
INTRODUCTION

Circadian rhythms are based on an internal timing system. The 
effects of circadian rhythms on learning and memory have been 
studied. Previous reports showed that mutations in genes respon-
sible for generating circadian rhythms impair learning in several 
organisms, ranging from Drosophila [1] to mice [2, 3] and humans 
[4]. In mammals, the suprachiasmatic nucleus (SCN) in the hy-
pothalamus is known to be responsible for regulating circadian 
rhythms [5]. The RNA and protein levels of circadian oscillators 
are controlled by positive and negative transcriptional feedback 

loops in the SCN [6]. The SCN, acting as a master clock, coordi-
nates the activity of various oscillators in the brain.

REV-ERBα, which is one of the clock-modulating proteins, 
represses the transcription of circadian oscillators. REV-ERBα 
expression rhythms occur at almost 180o out of phase in the SCN 
and the expression peaks at CT08~CT12 [6]. In addition, REV-
ERBα influences the circadian period length but is not required for 
circadian rhythm generation [7]. According to Gerhart-Hines et 
al. [8], REV-ERBα controls temperature rhythms and thermogenic 
plasticity. Furthermore, REV-ERBα in the ventral midbrain drives 
the circadian oscillations in tyrosine hydroxylase expression, 
thereby regulating mood [9], and is required for food entrainment 
[10].

Recent studies have revealed the functions of REV-ERBα in the 
hippocampus. The expression level of REV-ERBα in the hippo-
campus shows oscillation that peaks at CT08~CT12 [11], and the 
lack of REV-ERBα leads to alterations in hippocampus-dependent 
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Short Communication

Circadian rhythms are driven by circadian oscillators, and these rhythms result in the biological phenomenon of 24-h oscillations. 
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behaviors [12]. The regulation of the circadian clock in the hip-
pocampus by the REV-ERBα is performed through the interaction 
with oligophrenin-1, which regulates dendritic spine morphology 
[13]. However, the role of REV-ERBα in hippocampal synaptic 
plasticity has not been well characterized. The present study aimed 
to elucidate the relationship between REV-ERBα and synaptic 
plasticity in the hippocampus through extracellular field record-
ings during subjective day and night.

MATERIALS AND METHODS

Mice

Rev-erbα knock-out (KO) and wild-type (WT) mice were main-
tained in a C57BL/6J background. Mice were housed at a constant 
room temperature with free access to food and water. The circa-
dian time 0~circadian time 2 (CT0~CT2) group was subjected to a 
normal 12-h light/12-h dark cycle, with lights switched on at 09:00. 
The CT12-14 group was subjected to a reversed 12-h light/12-
h dark cycle, with lights switched on at 21:00. After entrainment 
for >14 days under a reversed light-dark photoperiod, mice were 
maintained under the same photoperiod. All procedures were ap-
proved by the Institutional Animal Care and Use Committee of 
Seoul National University.

Electrophysiology

For extracellular field recordings, transverse hippocampal slices 
(400-μm-thick) were prepared from brains of adult mice deeply 
anesthetized with isoflurane using a vibratome [14]. Hippocampal 
slices were incubated at 32oC for 30 min and then maintained at 
28oC for at least 1 h before the experiment as described previously 
[15]. After recovery, the slices were placed in a recording chamber 
at 25oC, and perfused with oxygenated artificial cerebrospinal fluid 
(ACSF) containing 124 mM NaCl, 2.5 mM KCl, 1 mM NaH2PO4, 
25 mM NaHCO3, 10 mM glucose, 2 mM CaCl2, and 2 mM MgSO4 
at a rate of 1 ml/min. Extracellular field EPSPs (fEPSPs) were re-
corded from the CA1 area using a glass electrode filled with ACSF 
(1 MΩ). The Schaffer collateral (SC) pathway was stimulated every 
30 s using concentric bipolar electrodes (MCE-100; Kopf Instru-
ments). For measuring LTP, the stimulation intensity was adjusted 
to produce a fEPSP slope that was approximately 40% of the maxi-
mum slope for that slice. All LTP experiments were performed 
after a stable baseline was recorded. Theta burst stimulation (TBS) 
protocols were used to induce E-LTP and L-LTP (five pulses of 
100 Hz repeated five times at 5 Hz; 10-s inter-train interval for E-
LTP and 10-min inter-train interval for L-LTP). Field potentials 
were amplified, low-pass filtered (GeneClamp 500; Axon Instru-
ments), and then digitized (NI PCI-6221; National Instruments) 

for measurement. Data were monitored, analyzed online, and re-
analyzed offline using the WinLTP program. Representative traces 
are an average of five consecutive responses and stimulus artifacts 
were blanked for clarity.

Statistics

Input-output curve and paired-pulse ratio data were analyzed 
using repeated-measures two-way ANOVA. LTP data (average of 
the last 5 min of recordings) were analyzed using an unpaired two-
tailed t-test. All the data are represented as mean±SEM.

RESULTS AND DISCUSSION

To determine whether REV-ERBα plays an important role in hip-
pocampal synaptic plasticity, we characterized electrophysiological 
phenotypes in the Rev-erbα KO mice. We first measured synaptic 
transmissions at hippocampal Schaffer-collateral-CA1-pyramidal 
(SC-CA1) synapses. As the REV-ERBα expression shows oscil-
lations, the extracellular field recordings were performed during 
subjective day (CT0~CT2) and subjective night (CT12~CT14).

During the subjective day (CT0~CT2), the input-output rela-
tionship was similar between the Rev-erbα KO mice and the WT 
littermates (Fig. 1A), which suggests that the lack of REV-ERBα 
expression does not influence basal transmission in SC-CA1 
synapses. Furthermore, we performed paired-pulse ratio and con-
firmed that short-term plasticity is normal in Rev-erbα KO mice 
(Fig. 1B). To understand whether REV-ERBα influences NMDAR-
dependent synaptic plasticity, we performed early long-term 
potentiation (E-LTP) with theta-burst stimulation (TBS). Loss of 
REV-ERBα expression did not cause any impairment in the E-LTP 
(Fig. 1C). Together, these results suggest that the genetic deletion of 
REV-ERBα does not affect basal synaptic transmission, short-term 
plasticity, and NMDAR-dependent synaptic plasticity in the hip-
pocampal SC-CA1 pathway during the subjective day.

To further examine the association between REV-ERBα and 
hippocampal synaptic plasticity, we performed extracellular field 
recordings during the subjective night (CT12~CT14). In the Rev-
erbα KO mice, both the input-output relationship and paired-
pulse ratio were normal (Fig. 2A, B), indicating that the deletion of 
REV-ERBα does not influence basal transmission and short-term 
plasticity in SC-CA1 synapses. However, E-LTP appeared signifi-
cantly impaired with a considerably lower potentiation magnitude 
(Fig. 2C). Therefore, these findings indicate that REV-ERBα has a 
time-dependent role in regulating the NMDAR-dependent synap-
tic plasticity.

The next set of experiments were performed to determine 
whether L-LTP varies with the time of day in the Rev-erbα KO 



346 www.enjournal.org https://doi.org/10.5607/en.2018.27.5.344

Ja Eun Choi, et al.

mice. L-LTP is a type of synaptic plasticity that is dependent on 
new protein synthesis and protein kinase activation [16]. Previ-
ous studies showed that the disruption of hippocampal MAPK 
oscillations results in theta rhythm oscillation deficits in NF1 
mouse models [17]. In the Rev-erbα KO mice, L-LTP was induced 
normally and the potentiation levels stably lasted for 3 hours. No 
significant differences in the magnitude of L-LTP were observed 
between the Rev-erbα KO mice and their WT littermates, both at 
CT0~CT2 and at CT12~CT14 (Fig. 3A, B). These results indicate 
that REV-ERBα does not alter the LTP, which is dependent on pro-
tein synthesis.

The present study shows the electrophysiological role of REV-
ERBα in the hippocampus. We found that the magnitude of E-LTP 

was impaired only at CT12~CT14. The subjective night-specific 
deficit we observed is consistent with the findings of the previ-
ous study by Schnell et al. in that the REV-ERBα expression level 
peaked during CT08~CT12 [11]. It is interesting that the Rev-
erbα KO mice exhibited impairments in hippocampus-dependent 
behaviors during CT0~CT4 [12], which includes the condition 
of subjective day (CT0~CT2) in this study. However, our results 
showed that the basic synaptic properties, short-term plasticity, 
and NMDAR-dependent synaptic plasticity are not altered at 
subjective day (CT0~CT2). The discrepancy in the behavioral 
and electrophysiological results can be explained by the fact that 
REV-ERBα is widely expressed during development; therefore, the 
behavioral effect observed at CT0~CT4 in the Rev-erbα KO mice 

Fig. 1. Basic synaptic transmission and E-LTP are unaffected in Rev-erbα KO mice on the subjective day. (A) Input-output relationships at the hippo-
campal Schaffer-collateral-CA1-pyramidal (SC-CA1) synapses showed no significant difference between the WT and Rev-erbα KO mice (WT, 7 slices 
from 4 mice; Rev-erbα KO, 7 slices from 4 mice; repeated-measures two-way ANOVA, effect of genotype, F(1,12)=0.7524; p=0.9996). (B) The paired-pulse 
ratios showed no significant difference between the WT and KO mice. (WT, 6 slices from 4 mice; Rev-erbα KO, 7 slices from 4 mice; repeated-measures 
two-way ANOVA, effect of genotype, F(1,11)=0.4297; p=0.1009). (C) Example traces from baseline and LTP at times indicated by (a) and (b): WT (black) 
and KO (red). TBS-induced E-LTP was comparable between the WT and KO mice. (WT, 7 slices from 4 mice; Rev-erbα KO, 6 slices from 4 mice; aver-
age fEPSP slopes for the last 5 min; WT, 142.7%±8.039%; Rev-erbα KO, 137.7%±9.783%; unpaired t  test, p=0.6970).
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could be due to developmental brain defects. Thus, further inves-
tigation is needed to explain the association, and by performing 
hippocampus-dependent behavioral tasks at CT12~CT14, we may 
be able to explain the relationship between behavior and electro-
physiology in the Rev-erbα KO mice.

The hippocampus is one of the targets of dopaminergic projec-
tions from the midbrain [18]. Moreover, the CA1 region of the 
hippocampus expresses dopamine receptors [19], and dopamine 
release during specific time points is important in long-term 
memory consolidation [20]. A recent study by Broussard and col-
leagues showed that dopamine regulates synaptic plasticity in the 
hippocampus [21]. The Rev-erbα KO mice showed dopaminergic 
hyperactivity [9, 12] and significantly higher spontaneous dopa-
mine release from striatal tissue than the WT mice at CT12 [9]. 

Therefore, we might interpret that the hyperdopaminergic state 
of the Rev-erbα KO mice may be the tentative mechanism of the 
significantly lower potentiation magnitude at CT12~CT14.

In several species, learning and memory, synaptic transmission, 
and LTP are known to show dependence on the time of day [22, 
23]. According to previous studies by Jilg et al. [24] and Wang et 
al. [25], Per1-knockout mice showed deficits in hippocampus-
dependent long-term spatial learning and Per2-mutant mice 
exhibited impairments in the hippocampal LTP. Our data reveal 
that another circadian oscillator, REV-ERBα, is involved in phase-
dependent hippocampal LTP dynamics. In addition, the Rev-erbα 
KO mice exhibited impaired E-LTP at CT12~CT14 with intact 
L-LTP at both time points, which requires new protein synthesis. 
The result can be explained by the study by Sakai and colleagues, 

Fig. 2. E-LTP is impaired in Rev-erbα KO mice during the subjective night. (A) The input-output relationships at SC-CA1 synapses showed no signifi-
cant differences between WT and Rev-erbα KO mice at CT12~13. (WT, 12 slices from 7 mice; Rev-erbα KO, 12 slices from 7 mice; repeated-measures 
two-way ANOVA, effect of genotype, F(1,22)=0.5963; p=0.9631). (B) Paired-pulse ratios showed no significant differences between the WT and KO mice 
at CT12~13. (WT, 12 slices from 7 mice; Rev-erbα KO, 13 slices from 7 mice; repeated-measures two-way ANOVA, effect of genotype, F(1,22)=0.6569; 
p=0.7418). (C) Representative traces from baseline and LTP at times indicated by (a) and (b): WT (black) and KO (blue). TBS-induced E-LTP was sig-
nificantly lower in the Rev-erbα KO mice (WT, 11 slices from 7 mice; Rev-erbα KO, 11 slices from 7 mice; average fEPSP slopes for the last 5 min; WT, 
146.4%±6.073%; Rev-erbα KO, 128.7%±4.288%; unpaired t-test, p=0.0274). *p<0.05.
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in which they showed that long-term memory is independent of 
the circadian rhythm [1]. However, the exact mechanism under-
lying the regulation of protein synthesis-dependent and protein 
synthesis-independent synaptic plasticity by Rev-erbα is yet to be 
discovered.

In summary, REV-ERBα is an important circadian protein for 
regulating the magnitude of hippocampal E-LTP during the sub-
jective night.
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