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The set of annotations at the Saccharomyces Genome Database (SGD) that classifies the cellular function of S. cerevisiae

gene products using Gene Ontology (GO) terms has become an important resource for facilitating experimental analysis.

In addition to capturing and summarizing experimental results, the structured nature of GO annotations allows for func-

tional comparison across organisms as well as propagation of functional predictions between related gene products. Due to

their relevance to many areas of research, ensuring the accuracy and quality of these annotations is a priority at SGD. GO

annotations are assigned either manually, by biocurators extracting experimental evidence from the scientific literature, or

through automated methods that leverage computational algorithms to predict functional information. Here, we discuss

the relationship between literature-based and computationally predicted GO annotations in SGD and extend a strategy

whereby comparison of these two types of annotation identifies genes whose annotations need review. Our method,

CvManGO (Computational versus Manual GO annotations), pairs literature-based GO annotations with computational GO

predictions and evaluates the relationship of the two terms within GO, looking for instances of discrepancy. We found that

this method will identify genes that require annotation updates, taking an important step towards finding ways to pri-

oritize literature review. Additionally, we explored factors that may influence the effectiveness of CvManGO in identifying

relevant gene targets to find in particular those genes that are missing literature-supported annotations, but our survey

found that there are no immediately identifiable criteria by which one could enrich for these under-annotated genes.

Finally, we discuss possible ways to improve this strategy, and the applicability of this method to other projects that use

the GO for curation.

Database URL: http://www.yeastgenome.org
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Introduction

The integration and comparison of biological information

can be complicated by the human tendency to express the

same concept in multiple ways. The Gene Ontology (GO)

addresses the difficulty of functional classification for

gene products, and has become the main resource for

capturing such information in a controlled format that

can be effectively used for search and computational ana-

lysis (1,2). GO annotations are comprised of a gene product;

a structured vocabulary term that represents a molecular

function, a biological process or a cellular component; the

literature reference for the assignment; and an evidence

code that indicates how the reference supports the

annotation (3,4).

Annotations based on manual curation of the published

literature are generally considered to be the gold standard.

These are derived from published sources by highly trained

scientific biocurators, who annotate gene products with

the current and most direct information, considered in

the context of all available experimentally defined

knowledge (5,6). As of Fall 2011, the Saccharomyces

Genome Database [SGD; http://www.yeastgenome.org,

(7)] had manually assigned nearly 38 000 GO annotations.

.............................................................................................................................................................................................................................................................................................

� The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited. Page 1 of 12

(page number not for citation purposes)

Database, Vol. 2012, Article ID bas001, doi:10.1093/database/bas001
.............................................................................................................................................................................................................................................................................................



The goal of creating GO annotations at SGD is to provide a

summary of the biological role of a given gene product.

This requires reviewing the entire body of literature for a

gene and synthesizing that knowledge to provide a concise

and accurate presentation of the role of that gene product

in the cell.

In addition to the literature-based set of annotations,

SGD also provides a large set of annotations automatically

generated by in silico methods (8). These predictive compu-

tational methods use single or multiple inputs—for ex-

ample, protein sequence signatures, protein–protein and

genetic interactions or mutant phenotypes—for algorithms

that generate annotations for gene products in an un-

biased manner. These predictions can complement existing

manual annotations, and provide clues about the functions

of uncharacterized proteins. Among the computationally

predicted annotations are those provided by the GOA

project at UniProtKB (9–11), including InterPro to GO,

which is based on protein sequence signatures (12,13);

and SwissProt Keywords (SPKW) to GO (http://www.gen

eontology.org/external2go/spkw2go). SGD also includes an-

notations from methods presented in publications, which,

at the time of this analysis, included two sophisticated

algorithms that integrate multiple data sets to automatic-

ally assign annotations: bioPIXIE/MEFIT and YeastFunc.

BioPIXIE/MEFIT considers relationships between genes

inferred from different types of high-throughput data

sets, such as protein localization, interactions and genomic

expression data, to generate predicted GO annotations in

Biological Process (14–16). The YeastFunc method (17) inte-

grates large-scale data sets with sequence-based inferences

to make predictions in all three GO aspects (Molecular

Function, Biological Process, Cellular Component). The

GO annotations in SGD that are assigned via all of these

computational methods carry either the IEA (Inferred

from Electronic Annotation) or RCA (Reviewed

Computational Analysis) evidence codes (http://www

.geneontology.org/GO.evidence.shtml). SGD works with

authors of publications to determine the most appro-

priate cut-off in order to provide the best representation

of the predictive method while maintaining a high level

of confidence in the computational annotation. All

computationally predicted annotations are maintained in

SGD for up to 1 year, after which time the annotations

are removed unless the providing source has refreshed

the analysis based upon the latest GO structure and data

available in the literature, since both are constantly

changing.

Among the tasks that are considered highest priority at

SGD are the annotation of genes for which a novel function

has been identified, and the review of annotations that

could be incorrect. The challenge is to identify these

genes in an efficient manner. Because manual curation

requires significant effort and our resources are limited,

we need to define a pipeline that will support this type

of prioritization of our curatorial tasks (18,19). To begin

addressing this issue, we previously explored whether

computational predictions can be used as an indicator for

identifying genes with ‘unknown’ annotations that need

review (20). ‘Unknown’ annotations are created by

manually assigning the root term of a GO aspect, which

are the broadest terms that exist: ‘molecular_function’

(GO:0003674), ‘biological_process’ (GO:0008150), and

‘cellular_component’ (GO:0005575). These annotations in-

dicate that at the time of curatorial review no evidence is

present in the literature that would allow a more specific

annotation to be made for the gene product (2,21).

We presented a method by which we paired a manual

literature-based annotation with a computationally pre-

dicted annotation and looked for correspondence between

the two, a method that in this article we will refer to as

‘Computational vs Manual GO annotations’ (CvManGO). In

the previous study, we found that when an InterPro predic-

tion existed for a gene that was manually annotated to

‘unknown’, we were often able to find evidence in the lit-

erature to assign a biological function to that gene (20).

Here we extend this analysis by considering additional

prediction methods. To represent a broad range of

methods used to generate computational annotations, in

addition to the sequence-based method InterPro, we chose

SPKW, a method based upon curated associations,

bioPIXIE/MEFIT, a Bayesian method and YeastFunc, a

guilt-by-association/profiling method.

In addition to exploring more computational sources, we

also extended the analysis to include manually assigned an-

notations other than ‘unknown’. For a given gene, annota-

tions and predictions were sorted into pairs and

categorized by the relationship between the paired GO

terms. We present data on pairs of annotations we categor-

ized as ‘mismatches’, indicating that the paired terms

are not in the same lineage (path to the root node) of

the GO ontology, or ‘shallow’, indicating that while the

literature-based annotation and computationally predicted

annotations are in the same lineage, the literature-based

annotation provides less detailed information. We show

here that both of these categories of annotation pairs

allow us to flag genes whose manually curated annotations

need to be reviewed and updated. In particular, we hope to

find an efficient way by which these computational predic-

tions can help us identify our highest-priority set of genes

for review: those that are under-annotated and missing

annotations from their manually curated set (i.e. cases

where experiments supporting functional annotations

exist in the literature but have not yet been captured by

SGD). We also discuss factors that contribute to the effect-

iveness of this method, and ways in which it may be more

efficiently applied.
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Methods

Sources of data

All annotations were derived from the SGD gene associ-

ation file dated 11 October 2009 (gene_association.sgd

Revision 1.1460, available at http://cvsweb.geneontology

.org/cgi-bin/cvsweb.cgi/go/gene-associations/gene_associ-

ation.sgd.gz). We chose this date because this set of SGD

GO annotations included recently updated computational

predictions generated by the four different methods

selected for this study. Literature-based annotations were

considered to be all annotations not bearing the IEA and

RCA evidence codes. Computationally predicted annota-

tions used in this study included all annotations from the

sources ‘YeastFunc’ and ‘bioPIXIE_MEFIT’ (SGD gene associ-

ation file column 15) and annotations from source

‘UniProtKB’ bearing the evidence code IEA and with

‘Interpro’ or ‘SP_KW’ in column 8 of the gene association

file. Annotations with the NOT qualifier, indicating evi-

dence for the negative annotation, were excluded from

this analysis.

A contemporaneous version of the GO file, version 5.1097

dated 13 October 2009, (http://cvsweb.geneontology.org/

cgi-bin /cvsweb.cgi / go / ontology / gene_ontology_edit.obo)

was used to evaluate the relationship between GO terms

used in the computationally predicted and the literature-

based annotations. Using a version of the ontology that

is current with respect to the annotations ensures that

the differences between the literature-based and compu-

tationally predicted annotations will not be based on

changes to the ontology, such as merged or obsoleted

GO terms.

Process for flagging annotations for review

If a gene product had multiple manual annotations in the

same direct lineage of the ontology (i.e. in the same path

leading up to the root of the ontology), the manual anno-

tations were filtered in order to keep only the most specific

annotations. In cases where both a literature-based and

computationally predicted annotation existed for the

given gene and GO aspect (Molecular Function, Biological

Process, Cellular Component), the filtered granular manual

annotations were compared against all of the computa-

tional predictions for that gene to create annotation

pairs. Each annotation pair was evaluated in order to clas-

sify the relationship in the ontology between the two

terms. Genes with annotations with the following relation-

ships were flagged for further review: (i) the GO term used

for the literature-based annotation is in the same lineage

of the ontology but the literature-based annotation is

closer to the root than the computational prediction and

(ii) the GO term used for the literature-based annotation is

in a different GO lineage from the computationally

predicted annotation.

Process for selecting genes to review

To generate a representative set of 336 genes with

literature-based annotations flagged by CvManGO to

review, we began with a random set of genes from each

class (see below for descriptions of the classes) and supple-

mented with additional genes to obtain similar coverage

for each class, computational source, and GO aspect.

This representative set of genes minimizes the numbers of

genes needing review while providing equivalent represen-

tation of different attributes we consider and examine in

this study. A control set of 70 genes to review was randomly

selected from those genes that had computational annota-

tions but had no literature-based annotations flagged by

CvManGO. This sample size would provide statistical power

to detect a difference of 20% with 90% confidence

(a= 0.05).

Gene scoring methodology

For each of the flagged genes, we reviewed the body of

literature published before January 2011 and assessed

whether the set of annotations for that gene was in need

of updating. Any gene needing no change to its current

annotations was scored as ‘no change’, while those needing

additional information or corrections to the existing set of

annotations were scored ‘updatable’ and the type of

update made based on each flagged annotation was

noted (Supplementary Tables S1 and S2). For scoring com-

putational predictions, each prediction was examined in

light of the published literature for the gene product and

current SGD standard annotation practice. If we were able

to find evidence in the literature supporting the computa-

tional prediction, such that we were able to add a manual

annotation using either the same term as the prediction or

a term in the same branch of the ontology, then the

computational annotation was scored as ‘helpful’. If no evi-

dence supporting the computational prediction was found

in the literature or the predicted term did not comply with

SGD’s annotation standards, then the prediction was scored

as ‘not helpful’. Review of the annotations, genes, and

their associated literature presented in this study required

�1000 person-hours and was conducted over 7 months.

Results and Discussion

Additional sources of computationally predicted
annotations

Previously, we performed a feasibility study in which we

presented a method that paired a manual literature-based

annotation with a computationally predicted annotation

and looked for correspondence between the two (20).

For ease of reference we will herein call this method

CvManGO (Computational versus Manual GO annotations).

In the feasibility study we looked at instances where the

.............................................................................................................................................................................................................................................................................................
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CvManGO method found disparities for literature-based

annotations designated as ‘unknown’. ‘Unknown’ annota-

tions are created by manually assigning the root term

of a GO aspect, which are the broadest terms that exist:

‘molecular_function’ (GO:0003674), ‘biological_process’

(GO:0008150) and ‘cellular_component’ (GO:0005575).

They indicate that at the time of curatorial review no evi-

dence is present in the literature that would allow a more

specific annotation to be made for the gene product. When

the CvManGO method found a computational prediction

paired with a manually assigned ‘unknown’ annotation,

we considered that this might indicate that there is

evidence in the literature to support a non-‘unknown’ an-

notation, and we therefore reviewed the body of literature

for those genes to see if there were annotations missing

from our manual set. We previously performed this

CvManGO analysis with literature-based ‘unknown’ anno-

tations in the October 2009 SGD gene association file com-

pared to computational predictions made by the GOA

group at UniProtKB based on InterPro sequence signatures

(12,13,20). In this study, we extended this analysis to

include additional sources of computational predictions,

in order to determine whether this would increase our

coverage across the genome and help enrich for those

genes which could be updated from an ‘unknown’ to a

more informative annotation.

For our additional sources of computationally assigned

annotations, we sought to use annotations based on meth-

ods that differed from the InterPro sequence-signature

based technique. We chose to use annotation outputs

based on SPKW, bioPIXIE/MEFIT and YeastFunc. SPKW, also

provided by the GOA project, is an automated method based

on curated associations (9–11), while bioPIXIE/MEFIT from

the Troyanskaya group at Princeton University is a Bayesian

analysis that integrates biological data sets (14–16), and the

YeastFunc algorithm from the Roth group at the University

of Toronto is a guilt-by-associative/profiling method that

also integrates multiple types of biological data (17).

Each of these sources individually provides computation-

al predictions for only a fraction of the ‘unknown’ annota-

tions (Table 1). SPKW provided the best coverage, having

computational predictions corresponding to 15.4%

(637/4129) of all ‘unknown’ annotations, followed by

InterPro with 14.7% (608/4129), YeastFunc with 1.9%

(79/4129) and bioPIXIE/MEFIT with 1.3% (52/4129). While

no single computational source provided predictions for

more than �15% of the total number of unknown anno-

tations, the combination of all four sources provided a

computational prediction for 24.4% of all ‘unknown’

annotations. So, even though there does exist some overlap

between the sources, meaning that a given ‘unknown’

annotation may have a corresponding prediction from

more than one source, inclusion of multiple sources does

allow more annotations to be analyzed when applying

CvManGO. Although the number of ‘unknown’ annota-

tions with corresponding predictions by either bioPIXIE/

MEFIT or YeastFunc was small, these methods do provide

predictions for genes not covered by the InterPro or

SwissProt methods. The small number of ‘unknowns’

paired with bioPIXIE/MEFIT predictions probably results

from the fact that this method only provides computation-

ally predicted annotations for the Biological Process aspect

of GO.

In addition to examining whether inclusion of additional

sources for computational predictions would provide im-

proved coverage of the annotations, we sought to explore

whether flagging of an ‘unknown’ annotation by more

than one computational source would indicate an

increased likelihood that an experimentally based manual

annotation could be made from the literature to replace

the ‘unknown’. We reviewed 50 ‘unknown’ annotations

that were flagged by only one of any of our four sources,

and 50 ‘unknown’ annotations that were flagged by two or

more of the sources in our CvManGO comparison. For

‘unknown’ annotations that were flagged by predictions

from a single source, 24% of the cases reviewed (12/50

annotations) could be updated, while 38% of the annota-

tions (19/50 annotations) that were flagged by more than

one source of computational predictions could be updated

(Figure 1). However, this difference is not significant, as

determined by the �2 test (P-value = 0.13). Therefore, per-

forming the CvManGO analysis using computational predic-

tions from multiple sources does not seem to significantly

enrich for genes that can be updated, as compared to using

computational predictions from a single source. However,

since including all sources of predictions allowed us to per-

form the comparison using a larger set of both ‘unknown’

and non-‘unknown’ literature-based annotations (data not

shown), we included all sources in our further analyses.

The remaining annotations: non-‘unknowns’

In the October 2009 set of literature-based annotations,

‘unknowns’ comprised only 13% of the total number of

Table 1. Number of biocurator-assigned ‘unknown’
annotations (to the root terms) that have a corresponding
computational prediction, by source. Data are from the SGD
gene association file dated October 11, 2009

Number of

annotations

Total ‘unknowns’ 4129

‘Unknowns’ with InterPro predictions 608

‘Unknowns’ with SwissPro Keyword predictions 637

‘Unknowns’ with bioPIXIE/MEFIT predictions 54

‘Unknowns’ with YeastFunc predictions 79

‘Unknowns’ with a prediction from any source 1011

.............................................................................................................................................................................................................................................................................................
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annotations (4129 of the total of 31 977). So, while repla-

cing an ‘unknown’ annotation with any functional informa-

tion is of great benefit to our scientific community, these

types of annotations and situations represent only a small

fraction of the total annotations at SGD. In light of this, we

wanted to apply CvManGO to the remaining 87% of our

literature-based annotations to see if the method could

help identify further curation needs for this larger set of

annotations.

When considering the effectiveness of the CvManGO

method for identifying non-‘unknown’ annotations that

might be updatable, we made the decision to shift from

looking at the fate of individual annotations, to evaluating

the entire annotation set for a gene. ‘Unknown’ annota-

tions are often present as the sole annotation for a GO

aspect for a gene, but non-‘unknown’ annotations are

typically part of a set containing multiple annotations for

a gene. Since SGD’s GO annotation practice is to present a

complete, summarized view of the functional role of a

gene product, the whole annotation set for a gene must

be reviewed in order to determine whether the CvManGO

method resulted in an improvement to this summarized

view. In reviewing the annotation set for a gene, the

entire body of literature relevant to that gene must be

considered.

Genes potentially needing review were flagged based on

the results of the CvManGO comparison applied to the

non-‘unknown’ annotations. Each literature-based annota-

tion, when compared to a computational prediction, was

sorted into one of four classes based on the relationship

between the GO terms. After each literature-based anno-

tation was compared to all computational predictions for

that gene, the literature-based annotation was assigned to

one and only one of the following four classes based on

the following order of priority:

(i) ‘Shallow’: For these annotation pairs, the literature-

based annotation is in the same lineage of the ontol-

ogy but closer to the root than the computational

prediction. In this case the computational prediction

provides more specific information than the

literature-based annotation with which it is paired,

potentially indicating that a more granular manual

GO annotation can be made. An example of this

would be if the literature-based annotation were

to ‘mitochondrion’ (GO:0005739) and the compu-

tational prediction to ‘mitochondrial membrane’

(GO:0031966). Genes with annotation pairs in this

class were flagged as needing review.

(ii) ‘Exact match’: In these pairs the literature-based an-

notation exactly matches a computational prediction.

Because there was no discrepancy between the two

annotations, annotation pairs in this class were not

considered as flags for review.

(iii) ‘Deep’: Here the literature-based annotation is in

the same lineage, or path to the root node, of the

ontology but farther from the root than the compu-

tational prediction. Since the existing literature-based

annotation is more specific than the paired computa-

tional annotation, there is no additional information

provided by the discrepant computational prediction.

An example of this would be a literature-based

annotation for a gene to ‘protein serine/threonine

kinase activity’ (GO:0004674) paired with a computa-

tionally predicted annotation to ‘kinase activity’

(GO:0016301). Annotation pairs in this class were

not considered as flags for review.

(iv) ‘Mismatch’: In this class the literature-based annota-

tion is in a different GO lineage from the computa-

tionally predicted annotation. One example of this

Figure 1. The percentage of annotations that could be
updated from ‘unknown’ with predictions from either a
single or from multiple computational methods. Fifty
‘unknown’ annotations were selected from each of two cate-
gories: a computational prediction existed for the ‘unknown’
annotation from the output of only one computational
source, or computational predictions existed from two or
more sources. Each of the predictions was evaluated against
the existing body of literature for the associated gene to
determine whether a more meaningful manual annotation
could be assigned. In cases were the literature supported a
novel function, the annotation was scored ‘updatable’.
Annotations that remained ‘unknown’ after review by a bio-
curator were scored ‘no change’. Twenty four percent of the
‘unknowns’ flagged by a single source (12/50) were updatable
to a literature-supported functional annotation upon review.
For ‘unknown’ annotations that had predictions from two or
more computational sources, 38% (19/50 annotations) were
updatable. The slight increase in the number of updatable
genes with additional computational sources is not statistically
significant (�2 P-value = 0.13).
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would be if the literature-based annotation were to

the term ‘pseudohyphal growth’ (GO:0007124) and

the computational prediction were to ‘proteasomal

protein catabolic process’ (GO:0010498). The discrep-

ancy could indicate several possibilities, such as a

novel potential annotation missing from the

literature-based set; an incorrect annotation in the

literature-based set; or an incorrect computational

prediction. Genes with annotation pairs in this class

were flagged as needing review.

Annotation pairs were classified into the first appropriate

category, as the categories were considered in the order

shown above. For example, a literature-based annotation

that exactly matched one of the computational predictions

and was a parent of another computational annotation

would be classified only as ‘shallow’ and not as both

‘exact match’ and ‘shallow’. The number of genes flagged

in each of these classes is presented in Table 2; although the

annotations themselves are in disjoint sets, a gene can be

present in more than one category. Out of a total of 6375

total features in the October 2009 SGD gene association

file, 3032 and 4203 genes fell into the ‘exact match’ and

‘deep’ classes, respectively. If a gene had annotations only

in these two classes, it was not flagged as needing review

since we deemed that no additional information about a

gene was indicated by any of its computational predictions.

The ‘shallow’ class contained 646 genes, and the ‘mismatch’

class contained 3733 genes. Genes in both of these classes

were reviewed, since the computational predictions pro-

vided additional or different information from the existing

manual annotations, suggesting that updates to the

manual annotations might be necessary.

The CvManGO method considers the relationship be-

tween the GO terms used in the literature-based and com-

putationally predicted annotations. While most previous

studies only consider exact matches in their accuracy

scores and analysis (17,22–25), we also consider annotations

that are in close proximity to each other along the same

path leading up to the root as concordant with each other

and only consider whether the prediction provides add-

itional information not already inherent in the GO term

used by the manual annotation. Since the ‘deep’ class indi-

cates that the term used by the computational prediction

represents the same biology as the existing literature-based

annotation but at a more general level, we did not consider

this class of discrepancies as needing further review. By

excluding the ‘deep’ flagged genes from our analysis we

were able to increase the efficiency of our method by

reducing the number of genes that require review.

We included additional genes from the ‘shallow’ and

‘mismatch’ discrepancy sets along with those evaluated in

the ‘unknown’ analysis, giving us a total of 336 genes to

review. When reviewing the annotation sets of these

genes, we reviewed the entire body of literature for each

gene to determine whether changes needed to be made to

any of the annotations for that gene. If the review indi-

cated that any change needed to be made to an annotation

set, that gene was scored as ‘updatable’ and the type of

update was recorded for the flagged annotation. If all the

annotations were unchanged because they still were the

best representation of the biological summary for that

gene, the flagged gene was scored as ‘no change’.

Of the genes whose GO annotations were flagged for

review, 77.4% (260/336) were found to require updates

(Figure 2, Supplementary Table S1). In order to determine

if annotations being flagged for review were significantly

helpful in identifying genes whose GO annotations needed

to be updated, we compared these results to a comparable

set of genes whose GO annotations were not flagged for

review. This control set was randomly chosen from the set

of genes whose GO annotations were exclusively in the

‘exact match’ or ‘deep’ classes. We found that 48.6% of

our control set (34 out of 70 genes reviewed; Figure 2)

could be updated after review of the literature, suggesting

that GO annotations flagged by CvManGO are significantly

helpful (P< 0.001, �2 test) in identifying genes whose set of

GO annotations need to be reviewed.

Surveying the attributes of flagged genes

We explored several attributes of the genes whose anno-

tations were updated in order to identify factors that will

help pinpoint additional genes whose annotations will

Table 2. Pairs of annotations, comprised of one
biocurator-assigned literature-based annotation and one com-
putationally predicted annotation, were evaluated for the
type of relationship they had to each other in the Gene
Ontology directed acyclic graph structure

Total

number

of genes

Number

of genes

reviewed

All genes 6375 336

‘Unknown’ with a computational prediction 815 77

Flagged by ‘exact match’ 3032 N/A

Flagged by ‘deep’ discrepancy 4203 N/A

Flagged by ‘shallow’ discrepancy 646 264

Flagged by ‘mismatch’ discrepancy 3733 265

‘Unknown’ indicates that a gene has been manually annotated to

the root node of the ontology. ‘Exact match’ refers to pairs where

the manual annotation and computational prediction use the

same term. ‘Deep’ and ‘shallow’ are instances where the GO

term used by the literature-based annotation is in the same

path to the root as the GO term used in computational prediction,

but the literature-based annotation is either farther from or closer

to the root, respectively, than the computational annotation.

‘Mismatch’ discrepancies are those where the two annotations

have no relationship to each other in the GO hierarchy.
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need review. We assessed the contribution of each discrep-

ancy class towards the improvement of a gene’s annotation

set by separating the annotations flagged by CvManGO

into their respective classes. We compared the flagged

annotation sets from the ‘mismatch’ and ‘shallow’ classes

to the results from the ‘unknown’ data discussed previ-

ously, which have been summarized to reflect updates at

the gene level (Figure 3A). For both the ‘mismatch’ and

‘shallow’ classes, we saw an increase in the percentage of

genes whose literature-based annotations were updated,

compared to what was seen for the ‘unknown’ class

(40.3%, 31/77 genes). Genes flagged by ‘mismatch’ annota-

tion pair discrepancies could be updated 59.2% (157/265) of

the time, while 78.8% (208/264) of genes flagged by

‘shallow’ annotation pair discrepancies could be updated.

To further assess the improvements that were made to

the annotation set, the annotations for the genes that

were updated were classified for the type of update that

was made. A gene was deemed ‘Refine’ if one of its existing

annotations was technically correct, but evidence was

found in the literature to annotate the gene product to

a more specific term. ‘Remove’ indicated those genes for

which an existing annotation should be removed, either

because it was refuted by the literature or because it did

not adhere to current annotation standards. Genes that

were under-annotated, for which review of the literature

revealed evidence to support novel GO annotations, were

marked as ‘Add’.

We found that the distribution of these three types of

improvements varied between the discrepancy classes eval-

uated (‘unknowns’ were not included). As might be ex-

pected, the distribution of types of updates is different

between the two discrepancy classes, with most ‘shallow’

discrepancies leading to annotation refinement while a

larger proportion of ‘mismatch’ discrepancies indicating in-

correct or missing annotations. Figure 3B shows that for the

mismatch class of 157 genes whose manual GO annotations

could be improved, roughly equivalent numbers of genes

required each of the three types of improvement, with the

‘Add’ category being the smallest (65 genes). For the ‘shal-

low’ class, the number of genes in the ‘Add’ category was

even smaller (49 genes), with most genes in this class (159)

only needing annotation refinement and/or removal

(Figure 3C).

We also explored whether the source of the computa-

tional prediction, the GO aspect of the flagged annota-

tions, or the number of publications for a gene would

have any correlation to the rate and type of updates to

its annotation set. None of these attributes on their own

showed remarkable differences in identifying genes that

needed to be updated (data not shown), suggesting we

will need to look for additional factors or evaluate these

factors in combination in order to enrich for genes whose

annotations need review.

These data also show that even though CvManGO is very

successful at identifying annotation sets that need updat-

ing, most of these improvements are still instances where

an existing annotation is correct but could be annotated

one or two levels deeper in the ontology. Examining the

annotations that should be removed for a gene, the major-

ity of these are not cases where the annotation is incorrect

in terms of the biology of that gene product; rather, they

are cases where the annotation is not compliant with the

GO annotation standards of SGD. In particular, the majority

of the annotations to be removed were instances where a

downstream phenotype was captured using a GO annota-

tion instead of through the SGD phenotype curation system

(26). While the annotation is supported by evidence in the

literature, it is SGD’s policy not to capture a downstream

phenotype when more specific information about a gene

product’s role in the cell is known. Since most of the

‘Refine’ and ‘Remove’ types of updates were found to be

instances where the existing information is not likely to

give the user an incorrect view of the biological picture of

the given gene product’s role in the cell, we would categor-

ize these updates as lower priority than those genes scored

Figure 2. Efficacy of CvManGO as measured by percentage of
gene annotation sets updated after literature review. A rep-
resentative subset of genes was given full literature review
and the set of annotations for those genes examined for
their accuracy. Any change to the annotation set as deter-
mined by a biocurator resulted in an ‘updatable’ score for a
gene. Genes with no changes to their annotation sets after
review by a biocurator were scored ‘no change’. We observed
that 77.4% (260/336) of the reviewed genes were updatable.
This is a significant improvement over the 48.6% (34/70)
updatability rate of the control set (�2 P< 0.001). The control
set of genes was randomly selected from those genes that
had computational annotations but had no literature-based
annotations flagged for review.
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as ‘Add’. As with the ‘unknown’ class, for which any

improvement is through replacement of the ‘unknown’

annotation with a more informative annotation, we place

a high priority on curation of those gene sets where add-

ition of a missing annotation is required. In light of this, we

will most likely focus future efforts on updating these types

of genes and annotations from the ‘mismatch’ class.

Utility of computational annotations for a gene

While the simple existence of a computational prediction is

useful in the CvManGO method to help flag genes, it is also

of interest to know if the actual term suggested by the

computational prediction could be applied when improving

the literature-based annotation set. We reviewed all of

the computational predictions from the annotation pairs

of the already selected subset of flagged literature-based

annotations. We scored each computationally predicted

annotation as either ‘helpful’, meaning that the GO term

used by the prediction or a GO term in the same branch of

the ontology were directly applicable when making a

literature-based update for that gene, or as ‘not helpful’

when we could not apply the GO term in updating

Figure 3. Gene update rates and type of updates by discrepancy class. (A) The updatability of reviewed genes as suggested by
the flagged annotations from a given discrepancy class was examined. ‘Unknown’ genes had an updatable rate of 40.3% (31/77),
‘mismatch’ genes a rate of 59.2% (157/265), ‘shallow’ genes a rate of 78.8% (208/264). Genes that were scored as ‘updatable’ in
Figure 3A were further evaluated for the type of update that a biocurator would determine was necessary for the annotation
set. (B) Mismatch class genes. (C) Shallow class genes.

.............................................................................................................................................................................................................................................................................................

Page 8 of 12

Original article Database, Vol. 2012, Article ID bas001, doi:10.1093/database/bas001
.............................................................................................................................................................................................................................................................................................



the annotation set for the flagged gene. The ‘not helpful’

category included instances in which use of the term would

not be consistent with SGD annotation practices and

standards. For example, annotations to ‘intracellular’

(GO:0005622) or ‘binding’ (GO:0005488) were scored as

‘not helpful’: since the information conveyed by these

terms is too general to be meaningful, these terms are

not used for annotation at SGD. The ‘not helpful’ category

also included instances where the body of literature for

that gene refuted an association with the predicted term,

or where no literature existed associating the particular

gene product with the biological process represented by

the prediction.

Examining the percentage of helpful predictions by class,

we found that the predictions were useful for 32.5% (25/

77) of the genes in the unknown class, 57.2% (147/257) of

the mismatch class, and 75.0% (198/264) of the shallow class

(Figure 4). For the shallow class, the computational predic-

tions directly led to manual annotations using that term

for 50% of genes (132/264) (Supplementary Table S3).

These results are not an indication of the accuracy of the

computationally predicted annotations as previously stu-

died by Camon et al. in 2005 (27), but rather an evaluation

of whether these predictions can be used as a curation aid

in adding value to a manual set of annotations for a gene.

It is interesting to note that for each of the classes the

percentage of genes with helpful computational predic-

tions closely matches that of the percentage of genes

that were updatable in their literature-based set

(Figure 3A).

Conclusions

We have successfully shown that comparing computation-

ally predicted versus manually curated literature-based GO

annotations (CvManGO) for a gene is a measurably viable

method for identifying genes that are in need of updating.

We find that we can apply this method to any type of

literature-based annotation and create pairings against all

computational predictions for a gene. By sorting paired

manual-computational annotations into classes based on

the relationship between the two annotations, we can

determine which annotations, and by association which

genes, show lack of concordance, indicating that the set

of annotations for a gene should be reviewed. Review of

these genes showed that one could refine the existing

annotations for the majority of them, remove inappropri-

ate annotations, and even find novel/missing annotations

for a proportion of them. Of the 336 genes that were

reviewed, �77% required an update to the annotation

Figure 4. Evaluation of computational annotations for their utility in assigning literature-based annotations. The set of compu-
tationally predicted annotations was reviewed for each of the previously selected flagged genes. Each of the annotation sets was
scored as either ‘helpful’ or ‘not helpful’. ‘Helpful’ annotation sets were those that had at least one computational prediction
that was directly applicable in making an update to the literature-based manually curated set of annotations. Conversely, ‘not
helpful’ annotation sets were those where none of the computational predictions aided in updating the manual annotations for
a gene. The percentage of helpful annotation sets within each of the discrepancy classes are as follows: unknown 32.5% (25/77),
mismatch 57.2% (147/257) and shallow 75.0% (198/264).
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set, ranging from a refinement of an annotation, removal

of an annotation or an addition of a new annotation

(Figures 2 and 3). Extrapolating these results to the entire

set of genes in SGD, we estimate that the CvManGO

method will help us update the GO annotations for a

little over half of Saccharomyces cerevisiae gene products

(Figure 5).

This method could be applied by other annotation

groups and model organism databases looking to prioritize

their genes for literature-based curation. The GOA project

uses an automated annotation pipeline to provide predic-

tions for over 120 000 species using multiple computational

methods (http://www.ebi.ac.uk/GOA/faq.html). It is likely

that most groups will be able to find computational predic-

tions from at least one source for their organism of interest.

While we do not find statistically significant evidence

to support the idea that combining multiple sources of

computational annotations can improve the ability of

CvManGO to identify ‘unknown’ annotations that need to

be updated, combining multiple sources provides greater

coverage for the literature-based annotations [Table 2

and (20)]. While SGD prioritizes addition of novel or missing

annotations, other groups may find that annotation refine-

ment is helpful, depending on their annotation philosophy.

SGD uses GO annotations to represent the biological sum-

mary of a gene rather than to present a comprehensive

survey of the literature for a given gene. However, for

groups that do generate GO annotations from all relevant

literature, CvManGO could be an efficient way to prioritize

curation needs and keep current with the literature,

especially for genes flagged by the ‘shallow’ class.

Although a significant number of genes could poten-

tially be updated at SGD, applying CvManGO alone may

not be the most efficient method for SGD to use in prior-

itizing genes for curation. More than half of those genes

updated were improved by only a refinement of an existing

annotation or by removal of an experimentally supported

and biologically correct annotation that does not comply

with SGD standards. The 336 genes we reviewed for this

study are associated with over 16 600 publications.

Updating each gene required an average of 2.4 hours to

review �50 publications. We feel that the time spent curat-

ing is disproportionately large for updates that only refine

an existing annotation a level or two further in granularity

in the GO structure. While these types of updates are useful

in improving a gene’s annotation set, we prefer to priori-

tize adding novel annotations as opposed to refining exist-

ing ones.

Preliminary data indicated that there was no simple or

straightforward way to discern whether the annotations

for a gene required updating. Here we explored attributes

such as computational source, discrepancy class, GO aspect,

and the amount of literature for a gene. While none of

these factors alone proved to be a bellwether indicator

for genes missing annotations, it is possible that a combin-

ation of two or more of these features plus additional ones

could be more effective. Additional attributes for further

consideration include number of discrepant annotations

per gene, further analysis of the types of computational

predictions that proved helpful, and inclusion of other com-

putational sources for predicting GO annotations such as

the GO Consortium’s PAINT project, a method that transfers

annotations between organisms based on homology (28).

In addition to exploring the contribution of these attributes

on the gene level, we can apply them to analyze the data

at the annotation level. Exploring the data on a per anno-

tation basis also allows us to consider factors such as the

distance in the ontology between a discrepant annotation

pair (the node distance in the GO hierarchy) and the

date an annotation was made. Investigating these and

other attributes in combination with each other may help

to identify specific annotations that need to be updated,

Figure 5. A projection of the fate of all genes in SGD when
their annotations are analyzed by CvManGO. Based upon the
rate and type of updates seen for the subset of genes
reviewed in this study, we extrapolated our results to all of
the genes in the SGD October 2009 gene associations file.
A fraction (15%) of the genes would not have any computa-
tionally predicted annotations from any of the four sources
we evaluated while roughly the same proportion (16%) would
not need to be reviewed because they would have annotation
pairs only in the ‘exact match’ and ‘deep’ classes. Of the 69%
genes that CvManGO would flag for review, most of them
would be expected to result in some sort of improvement in
their annotation sets. Of the genes that are improved, more
than half would only require annotation refinement or
removal (33% of the total genes in SGD), while a smaller frac-
tion (20% of the total) would require the addition of novel/
missing annotations.
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and to increase the specificity of CvManGO for finding

genes that can be updated with novel functions.

We not only intend to explore additional attributes but

we plan to pursue more sophisticated means to identify

characteristics of flagged annotations that need to be

updated. To further increase the efficiency of literature-

based curation, the results of CvManGO could be combined

with natural language processing or other text-mining stra-

tegies (29,30). This would identify literature containing

uncurated or novel annotations and reduce the amount

of literature that needs to be reviewed.

Rather than considering manual annotations and com-

putational predictions as separate sets with little relevance

to each other, the challenge for biological curation is to

find efficient ways to compare them in order to ensure

that the set of annotations for each gene is as high-quality,

complete, and current as possible. We attempted to lever-

age the computational predictions as a curation aid to help

us improve our set of manual annotations. The importance

of high-quality GO annotations, particularly for a model

eukaryote such as yeast, in combination with large quanti-

ties of published data and finite resources, make it impera-

tive to develop efficient ways of identifying and prioritizing

annotations for review and updating. By using both

literature-based and computationally predicted annota-

tions and leveraging the strengths of each against the

other, we hope to improve the efficiency of our curation

efforts in order to provide scientists with the most

up-to-date, complete, and accurate biological information.

Supplementary data

Supplementary data are available at Database Online.
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