 
divergence in floral morphology significantly increases postmating and 
postzygotic reproductive isolation.

2  | METHODS

2.1 | The need for phylogenetic correction in 
comparative studies of reproductive isolation

As species diverge, they are expected to accumulate behaviors and 
genetic changes that contribute to reproductive isolation. The level 
of reproductive isolation is predicted to increase as a function of 
divergence time, with species that are more divergent to have higher 
levels of reproductive isolation (Figure 1A). Divergence time is often 
estimated by genetic distance between species. The simplest crossing 
design to capture this pattern is to use species pairs. In this design, 
each species is only crossed with one other species generating inde-
pendent points (Figure 1A). A more realistic design for reproductive 
isolation experiments involves using each species in multiple different 
crosses (Figure 1B). In this scenario, phylogenetic correction is neces-
sary because the outcome of crosses involving closely related species 
are not independent and might reflect shared evolutionary history. For 
example, when comparing reproductive isolation in a cross between 
Species 1 and Species 3 with a cross between Species 2 and Species 
3, the level of reproductive isolation between these two crosses may 
be similar because of the shared ancestry of Species 1 and Species 2 
(Figure 1B). Including the identity of each parental species used in the 
cross as a random effect and assuming the variance in the species level 
random effects are correlated, in a manner predicted by their phyloge-
netic relationships, in a statistical model accounts for the repeated use 
of a species in multiple crosses and shared evolutionary history (see 
below for details).

2.2 | Description of linear mixed model approach

In their most basic form, linear mixed models include a response vari-
able (y), fixed effects (Xβ), random effects (Zu), and residuals (ε), where 
X is the fixed effect design matrix, β is the vector of estimated coef-
ficients, Z is the random effect design matrix, and u is a vector of ran-
dom effect estimators.

Relatedness either via pedigree or phylogeny is incorporated into a 
structured matrix (typically A, the additive genetic relatedness matrix, 
see (Hadfield, 2010; Hadfield & Nakagawa, 2010) that is considered 
known and contributes to defining the variance structure of random 
effects in the model. In equation (2), the random effect estimators are 
distributed normally with mean = 0 and variance matrix G. This matrix 
can be decomposed into a standard variance–covariance matrix V, and 
the structured matrix A (Equation 3) 

This modeling framework can also accommodate a pairwise 
genetic distance matrix (D) to account for nonindependence based on 
its similarities to the additive genetic relatedness matrix. Each element 
of A, in the absence of inbreeding, represents the expected propor-
tion of genes shared by two individuals. Values range from 0 (com-
pletely unrelated individuals) to 1 (completely identical individuals). 
Whereas some measures of genetic distance are not bound by 0 and 
1, (Euclidean distances, Nei’s standard genetic distance (Nei, 1972)), 
others formally meet this requirement (Nei’s DA distance (Nei, Tajima, 
& Tateno, 1983), Wier and Cockerhamθ (Weir & Cockerham, 1984)), 
and in most actual studies, values are rarely seen above 1. Genetic dis-
tance values of 0 represent more closely related populations. To make 
the genetic distance matrix analogous to the structured A matrix I use 
1-D in my analyses so that smaller values (closer to 0) represent more 
distantly related species. Genetic distance used as a predictor variable 
remained unmanipulated.(1)y = Xβ + Zu + ε

(2)u∼N(0,G)

(3)G=V×A

F IGURE  1 Common experimental designs to evaluate 
patterns of reproductive isolation and how this trait correlates 
with divergence time. (a) Species pairs are used, and each pair is 
considered independent. Each point in the scatterplot represents 
a single species pair cross. (b) When species are used in multiple 
crosses, each cross is no longer independent, but the phylogenetic 
information can be used to account for shared evolutionary history. 
Each point represents an individual cross. Crosses are color coded 
by maternal species. The shape and fill of the point represents the 
paternal species
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The datasets I analyze include Drosophila (Coyne & Orr, 1989; 
Nosil, 2013; Turelli et al., 2014; Yukilevich, 2012), Bufonidae (Malone 
& Fontenot, 2008), Silene (Moyle et al., 2004), and Nolana (Jewell, 
Papineau, Frefre, & Moyle, 2012). All of these datasets have been 
analyzed previously for patterns of reproductive isolation and are 
explained in detail below.

2.3 | Model descriptions

The phylogenetic mixed model framework can be applied to any case 
where the goal is to test the effect of a categorical variable or multiple 
variables on the evolution of reproductive isolation. I illustrate this 
with several examples. In one set of analyses, I estimate the effects of 
a continuous trait (genetic distance) and a categorical trait (allopatry 
vs. sympatry; or trait presence vs. absence) and their interaction. In 
another analysis, I analyze three continuous variables simultaneously 
(genetic distance, geographic distance, and a phenotypic distance). 
The random phylogenetic effects of species used in the cross serve 
two purposes: to account for nonindependence due to phylogeny 
and account for variance that results from using individual species in  
multiple crosses in a dataset.

Genetic distance as a predictor variable represents the diver-
gence between the two taxa used in a given cross and should not be 
confused with the pairwise genetic distance matrix (above) that can 
account for nonindependence between crosses due to shared evolu-
tionary histories. Even if the exact same numerical values are present 
in the genetic distance predictor variable and the pairwise genetic 
distance matrix, these data are used independently in the model and 
are not redundant. The genetic distance predictor variable is used to 
model the relationship between reproductive isolation and divergence 
time (i.e., used to estimate a regression coefficient). The genetic dis-
tance pairwise matrix is used as part of the variance–covariance matrix 
of the random phylogenetic effect for the species of interest.

2.3.1 | Model incorporating relatedness and 
categorical biogeography

A specific model that can be analyzed to determine whether repro-
ductive isolation is different in crosses between sympatric species 
compared to allopatric species, and how this relationship changes 
with time since divergence, will incorporate the reproductive isolation 
data (the measure of either prezygotic isolation, postzygotic isolation, 
or total isolation) as a function of genetic distance and geographic 
context (sympatry vs. allopatry) while controlling for phylogenetic 
relatedness (Equation 4). 

The first term (μ) is the intercept of the linear model and can be thought 
of as the baseline level of reproductive isolation if there is no signifi-
cant relationship between reproductive isolation and genetic distance. 
If there is a significant relationship, the intercept then represents 
the reproductive isolation between closely related species. The vari-
able x1 is a vector of genetic distance between the species pair, and  

βgen.dist. is the slope of the relationship between reproductive isolation 
and genetic distance. The variable x2 is a dummy variable (0 when the 
species pair is allopatric and 1 when the species pair is sympatric), and 
γsym is the potential difference in reproductive isolation that can be 
attributed to the species occurring in sympatry. βint is the potential 
change in the slope of the relationship between reproductive isolation 
and genetic distance for sympatric species crosses. Lastly there are two 
Z matrices; they represent the identity of the female parent species and 
male parent species used in the cross (or can be designated species 1 
and species 2 if sex of the parents is not important). I use a separate 
effect for each parent in the cross because not all species are used 
as both a male parent and female parent, depending on the dataset. 
Using separate matrices reduces the sparseness of each matrix and 
improves the precision of the estimates for the variance of the random 
effects. Recent studies use interactions between phylogenetic effects 
for species interactions (Hadfield, Krasnov, Poulin, & Nakagawa, 2014), 
but for the datasets in this study, there are few crosses made outside 
of very closely related species so any matrix describing an interaction 
between phylogenetic effects would be very sparse and hard to esti-
mate. Using this model, I was able to test for differences in the rate of 
reproductive isolation for three datasets: Drosophila, Bufonidae, and 
Silene (described below). The Drosophila dataset has previously been 
shown to have increased levels of prezygotic reproductive isolation 
between sympatric pairs compared to allopatric pairs (Coyne & Orr, 
1989), but these rates were never directly compared in a single model.

2.3.2 | Model incorporating relatedness and 
categorical trait differences

As a second example, I incorporate a categorical variable with more 
than two levels, such as floral color differences or similarities between 
the species pair, using the same model described above but with 
flower color substituted for geographic context.

Here, the x2 variable can have two levels, for example, x2 will have 
two levels if one level represents crosses between species that share 
the same state for floral color (red × red and white × white) and the 
other level represents crosses between species with different floral 
colors (red × white and the reciprocal). Alternatively the x2 variable 
could have multiple levels: crosses between species that both have red 
flowers, crosses between species that both have white flowers, and 
crosses between red and white flowered species. This model would 
test whether specific floral colors or morphologies have increased  
speciation rates compared to other floral morphologies.

2.3.3 | Model incorporating multiple continuous 
variables with potential correlations

Often geographical context may not be captured by a categorical vari-
able (allopatry vs. sympatry) but instead by a continuous variable such 
as geographic distance. When spatial variation is included in analy-
ses, we expect correlations between geographic variables and other 

(4)yRI=μ+x1βgen.dist.+x2γsym+ (x1 ∗x2)βint+Zff+ZMm+e

(5)yRI=μ+x1βgen.dist.+x2γcolor+ (x1 ∗x2)βint+Zff+Zmm+e
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variables of interest including genetic distance. We expect that line-
ages that are more geographically isolated are also more genetically 
differentiated. Additional correlations may exist between morphologi-
cal traits that can contribute to reproductive isolation, such as quan-
titative floral traits. This model allows multiple continuous variables 
to be analyzed simultaneously and accounts for correlations between 
the predictor variables (Equation 5). In the example illustrated below, 
I include genetic distance, geographic distance, and the difference in 
corolla tube length, which is one measure that captures the difference 
in floral size between species. 

If these variables are correlated with one another, it will be difficult 
to make inferences on any given parameter estimate as multicollin-
earity can cause variance inflation (increased estimates of variance 
parameters compared to model where variables are not correlated). 
To address this issue, I explicitly allow for covariance between these 
variables in the model by changing the prior structure of the predic-
tor variables (fixed effects) from being independent (Equation 7), to 
being correlated. This is reflected in the joint prior distribution being a 
covariance matrix, where nondiagonal elements represent covariance 
between predictor variables (Equation 8).

This model can be applied to the Nolana dataset, for example, 
to disentangle the effects of multiple correlated variables. In the 
original analysis of the Nolana dataset (Jewell et al., 2012), there 
was some evidence that genetic distance a geographic distance 
predicted reproductive isolation. However, as these two variables 
were highly correlated that analysis lacked power to disentangle 
this pattern using partial mantel tests. Using the approach here, I 
directly modeled the correlation between the continuous variables 
by including a covariance matrix between the three continuous 
variables.

2.3.4 | Model incorporating genetic distance matrix 
in place of phylogeny

Another way to correct for relatedness in this framework is to use 
a pairwise genetic distance matrix. This method would be most suit-
able for closely related species for which constructing a phylogenetic 
tree is inappropriate. As an example, I analyzed the Nolana data using 
information from a pairwise genetic distance matric (specifically 1-D, 
where D is the genetic distance matrix) in the place of the structured 
A matrix, to see whether the inferences varied between the two meth-
ods. The package MCMCglmm (Hadfield, 2010) requires the inverse 

of the structured matrix and has built in functions to take the inverse 
of the relatedness matrix from either pedigree or phylogeny informa-
tion. To use the genetic distance matrix, I used the ginv function from 
the MASS (Venables & Ripley, 2002) package to find the generalized 
inverse of the 1-D matrix.

2.4 | Interpreting model outputs

In the Bayesian framework used in MCMCglmm, there is no formal 
distinction between fixed and random effects, but for ease of expla-
nation, I will call all parameters that are estimated for the predictor 
variables fixed effects, and the phylogenetic variance random effects. 
I can test any specific hypothesis for fixed effects by examining the 
highest posterior density (HPD) of the parameter from a given model. 
For example, to test the hypothesis that there is a difference in aver-
age reproductive isolation between allopatric and sympatric species 
pairs, I determine whether the HPD for regression coefficient (γsym) 
includes 0. If γsym does not include 0, then there is evidence support-
ing the hypothesis of a significant difference in reproductive isolation 
between allopatric and sympatric species pairs. Similarly, testing the 
hypothesis that the rate of accumulation of reproductive isolation dif-
fers between two groups (e.g., sympatric and allopatric pairs) involves 
evaluating the slope βint to again assess whether the HPD includes 0. 
For all analyses, I set the prior distributions for random effect covari-
ances and residuals as follows. MCMCglmm uses inverse Wishart dis-
tributions for random effects, with scale parameter V, and degrees 
of freedom parameter n. For each model, I set V to be 1/3 the total 
variance in the response variable because there were three covariance 
matrices (two matrices for male and female parent, and the residual 
covariance matrix).

For each model, I ran two MCMC chains; this enabled me to 
determine lack of convergence by examining within and between 
chain properties. The trace plots (iteration number vs. value of the 
draw) were visually inspected for all variables and chains, to see 
whether chains were mixing well or whether there was high auto-
correlation (which would signify chain being stuck on a local max-
imum and thereby give a false signal of convergence). Along with 
visual inspection, the primary tool used to determine whether the 
MCMC chains failed to converge was the Gelman–Rubin Diagnostic 
(Gelman & Rubin, 1992). This test uses information from the variance 
of the mixture of both chains, and the variance within a single chain 
to calculate a potential reduction factor (Brooks & Gelman, 1998; 
Gelman & Rubin, 1992). A value of 1 indicates that the chains have 
converged because the ratio of variance between and within chains is 
identical. In practice, chains are typically run until the reduction fac-
tor for all variables is <1.1 (Brooks & Gelman, 1998). I used the coda 
package (Plummer, Best, Cowles, & Vines, 2006) in R to calculate the 
convergence diagnostics. I considered a model to have converged if 
the all scale reduction factors for all variables (both fixed and random 
effects) were ≤1.1 and the trace plots indicate good mixing (actual 
scale reduction factors were generally <1.06, and the multivariate 
scale reduction factors were <1.02.) Code for all analyses is available 
through Dryad digital repository.

(6)yRI=μ+x1βgen.dist.+x2βgeo.dist+x3βcorolla+Zff+Zmm+e
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2.5 | Datasets

Four different datasets were used here and are explained in detail 
below; as outlined, in several cases, these were enriched with addi-
tional tree construction, biogeographical information, and trait data 
prior to performing analyses. All datasets and phylogenies are avail-
able Dryad digital repository.

2.5.1 | Drosophila

The Drosophila dataset is an expansion of the original dataset used by 
Coyne and Orr (Coyne & Orr, 1989) and was accessed from http://
www.drosophila-speciation-patterns.com/. In this dataset, prezy-
gotic isolation estimates are based on choice and no-choice mating 
assays, depending on the specific species pair. Postzygotic isolation is 
a combination of the hybrid sterility or hybrid inviability of F1 prog-
eny produced from the cross. To include phylogenetic information in 
my model, I combined data from two phylogenies that had comple-
mentary information and largely agreed on phylogenetic relationships. 
The first phylogeny (van der Linde, Houle, Spicer, & Steppan, 2010; 
VL) provides a useful backbone for different species groups, but lacks 
species richness within some groups. The second phylogeny (Morales-
Hojas & Vieira, 2012; MH) includes more species for particular clades. 
As the VL tree includes more species groups in total, I used this tree 
to define relationships between the major species groups. The VL tree 
was constructed from a supermatrix, and I was able to combine it with 
the MH as follows. After scaling both trees so that they were ultramet-
ric, I could substitute species relationships from the MH tree into the 
VL tree, by transforming the branch length from the MH tree, so they 
were proportional to the branch length of the corresponding clade 
in VL tree (see, e.g., Figure 2). For some groups, reproductive isola-
tion data included races or subspecies and these were represented as 
polytomies. After constructing the phylogeny, I only retained crossing 
data where both species were present in the phylogeny, leaving me 
with 182 crosses total to include in analyses.

2.5.2 | Bufonidae

The primary dataset consisted of postzygotic isolation estimated from 
in vitro crosses (Malone & Fontenot, 2008). Several stages of devel-
opment were used to calculate a reproductive isolation index includ-
ing: fertilization rate, hatching rate, number of tadpoles produced, 
percentage of tadpoles metamorphosed, fertility in backcross analy-
sis, and the stage at which eggs ceased to develop. The reproductive 
isolation index was then calculated similarly to Coyne and Orr (1989) 
and Presgraves (2002). To evaluate the sensitivity of the inferences 
to this index, I also conducted analyses on an additional reproductive 
isolation index that takes into account that these barriers are sequen-
tial (Ramsey, Bradshaw, & Schemske, 2003). This made the response 
variable more continuous instead of considering only a fixed number 
of values.

I used the original sequence alignment to construct a neighbor-
joining tree replicating the original analysis (Malone & Fontenot, 

2008). In addition, I also enriched this dataset by determining allopatry 
and sympathy relationships, by downloading shape files (vectors stor-
ing geometric information) for each species from the IUCN Red List 
Database (IUCN 2014.). These files were reprojected (changed from 
3D to 2D objects) to Albers Equal areas using rgdal (Bivand, Keitt, & 
Rowlingson, 2013) and maptools (Bivand & Lewin-Koh, 2013) in R 
with parameters specific for the region where they were located (Asia, 
Africa, Europe, or North America). I then determined whether species 
ranges overlapped using PBSmapping (Schnute, Boers, & Haigh, 2012) 
in R. Species that had no overlap were designated as allopatric.

2.5.3 | Silene

The original crossing data were compiled in Moyle et al. (2004). 
Prezygotic isolation was a measure of the total number of failed polli-
nations (likely due to pollen pistil interactions) in interspecific crosses, 
compared to the reproductive isolation of the parental species. 
Postzygotic isolation was estimated from pollen sterility of F1 hybrids. 
The original data included sympatric and allopatric relationships and I 
enriched the dataset by including flower color for each species. Floral 
color data were summarized from the available literature, online flora 

F IGURE  2 A visual representation of how more detailed 
information about a species group found in one tree can be 
integrated into a larger phylogeny by transforming branch lengths. 
In this example, the relationships between species A, D, E, and B are 
scaled to the same length that occurred in the backbone tree (for the 
clade consisting of species A and B)
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projects, and personal observations. The phylogeny comes from a 
supertree (Jenkins & Keller, 2011). Similarly to the Drosophila data, I 
only retained taxa for analysis that could be placed into the phylogeny 
and I allowed polytomies for certain taxa where different subspecies 
were used in crosses. This yielded 65 crosses for analyses.

2.5.4 | Nolana

The Nolana data were originally presented in Jewell et al. (2012). As 
the authors found no measurable prezygotic isolation, I focused on 
total postzygotic isolation that was a combination of fruit set, meri-
carp size, and seed set. The phylogeny used in the original study had 
several large polytomies. To resolve these polytomies, I used the origi-
nal sequence data to construct a new phylogeny in Raxml (Stamatakis, 
2014), by allowing each gene to have its own substitution model. 
Genes on the chloroplast were concatenated and treated as one 
unit. These data also contained a complete pairwise genetic distance 
matrix, pairwise measures of geographic distance, and pairwise meas-
ures of differences in specific aspects of floral morphology, all three of 
which are significantly correlated with one another. In my analyses, I 
used corolla diameter differences to quantify floral distance, although 
similar results were achieved with another measure of floral diver-
gence (corolla depth difference), likely because these measures were 
highly similar and correlated (data not shown).

3  | RESULTS

3.1 | Drosophila

Using the Drosophila reproductive isolation data, I tested the hypothesis 
that there are differences in the level of reproductive isolation between 
allopatric and sympatric species pairs (μ = baseline for allopatry and 
γsym = change in RI for sympatry) and that reproductive isolation accu-
mulates at a different rate between allopatric and sympatric species 
pairs (i.e., slope between genetic distance and RI differs; βgen.dist. = rela-
tionship between genetic distance and RI for allopatric pairs and 
βint. = change in slope for sympatric pairs). To interpret these models, 
it is often easiest look at which coefficients contribute to reproductive 
isolation in allopatric vs. sympatric species pairs. The overall model has 
many coefficients but only a few differentiate the allopatric vs. sympat-
ric species pairs. The overall model has the following form:

The variable x1 is a continuous variable, but the variable x2 is binary 
and is equal to 0 for allopatric pairs and 1 for sympatric pairs. Thus, for 
allopatric pairs, the model simplifies to: 

 For sympatric pairs, the model simplifies to 

This highlights that the coefficient βint. represents the change in slope 
for sympatric pairs and that the total slope for sympatric species pairs 
is the sum of the two beta coefficients.

For prezygotic isolation, the intercept (baseline level of reproduc-
tive isolation) was significantly different than zero, and reproductive 
isolation was significantly elevated in sympatric pairs (γsym = (0.2533, 
0.4764), (lower 95% HPD interval, upper 95% HPD interval); Table 1). 
There was also a significant relationship between genetic distance 
and reproductive isolation, as detected in the original study (Coyne 
& Orr, 1989), but only for allopatric species pairs. In comparison, the 
overall relationship between genetic distance and reproductive isola-
tion is nonsignificant for sympatric pairs (Table 1). In this model, the 
coefficients are additive (Equation 11), and the relationship between 
genetic distance and reproductive isolation is not significantly differ-
ent from zero (HPD for βgen.dist+βint = (−0.1250, 0.3571)). The effect 
of sympatry on reproductive isolation (γsym) is so strong that most of 
the reproductive isolation values are near 1 across all distances (com-
pletely isolated; Figure 3).

For postzygotic isolation, the intercept was not significantly dif-
ferent than zero; neither was the increase in reproductive isolation 
in sympatry were not significantly different than zero (μ and γsym had 
HPD overlapping zero; Table 1). This indicates that there is little to no 
postzygotic isolation in recently diverged species regardless of geo-
graphical context. The relationship between genetic distance and 
reproductive isolation (βgen.dist) was significant, and the rate of increase 
of reproductive isolation with genetic distance was greater in sympat-
ric pairs (βint = 0.1326, 0.5247). This suggests that reproductive isola-
tion may accumulate more quickly between sympatric pairs of species 
than allopatric pairs, and the difference increases as divergence time 
(genetic distance) increases.

3.2 | Bufonidae

Analyses of the Bufonidae data using the two alternative indices of 
reproductive isolation were qualitatively the same (Table 2), so I only (9)yRI = μ + x1βgen.dist.+ x2γsym + (x1 ∗x2)βint + Zff + Zmm + e

(10)yRI = μ + x1βgen.dist. + Zff + Zmm + e

(11)yRI = μ + γsym + x1(βgen.dist.+ βint) + Zff + Zmm + e

Coefficient Biological meaning

Prezygotic Postzygotic

Lower Upper Lower Upper

μ (intercept) Average RI 0.1975 0.6033 −0.0005 0.4001

βgen.dist. Slope relating genetic 
distance and RI

0.1959 0.4164 0.1906 0.4644

γsym Additional RI in sympatry 0.2533 0.4764 −0.1162 0.1355

βint Increase in slope for sympatry −0.3209 −0.0593 0.1326 0.5247

TABLE  1 Summary of coefficients 
estimated for the analysis of prezygotic 
(left) and postzygotic (right) reproductive 
isolation from the Drosophila data. The 
confidence intervals are for 95% highest 
posterior density (HPD) and are significant 
if they do not include zero (in bold)
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discuss results using the original index of reproductive isolation. The 
model intercept was significantly different than zero (μ = 0.2980, 
0.6945), and the effect of sympatry was to actually decrease the 
level of reproductive isolation (γsym = −0.2816, −0.0427) although 
the overall level of reproductive isolation was still nonzero (the HPD 
for μ + γsym = (0.0164,0.6518)). The relationship between genetic dis-
tance and reproductive isolation was quite steep (βgen.dist = 3.6212, 
5.8819), and the increased rate of accumulation in sympatric pairs was 
also significant (βint = 0.4679, 3.5163). In combination, these coeffi-
cients suggest that even though there is little reproductive isolation 
for very recently diverged sympatric pairs (those separated by small 
genetic distances), reproductive isolation accumulates more quickly 
for sympatric pairs than allopatric pairs.

3.3 | Silene

Sympatry had no effect on the baseline prezygotic reproductive isola-
tion (γsym = −0.3643, 0.1510) or on the rate of accumulation of repro-
ductive isolation (βint = −1.5671, 3.5080), which is consistent with the 
original results from Moyle et al. (2004). There was a significant rela-
tionship between genetic distance and reproductive isolation (βgen.dist),  
which did not differ between sympatry and allopatry (Table 3).  

TABLE  2 Summary of coefficients estimated for the analysis of postzygotic reproductive isolation from the Bufonidae data. The original 
index of reproductive isolation (left) was calculated by Malone and Fontenot (2008) following the procedure of Coyne and Orr (1989) and 
Presgraves (2002). The new index (right) takes into account that reproductive barriers are sequential following Ramsey et al. (2003). The 
confidence intervals are for 95% highest posterior density (HPD) and are significant if they do not include zero (in bold)

Coefficient Biological meaning

Postzygotic (Original) Postzygotic (New)

Lower Upper Lower Upper

μ (intercept) Average RI 0.2980 0.6945 0.8398 0.9686

βgen.dist. Slope relating genetic distance and RI 3.6212 5.8819 0.4472 1.2592

γsym Additional RI in sympatry −0.2816 −0.0427 −0.0988 −0.0105

βint Increase in slope for sympatry 0.4679 3.5163 0.2665 1.3992

TABLE  3 Summary of coefficients estimated for the analysis of prezygotic reproductive isolation when considering geographical context 
(left) or floral divergence (right) from the Silene data. The confidence intervals are for 95% highest posterior density (HPD) and are significant if 
they do not include zero (in bold)

Coefficient Biological meaning

Prezygotic (Geographic model)

Lower Upper

μ (intercept) Average RI −1.2138 1.9094

βgen.dist. Slope relating genetic distance and RI 0.9126 7.1054

γsym Additional RI in sympatry −0.3643 0.1510

βint Increase in slope for sympatry −1.5671 3.5080

Coefficient Biological meaning

Prezygotic (Floral differences model)

Lower Upper

μ (intercept) Average RI −1.0166 1.4672

βgen.dist. Slope relating genetic distance and RI 3.4368 9.5154

γcolor Additional RI due to color differences −0.1556 0.3158

βint Increase in slope for color differences −2.4138 2.2990

F IGURE  3 The relationship between genetic distance and 
prezygotic isolation for Drosophila species pairs that are either 
allopatric or sympatric, demonstrating that most sympatric species 
pairs show almost complete isolation, resulting in no relationship 
between genetic distance and reproductive isolation for the 
sympatric context. The best fit lines were constructed using the 
mode of the parameters from the MCMCglmm analysis. The solid line 
represents allopatric species pairs, and the dashed line represents 
sympatric species pairs
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The lack of allopatric pairs for the postzygotic and total reproduc-
tive isolation measurements precluded analysis of the effects of geo-
graphical context on these measures, although the general relation-
ship between reproductive isolation and genetic distance was positive 
and significant consistent with Moyle et al. (2004); data not shown.

Floral color differences did not increase reproductive isola-
tion, no matter which index of reproductive isolation you consider. 
Regardless of the cross category (crosses between species that dif-
fered in floral color vs. between species that had the same color), 
there was a large amount of variation in reproductive isolation with 
some pairs having little to no isolation, and other pairs having sub-
stantial isolation (Figure 4). Thus, there was no effect of floral color 
on the average levels of reproductive isolation or on the accumu-
lation of reproductive isolation over time, and the only significant 
effect was genetic distance on reproductive isolation (Table 3; pre-
zygotic model shown).

3.4 | Nolana

When genetic distance, geographic distance, and measures of 
flower size differences were considered jointly, the only signifi-
cant predictor of reproductive isolation was geographic distance 
(βgeo.dist = 0.0001, 0.0004; note, the small coefficient is due to the 
scale of reproductive isolation/kilometers), signifying that there is 
more reproductive isolation between pairs of species that are more 
geographically distant. This is consistent with the original study in 
the sense that only geographical distance was significant using the 
Mantel test (Jewell et al., 2012). The analysis using the genetic dis-
tance matrix also indicated that geographic distance was the only 
significant predictor of reproductive isolation (Table 4), and the 
coefficients were similar to the previous analysis. The main differ-
ence was there was no significant intercept (μ = (−1.0166, 1.4672)). 
This is likely caused by the differences in inferred relatedness 
between the phylogeny and the genetic distance matrix (Figure 5), 
as this was the only difference in the two models. In a phylogeny 
relatedness is based on shared ancestry, whereas a distance matrix 
includes all nucleotide changes without context of whether they 
are shared with other taxa or phylogenetically informative. The 
result of using the genetic distance matrix to infer relatedness may 
have been to infer that more closely related species had little repro-
ductive isolation, so the intercept was not significantly different 
than zero.

4  | DISCUSSION

Understanding how reproductive isolation accumulates over time 
in different geographic contexts (allopatry vs. sympatry) or accord-
ing to specific trait differences requires analyzing the interaction 
between genetic distance and these factors and their joint effects 
on reproductive isolation. These comparisons cannot be made using 
PICs or Mantel tests, so in many classical studies, the effects of 
these factors are instead indirectly compared (Coyne & Orr, 1989, 
1997; Jewell et al., 2012; Moyle et al., 2004). Using a phylogenetic 
mixed model framework, and classic datasets on species ability to 
cross with one another, I formally tested the interactions among 
these effects on the evolution of reproductive isolation. I explicitly 
examined interactions between categorical and continuous vari-
ables and accounted for correlations between predictor variables, 
something that is not possible in the standard PICs framework 
(Burt, 1989; Garland et al., 1992) and difficult to implement using 
Mantel tests when there are more than two levels of the categori-
cal variable. Mantel tests only evaluate the correlation between two 
variables but not average effects (i.e., intercepts), which must be 
tested with other methods, whereas estimates of mean differences 
between two groups are simultaneously estimated using a mixed 
model approach.

In addition, in the mixed modeling framework, the correlation 
between predictor variables can be modeled and accounted for 
through specific variance matrices, which enables several predictors 

F IGURE  4 Variation in the level of reproductive isolation between 
Silene species pairs that either had different floral colors or shared 
floral colors (separated into pairs where both species were either 
white or red) for both (a) prezygotic and (b) postzygotic isolation 
demonstrating no effect of floral differences on reproductive 
isolation
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to be tested simultaneously where multicollinearity may have previ-
ously limited inferences (as demonstrated in the analysis of Nolana). 
In comparison, current approaches to evaluating the effect of multi-
ple variables on reproductive isolation have clear limitations. Partial 
Mantel tests do not examine multiple effects simultaneously, but 
instead evaluate what additional variance a variable may explain 
after accounting for variance due to other variables (Smouse et al., 
1986). Although multiple variables can be accommodated in a  
standard regression using PICs, it is be difficult to determine the sig-
nificance of coefficients when the analysis involves correlated inde-
pendent variables because multicollinearity causes spurious variance 
inflation (Mundry, 2014). This is especially troubling, given that the 

nature of the data used in these studies will often contain correla-
tions between the variables that may explain the accumulation of 
reproductive isolation.

The phylogenetic mixed effect model is also flexible in that rela-
tionships between taxa can be conveyed either through a phyloge-
netic relatedness matrix or a genetic distance matrix. In contrast, 
often the use of PICs vs. Mantel test reflects the scale of relatedness 
that researchers are examining: PICs typically examine interspecific 
data using phylogenies while Mantel tests can focus on intraspecific 
data using genetic distance matrices. The mixed model approach is 
a natural way to apply these analyses across different phylogenetic 
scales.

Coefficient Biological meaning

Total reproductive 
isolation (phylogenetic 
matrix)

Total reproductive 
isolation (genetic 
distance matrix)

Lower Upper Lower Upper

μ (intercept) Average RI 0.1166 0.6249 −0.3126 0.4921

βgen.dist. Slope relating genetic 
distance to RI

−0.3149 0.4861 −0.4088 0.3945

βgeo.dist. Slope relating 
geographic distance 
(km) to RI

0.0001 0.0004 0.0001 0.0004

βcorolla Slope relating 
differences in corolla 
diameter to RI

−0.0071 0.0140 −0.0106 0.0115

TABLE  4 Summary of coefficients 
estimated for the analysis of total 
reproductive isolation when using the 
phylogeny (left) or genetic distance matrix 
(right) from the Nolana data. The 
confidence intervals are for 95% highest 
posterior density (HPD) and are significant 
if they do not include zero (in bold)

F IGURE  5 Comparison of relationships in the genus Nolana when either a phylogeny made from several loci or matrix of pairwise genetic 
distances is used. The topology on the left represents the maximum-likelihood tree based on sequence from the ADH2, atpB, ndhF, psbA-trnH, 
rps16 genes. The topology on the right was generated using Ward’s hierarchical clustering method for pairwise genetic distances reported in 
Jewell et al. (2012)
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4.1 | New insights from phylogenetic mixed 
model framework

For the Drosophila and Bufonidae analyses, I specifically tested whether 
geographic context (allopatry or sympatry) influences the rate of accu-
mulation of reproductive isolation. These data were both originally ana-
lyzed using linear regression (similar to PICS); however, the difference 
in the rate of accumulation (represented by the slope relating genetic 
distance to reproductive isolation) could not be tested directly because 
of the inability to calculate contrasts for binary variables, and therefore, 
the interaction between geographic context and genetic distance could 
not be evaluated. Using the phylogenetic mixed model enabled direct 
tests of the differences in the rate of isolation accumulation, and doing 
so produced new insights into these previously analyzed datasets. In 
particular, I found that in both Drosophila and Bufonidae, there was an 
increase in the rate of accumulation of postzygotic reproductive iso-
lation in sympatric species pairs compared to allopatric species pairs. 
This result contrasts with the analysis by Coyne and Orr (1997) and 
likely reflects the fact that Coyne and Orr (1997) used a subset of the 
data that only included recently diverged species (D < 0.25), whereas 
analyses here included the entire dataset. Other studies that have 
included data from both sympatric and allopatric pairs in Lepidoptera 
(Presgraves, 2002) and birds (Price & Bouvier, 2002) failed to find dif-
ferences between sympatry and allopatry in the level of reproductive 
isolation, although the inferences were based on informal analyses.

For prezygotic isolation, the presence of stronger prezygotic isola-
tion among closely related species pairs in sympatry is often assumed 
to be a product of reinforcement (Yukilevich, 2012), but reinforcement 
unlikely to contribute directly to increased accumulation of postzy-
gotic isolation in sympatry (Servedio, 2000; Servedio & Sætre, 2003). 
An alternative hypothesis, called the Templeton Effect or differential 
fusion effect, proposes that strong reproductive isolation in sympatry 
is a consequence of a systematic bias among species pairs that are able 
to maintain their integrity in sympatry, whereby weakly isolated spe-
cies fail to maintain species boundaries (and therefore undergo species 
collapse), leaving only species pairs with strong reproductive isolation. 
This hypothesis has previously been proposed to explain patterns of 
strong prezygotic isolation in sympatry (Noor, 1999; Templeton, 1981; 
Yukilevich, 2012); however (unlike reinforcement), the effect may be 
equally applicable to postzygotic isolation. The templeton-differential 
fusion effect may be reinterpreted and applied to postzygotic isolation 
such that the level of postzygotic isolation that exists between species 
will determine the likelihood of species coexistence. This is because 
sexual isolation alone is often not strong enough to maintain species 
barriers (Lande, 1981; Payne & Krakauer, 1997; Servedio & Burger, 
2014), and reinforcement is sensitive to gene flow. If the strength of 
postzygotic isolation between sympatric lineages drives reinforcement 
and ultimately the strength of prezygotic isolation (Servedio, 2000; 
Servedio & Sætre, 2003), we should observe stronger postzygotic iso-
lation in sympatry (as observed for both the Drosophila and Bufonidae 
datasets) and a correlation between postzygotic and prezygotic isola-
tion in sympatry. Interestingly, postzygotic and prezygotic isolation are 
correlated in sympatry in the Drosophila dataset (Yukilevich, 2012).

The mixed model approach can also be used to evaluate the effect 
of categorical trait variation on the strength and accumulation of 
reproductive isolation, to address additional mechanistic questions. 
In my analyses of whether floral divergence can contribute to post-
mating and postzygotic reproductive isolation, independent of effects 
on pollinator visitation, I found no support in Silene for the hypoth-
esis that floral divergence could also influence these reproductive 
isolation phenotypes through pleiotropic effects (Haak et al., 2014). 
Specifically, floral divergence in the form of flower color differences 
did not contribute to either prezygotic isolation (most likely via pol-
len–pistil interactions) or postzygotic isolation (F1 pollen sterility). It 
is possible that the pleiotropic effects of floral traits on reproductive 
isolation could be manifested in a different trait (seed sterility, F1 
germination, or F1 viability) or floral divergence could contribute to 
extrinsic postzygotic isolation (Lowry, Modliszewski, Wright, Wu, & 
Willis, 2008; Ramsey et al., 2003), none of which were captured in this 
analysis. Alternatively, differentiation in floral traits other than color 
might be more important in this context. In Silene, for example, there 
is some evidence that floral traits other than red vs. white flower color, 
including flower display height and orientation (Brothers & Atwell, 
2014; Fenster, Reynolds, Williams, Makowsky, & Dudash, 2015) and 
floral scent (Castillo, Kula, Dötterl, Dudash, & Fenster, 2014; Waelti, 
Muhlemann, Widmer, & Schiestl, 2008), may contribute to reproduc-
tive isolation via pollinator visitation.

Like floral variation, the variation in other traits might also be cor-
related with other factors that contribute to reproductive isolation. For 
example, if floral shape has phylogenetic signal, then floral divergence 
would be correlated with genetic distance; similarly, if there is selec-
tion for different flower sizes in different environments, floral diver-
gence would be associated with geographical distance. Under these 
scenarios, floral divergence might seem to be contributing to repro-
ductive isolation, merely because it is correlated with a factor that 
drives the accumulation of reproductive isolation. It is important to be 
able to distinguish these potential mechanisms. In the original Nolana 
analysis (Jewell et al., 2012), floral, geographical, and genetic distance 
measures were all observed to be correlated. In the reanalysis here, I 
did not observe an independent effect of floral divergence (floral size 
difference) on reproductive isolation. Indeed, I was able to explicitly 
rule out the possibility that floral changes contributed to reproductive 
isolation while simultaneously testing the effects of genetic distance 
and geographic distance and found geographical distance alone con-
tributed to reproductive isolation in this system. From this analysis, 
it is clear that differences in flower size do not appear to translate 
into pleiotropic effects on reproductive isolation in this system, as has 
been hypothesized for differences in traits associated with pollinator 
preference (Haak et al.2014).

5  | CONCLUSION

The phylogenetic mixed model framework utilized in this study reme-
dies difficulties for Mantel tests and PICs in testing hypothesis about 
factors contributing to the evolution of reproductive isolation. To 
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demonstrate the utility of this framework, I performed several analy-
ses to evaluate the roles of categorical geographic and trait varia-
tion, and quantitative divergence measures, on the accumulation and 
strength of isolation in four published datasets. I tested the role of 
geography in the evolution of reproductive isolation and was able to 
show that reproductive isolation accumulates more quickly in sym-
patry not only for prezygotic isolation but also for postzygotic isola-
tion. In the datasets examined, floral traits did not contribute to the 
pattern or strength of reproductive isolation measures included in 
the original studies. This framework can enable future studies to test 
complex hypothesis, test the effects of multiple variables simultane-
ously (even if they are correlated), and use a generalized framework 
to examine reproductive isolation between species or at the intraspe-
cies level.
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