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ABSTRACT Since the turn of the century, technological advances have made it pos-
sible to obtain the molecular profile of any tissue in a cost-effective manner. Among
these advances are sophisticated high-throughput assays that measure the relative
abundances of microorganisms, RNA molecules, and metabolites. While these data
are most often collected to gain new insights into biological systems, they can also
be used as biomarkers to create clinically useful diagnostic classifiers. How best to
classify high-dimensional -omics data remains an area of active research. However,
few explicitly model the relative nature of these data and instead rely on cumber-
some normalizations. This report (i) emphasizes the relative nature of health bio-
markers, (ii) discusses the literature surrounding the classification of relative data,
and (iii) benchmarks how different transformations perform for regularized logistic
regression across multiple biomarker types. We show how an interpretable set of log
contrasts, called balances, can prepare data for classification. We propose a simple
procedure, called discriminative balance analysis, to select groups of 2 and 3 bacte-
ria that can together discriminate between experimental conditions. Discriminative
balance analysis is a fast, accurate, and interpretable alternative to data normaliza-
tion.

IMPORTANCE High-throughput sequencing provides an easy and cost-effective way
to measure the relative abundance of bacteria in any environmental or biological
sample. When these samples come from humans, the microbiome signatures can act
as biomarkers for disease prediction. However, because bacterial abundance is mea-
sured as a composition, the data have unique properties that make conventional
analyses inappropriate. To overcome this, analysts often use cumbersome normaliza-
tions. This article proposes an alternative method that identifies pairs and trios of
bacteria whose stoichiometric presence can differentiate between diseased and non-
diseased samples. By using interpretable log contrasts called balances, we developed
an entirely normalization-free classification procedure that reduces the feature space
and improves the interpretability, without sacrificing classifier performance.

KEYWORDS balances, classification, coda, compositional data, log contrast, log ratio,
machine learning, microbiome, prediction

Many of the newest assays used in molecular research produce data that are
relative in nature. This includes high-throughput sequencing (HTS), as used to

quantify the presence of bacterial or gene species from environmental and biologi-
cal samples. This also includes hyphenated chromatographic assays like liquid
chromatography-mass spectrometry (LC-MS), as used to quantify the presence of
proteins, lipids, or metabolites. HTS and LC-MS both generate high-dimensional data
that can be used as health biomarkers to predict and surveil disease (1). They also both
measure abundance by sampling from the total population. Consequently, the total
number of molecules recorded for each sample is arbitrary, making these data com-
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positional (2–8). Others have already demonstrated that compositionality confounds
the routine application of univariate (9), correlation (10), and distance (11) measures.
Since machine learning pipelines often rely on these measures, compositionality may
impact the accuracy of classifiers trained on these data (2, 12).

Compositional data analyses tend to have one of three flavors depending on the
transformation used. Although these transformations have technical differences,
the choice between them will often depend on the desired interpretation. First, the
“simple” log ratio approach uses a single reference to recast the data. Most commonly,
the reference is the per-sample geometric mean (centered log ratio [CLR] transforma-
tion) or a single component (additive log ratio [ALR] transformation), but the geometric
mean of interquartile range components (13) and of nonzero components (14) have
also been proposed. After transformation, the analysis then proceeds as if the data were
absolute, but with a caveat: the interpretation of the results depends on the reference
used. Second, the “pragmatic approach” analyzes pairwise log ratios directly; this type
of analysis has been used to score important genes (15) and gene pairs (16, 17), and to
reduce the dimensionality of the data (17). This approach makes sense when the ratios
themselves have some importance to the analyst. However, it presents a clear problem
for the classification of high-dimensional data: ratios “explode” feature space from D
features to D�D � 1�⁄2 (pairs of) features, making the data even more high dimensional.
Third, the “coordinate approach” uses an orthonormal basis to transform D compo-
nents into D – 1 new variables via an isometric log ratio (ILR) transformation (18). One
example of this approach is to define a set of “balances,” where each balance describes
a log contrast between two groups of components (19–21). Balances have the formal
appeal of the ILR transformation (i.e., orthogonality of the basis vectors and a full-rank
covariance matrix) (19, 22) but can be more interpretable than general log contrasts
because they are associated with successive bipartitions of the original feature set.
These bipartitions are represented formally by a serial binary partition (SBP) matrix but
can be more easily conceptualized as a dendrogram of the input variables. However,
the utility of balances depends on having a desirable SBP (which must be manually
curated or procedurally generated). One popular SBP decomposes the variance such
that the first balance contains the most variance, the second balance the second most,
and so on (23, 24). In microbiome research, authors have proposed using mean pH (25)
or phylogeny (26, 27) to construct an SBP instead.

Several studies have applied supervised statistical learning to compositional data.
Aitchison trained linear discriminant analysis (LDA) models on ALR-transformed data
(28), as have others (29) (though LDA is now usually applied to ILR-transformed
data [29, 30]). Generalized linear models, including logistic regression (LR), have also
been used to classify compositional data (30, 31). However, both LDA and LR require at
least as many samples as features, making them inappropriate for high-dimensional
health biomarker data (though this limitation is mitigated by regularization, as used
previously [32, 33] to classify compositions). Partial least squares (PLS), also suitable for
high-dimensional data, has been applied to CLR-transformed data to predict continu-
ous outcomes (34), while PLS discriminant analysis (PLS-DA) has been used to classify
both CLR-transformed (35) and ILR-transformed (36) data. In microbiome research, a
stepwise algorithm, implemented as selbal, was proposed to identify a single balance
that performs well in classification and regression tasks (37). The last work highlights an
advantage of balances: although ALR, CLR, and ILR transformations can facilitate
statistical learning, balances can engineer the feature space into interpretable bio-
marker scores via balance selection. These biomarker scores are not unlike the
Firmicutes-to-Bacteroidetes ratio previously found to be associated with obesity (38). In
fact, one could think of balance selection as a way of finding important bacteria ratios
in a more rigorous and general manner.

How best to classify high-dimensional compositional data remains an open ques-
tion. We are not aware of any work that benchmarks compositional data transforma-
tions as they pertain to the classification of high-dimensional compositional data. In this
study, we employed a statistically robust cross-validation scheme to evaluate how well
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regularized LR classifies health-related binary outcomes on 13 compositional data sets.
Specifically, we benchmarked performance using features obtained from raw propor-
tions, CLR-transformed data, balances, and selected balances. We used LR instead of
other classifiers because the model weights can be interpreted directly as a measure of
feature importance and because regression is a routine part of statistical inference. Our
results show that the centered log ratio transformation, and all four balance proce-
dures, outperforms raw proportions for the classification of health biomarker data. We
also propose a new balance selection procedure, called discriminatory balance analysis,
that offers a computationally efficient way to select important 2- and 3-part balances.
These discriminant balances reduce the feature space and improve the interpretability
without sacrificing classifier performance. In doing so, they also outperform a recently
published balance selection method, selbal, in terms of runtime and classification
accuracy.

RESULTS AND DISCUSSION
Choice in log ratio transformation does not impact performance. Figure 1 shows

the validation set areas under the receiver operating curves (AUCs) for binary classifiers
trained on 13 data sets. In general, it can be seen that the centered log ratio
transformation (CLR) and balance procedures (principal balance analysis [PBA], anti-
principal balance analysis [ABA], random balance analysis [RBA], and discriminative
balance analysis [DBA]) perform comparably. Although they all tend to outperform
proportions (ACOMP), the proportions were more discriminative than the CLR for a few
tests. This might occur when the closure bias itself confounds the predicted outcome.

Table 1 shows the median of the difference between data transformations (as
computed with pairwise Wilcoxon rank sum tests across all 13 tests). Here, it can be
seen that every transformation performs better than proportions. Also, all balance
procedures tend to perform equally well, though DBA balances perform marginally
better. Although selbal posts an impressive accuracy for only using a single balance, it
is less accurate than using a set of all balances.

FIG 1 The distribution of validation set AUCs (y axis) for classifiers trained on closed or transformed data (x axis). Each
validation set AUC describes a unique random training and validation set split. All classifiers are regularized logistic
regression models, with � tuned by training set cross-validation. Abbreviations: ACOMP, closed proportions; CLR, centered
log ratio-transformed data; PBA, principal balances; ABA, anti-principal balances; RBA, random balances; DBA, discrimina-
tive balances.
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DBA method selects predictive balances. An advantage of using regularized
logistic regression is that the model weights can be interpreted as a measure of feature
importance. Even though the CLR and balances perform equally well, they imply
different interpretations. Although the CLR data have one feature per component, the
regularized weights do not describe the importance of that component. Rather, the
CLR-based model weights describe the importance of that component relative to
the sample mean. On the other hand, balances measure the log contrast between sets
of components. Thus, the balance-based model weights describe the importance of
those components directly.

For high-dimensional data, it can be challenging to interpret large balances. For
example, the base of an SBP always contains one balance that comprises all variables.
It may not be helpful in understanding the outcome to know that a log contrast
involving all components is discriminative. On the other hand, smaller balances (i.e.,
those involving fewer components) might have a clearer meaning to the analyst. Here,
we propose a new procedure, called discriminative balance analysis, to generate an SBP
that makes the smallest balances most discriminative. This procedure can be used to
engineer and select important balances prior to model building. Since the selected
balances contain few parts, they are more easily interpreted.

Conceptualizing the SBP as a tree, the largest balances are the “trunk” and the
smallest balances are the “leaves” (Fig. 2). Since the SBP corresponds to an underlying
orthonormal basis, we can treat each segment of the tree as its own variable. Figure 3
shows classification AUC using only the “distal leaf” balances (i.e., those with 2 or 3
parts). In principal balance analysis, the trunk contains the most variance, and the
leaves contain the least. As expected, the distal PBA balances perform poorly. In
anti-principal balance analysis, the trunk contains the least variance, and the leaves
contain the most. As expected, the distal ABA balances outperform the distal PBA
balances. In random balance analysis, balances are random, so the leaves might be
discriminative by chance. As expected, the distal RBA balances have an average
performance. In discriminative balance analysis, the trunk is least discriminative, and
the leaves are the most. As expected, the distal DBA balances outperform both the PBA
and ABA balances. Indeed, since DBA places the most discriminative balances distally,

TABLE 1 Medians of the differences in performance between data transformation methodsa

Method

Median of difference in performance of indicated method

selbal PBA ABA RBA DBA ACOMP CLR

selbal 0.0054 to 0.0324 0.0047 to 0.0318 0.0074 to 0.0339 0.019 to 0.045 �0.0290 to 0.0013 0.014 to 0.040
PBA �0.0324 to �0.0054 �0.013 to 0.011 �0.0097 to 0.0138 0.0013 to 0.0248 �0.048 to �0.016 �0.003 to 0.020
ABA �0.0318 to �0.0047 �0.011 to 0.013 �0.0092 to 0.0148 0.0018 to 0.0253 �0.045 to �0.015 �0.0026 to 0.0204
RBA �0.0339 to �0.0074 �0.0138 to 0.0097 �0.0148 to 0.0092 �0.00061 to 0.02223 �0.048 to �0.017 �0.0048 to 0.0177
DBA �0.045 to �0.019 �0.0248 to �0.0013 �0.0253 to �0.0018 �0.02223 to 0.00061 �0.060 to �0.029 �0.0144 to 0.0065
ACOMP �0.0013 to 0.0290 0.016 to 0.048 0.015 to 0.045 0.017 to 0.048 0.029 to 0.060 0.024 to 0.054
CLR �0.040 to �0.014 �0.020 to 0.003 �0.0204 to 0.0026 �0.0177 to 0.0048 �0.0065 to 0.0144 �0.054 to �0.024
aConfidence intervals computed using pairwise Wilcoxon rank sum tests applied to 50 resamplings of 13 data sets. Abbreviations: ACOMP, closed proportions; CLR,
centered log ratio-transformed data; PBA, principal balances; ABA, anti-principal balances; RBA, random balances; DBA, discriminative balances. This table corresponds
to Fig. 1.

FIG 2 How a balance dendrogram relates to a serial binary partition (SBP) matrix. The left portion shows
a dendrogram clustering the similarity between 6 components, where the first branch in the dendrogram
refers to the first balance (i.e., a and e versus c, b, d, and f). The middle portion shows the corresponding
SBP with 5 balances (columns) and the components involved in each log contrast (rows). The right
portion shows the distal 2- and 3-part balances.
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the distal DBA balances perform as well as all DBA balances (see Table 2 for 95%
confidence interval).

The DBA balances can be interpreted (and visualized) in an intuitive way. The 2-part
balances can be visualized as a log ratio, while the 3-part balances can be visualized
with a ternary diagram or as a log contrast. In Fig. 4, we compare the most important
distal DBA balances (left) with the single discriminative balance found by selbal (right).
It can be seen that many of the same variables are represented in both sets. However,
DBA expresses the important variables via 2- and 3-part subsets that are, by definition
of the SBP, grouped to be maximally discriminative. On the left side, it can be seen that
balances with large regularized weights (top left) have log contrast scores that differ-
entiate the groups (bottom left). Though selbal performs remarkably well in its ability
to select a single discriminative balance, our results suggest that the distal DBA method
outperforms selbal by �1 to 4% AUC (Table 2). Moreover, the distal DBA method is an
order of magnitude faster than selbal, the latter of which must try multiple component
combinations before finding the best log contrast (25 min versus 15 s for 1,000
features).

FIG 3 The distribution of validation set AUCs (y axis) for classifiers trained on selected balances (x axis). Each validation
set AUC describes a unique random training and validation set split. All classifiers are regularized logistic regression
models, with � tuned by training set cross-validation. The appendix “-distal” indicates that only the 2-part and 3-part
balances were used as features.

TABLE 2 Medians of the differences in performance between balance selection methodsa

Method

Median of difference in performance of indicated method

selbal PBA-distal ABA-distal RBA-distal DBA-distal DBA

selbal �0.125 to �0.091 �0.012 to 0.016 �0.0066 to 0.0203 0.016 to 0.042 0.019 to 0.045
PBA-distal 0.091 to 0.125 0.087 to 0.122 0.095 to 0.131 0.12 to 0.16 0.13 to 0.16
ABA-distal �0.016 to 0.012 �0.122 to �0.087 �0.0082 to 0.0182 0.014 to 0.040 0.017 to 0.044
RBA-distal �0.0203 to 0.0066 �0.131 to �0.095 �0.0182 to 0.0082 0.0082 to 0.0345 0.012 to 0.038
DBA-distal �0.042 to �0.016 �0.16 to �0.12 �0.040 to �0.014 �0.0345 to �0.0082 �0.006 to 0.014
DBA �0.045 to �0.019 �0.16 to �0.13 �0.044 to �0.017 �0.038 to �0.012 �0.014 to 0.006
aConfidence intervals computed using pairwise Wilcoxon rank sum tests applied to 50 resamplings of 13 data sets. The appendix “-distal” indicates that only the 2-
part and 3-part balances were used as features. This table corresponds to Fig. 3.
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We cannot guarantee that these performance trends will hold for nonlinear classi-
fiers like random forests or neural networks. However, a primary advantage of balances
is that they allow for a clear interpretation of feature importance that is fully coherent
for compositional data. If we do not first log ratio transform these relative data, then the
predictive potential of any one feature will depend on all other features. This is because
the relative abundances themselves all depend on each other. For example, given the
composition [a, b, c], an increase in c will decrease both a and b, but the balance
between a and b will not change. The use of nonlinear classifiers alone does not
address this fundamental issue.

DBA as a discriminant ordination. By using an orthonormal basis, balances
represent the total variance in terms of new variables that allow us to quantify the
variance contained in each discriminative balance. We can also break down the
contained variance into its between-group and within-group fractions (as done by an
analysis of variance [ANOVA]). The left side of Fig. 5 shows that a large fraction of the
(log ratio) variance contained in the distal DBA balances is between-group variance.
This is because clustering components by �jj* will group together components whose

FIG 4 The most important distal DBA balances (left) compared with the results from selbal (right). In the top left portion are the regularized weights for each
distal balance. In the bottom left portion is the distribution of samples for each balance irrespective of weight. The distal DBA classifier uses the weighted sum
of these balances to make its prediction. In the right portion is the distribution of a single balance as selected by selbal. Many of the same variables are
represented in both sets. DBA selects multiple simple balances instead of one complex balance. All panels generated using the 2a data set, comparing
inflammatory bowel disease (in red) with healthy controls (in blue).
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pairwise log ratios describe only a small fraction of the within-group variance (i.e., a
large fraction of between-group variance). Since the distal DBA balances are discrimi-
native, we can use them to project a kind of discriminant ordination of the data. In
other words, we can visualize the data along multiple interpretable axes (analogous to
the axes in a discriminant analysis decomposing the variance between group means;
however, for two groups, this would only give a single axis).

The right side of Fig. 5 shows good class separation using only 3 balances (each of
which is actually a simple log ratio). From the left side, we know that these 3 axes
contain 4.3% of the total variance and could likewise calculate that they contain 13.8%
of the total between-group variance. Meanwhile, all distal DBA balances together
account for 90.4% of the total between-group variance. Yet each one of these discrim-
inant axes is fully interpretable, having no more than 3 parts. On the other hand, if
the analyst cared less about interpretation and more about maximizing contained
between-group variance, they could do a clustering of 1 � �jj* and instead project the
largest balance(s) thus obtained (in direct analogy to the principal balances heuristic
described above).

A word of clarification about balances is in order. The term balances can be
understood more strictly as the coordinates of an orthonormal basis of the sample
space. Note that although this basis of the sample space is orthonormal, the balances
themselves, when considered as vectors across samples, are not. Thus, discriminant
balance variables will usually be correlated with each other.

Summary. This work benchmarks the performance of regularized logistic regression
classifiers across 13 high-dimensional health biomarker data sets. Our results show that,
on average, the centered log ratio and balances both outperform raw proportions in
classification tasks. We also found that the serial binary partition (SBP) matrix used to
generate the balances does not impact performance. However, the choice in SBP
changes which balances are important for classification. In this report, we introduce a
new SBP procedure that makes the most discriminative balances the smallest. This
procedure, called discriminative balance analysis, offers a computationally efficient way
to select important 2- and 3-part balances. These discriminant balances reduce the
feature space and improve the interpretability without sacrificing classifier perfor-
mance. In doing so, they also outperform a recently published balance selection

FIG 5 The amount of variance (as a percentage of the total) contained in each distal DBA balance (left), placed alongside
a projection of the data across the top 3 most variable distal DBA balances (right). The sum of the between-group variance
and the within-group variance equals the total variance. Good class separation is achieved using only 3 balances (each of
which is proportional to a simple log ratio). Together, these 3 ratios contain 4.3% of the total variance and 13.8% of the
total between-group variance. Both diagrams were generated using the 2a data set, comparing inflammatory bowel
disease with healthy controls.
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method, selbal, in terms of runtime and classification accuracy. By using the distal DBA
procedure, an analyst can quickly identify a set of highly interpretable bacteria ratios
that best summarize the difference between their experimental conditions.

MATERIALS AND METHODS
Data acquisition. We acquired data from 4 principal sources. Two gut microbiome data sets

(originally published in references 39 and 40) were acquired from the selbal package (37). Two additional
gut microbiome data sets (originally published in references 41 and 42) were acquired from the
supplement to the work of Duvallet et al. (MicrobiomeHD database) (43). A fifth gut microbiome data set
was acquired from the supplement to the work of Franzosa et al. (44).

The data of Schubert et al. (42) contained 3 classes comparingth hospital-acquired diarrhea (HAD)
with community-acquired diarrhea (CAD) and healthy controls (HC). This data set was used in two tests:
HAD versus CAD and HAD versus HC. The data of Baxter et al. (41) contained 3 classes comparing
colorectal cancer (CRC) with adenoma (AC) and HC. This data set was also used in two tests: CRC versus
AC and CRC versus HC. The data of Franzosa et al. (44) contained 3 classes comparing Crohn’s disease
(CD) and ulcerative colitis (UC) with HC. This data set was also used in two tests: CD and UC versus HC
and CD versus UC. Franzosa et al. also published gut metabolomic data for the same samples. These data
were used for an additional two tests that paralleled the gut microbiome tests.

A sixth data set was acquired from The Cancer Genome Atlas (TCGA) (45) and contained microRNA
expression for primary breast cancer (BRCA) samples and healthy controls (HC). We further labeled the
BRCA samples using PAM50 subtypes retrieved from the supplement to reference 46. PAM50 uses a gene
expression signature to assign an intrinsic subtype to the primary breast cancer sample: subtypes include
luminal A (LumA), luminal B, HER2-enriched, Basal, and Normal-like. These data were used in three tests:
any BRCA versus HC, HER2� versus all other BRCA, and LumA-BRCA versus LumB-BRCA.

We selected these data because they are all publicly available and because they represent a range
of difficult-to-classify data types (16S, metagenomic, metabolomic, and microRNA). All data are available
for immediate use in subsequent benchmarks from https://doi.org/10.5281/zenodo.3378099.

Feature extraction and zero handling. Before training any models, features with too few counts
were removed from the data. For the metabolomic and microRNA data sets, only features within the top
decile of total abundance were included (this was done to reduce the feature space so that selbal
became computationally tractable). For all data sets, features that contained zeros in more than 90% of
samples were excluded (this was done to remove biomarkers that are not reliably present in the data).
Finally, zeros were replaced using a simple multiplicative replacement strategy via the zCompositions
package (47) (this was done because the Bayesian replacement strategy fails for heavily zero-laden data).
Table 3 summarizes the tests used in this study.

Data transformation. Let us consider a data matrix with entries xij which describe the relative
abundance of j��1,�,D� components (as features) across i��1,�,N� compositions (as samples). Since the
data studied are compositional, they can be expressed as a subcomposition of parts of the whole. The
closure operation expresses the data so that the measurements for each sample sum to 1 (i.e., as
proportions). The closed data are benchmarked in this study as the point of reference:

ACOMP(xi) �
[xi1, � , xiD]

�
j�1

D

xij

(1)

We also benchmark the popular centered log ratio (CLR) transformation:

CLR(xi) � log�
[xi1, � , xiD]

�D	
j�1

D

xij 
 (2)

TABLE 3 Data used to benchmark data transformation and balance selection methodsa

Study code Source Type Features Group 1 Size Group 2 Size Median AUC

1a selbal 16S 48 CD 662 HC 313 0.7924
1b selbal 16S 60 MSM 73 Non-MSM 55 0.9359
2a Franzosa et al. Shotgun 153 IBD 164 HC 56 0.8166
2b Franzosa et al. Shotgun 158 CD 88 UC 76 0.7612
2c Franzosa et al. Metabolites 885 IBD 164 HC 56 0.9198
2d Franzosa et al. Metabolites 885 CD 88 UC 76 0.7703
3a MicrobiomeHD 16S 278 Clostridioides difficile 93 Diarrhea 89 0.7431
3b MicrobiomeHD 16S 610 Clostridioides difficile 93 HC 154 0.9821
3c MicrobiomeHD 16S 1133 CRC 120 HC 172 0.6684
3d MicrobiomeHD 16S 1302 CRC 120 Adenoma 198 0.6424
4a TCGA MicroRNA 188 Tumor 1078 Nontumor 104 0.9971
4b TCGA MicroRNA 188 Her2 77 Non-Her2 927 0.9149
4c TCGA MicroRNA 188 LumA 524 LumB 194 0.8974
aFor reference, the last column also shows the grand median of all test set AUC scores. Abbreviations: CD, Crohn’s disease; HC, healthy control; MSM, men who have
sex with men; UC, ulcerative colitis; IBD, inflammatory bowel disease; CRC, colorectal cancer.
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We also use the isometric log ratio (ILR) transformation to construct balances. Roughly speaking,
balances are a way of combining the original features into new ones that better respect the geometry
of the sample space. The most general way of doing so is in the form of a log-linear combination called
a log contrast. A log contrast of a D-part composition xi is defined as a1 log xi1 � � � aD log xiD with the
constraint that �j�1

D aj � 0. This constraint ensures scale invariance of the combination (i.e., a normal-
ization factor of xi cancels). In the simplest case, a log contrast is just a log ratio.

Balances are a way of constructing simple log-contrasts that are relatively easy to interpret (18). This
is done using a serial binary partition (SBP) matrix. The SBP matrix describes D – 1 log contrasts between

the D parts. These log contrasts are special in that they have aj�� 1

d�

�1

d� ,0�. Here d� and d– refer to the

number of positive and negative entries in a column of the SBP matrix (i.e., the number of parts in
the numerator and denominator of the resulting log ratio). Such log contrasts thus have the form

log��	j��� xij�1⁄d�
⁄�	k��� xik�1⁄d�

� where �� and �� are the sets of indices j with aj �
1

d� and aj �
�1

d� ,

respectively. It is helpful to think of an SBP as a dendrogram tree, from which the aj can be derived (see
Fig. 2 for an example SBP). A balance value is now computed for each sample i and each log contrast z:

biz � � dz
�dz

�

dz
� � dz

� log � 	
j��z

�

xij�1⁄dz
�

� 	
k��z

�

xik�1⁄dz
�� (3)

for the terms defined above. This particular form makes balances the coordinates of an orthonormal basis
of the sample space (18). Although the formula seems elaborate, balances are easy to compute. For
example, the 3-part balance b versus d and f (corresponding to z3 in Fig. 2), where for a given sample i

we might have xib � 3, xid � 4, and xif � 5, we would obtain the value �1�2

1�2
log

3

�4�5�1⁄2 .

The serial binary partition matrix. We benchmark four procedures for generating an SBP. In PBA,
we approximate a set of principal balances by hierarchically clustering the log ratio variance matrix, T,
describing the relationship between any two variables j and j* (see reference 24):

Tjj* � var�log
x1j

x1j*
, � , log

xNj

xNj*
� (4)

Principal balances are analogous to principal components in that the first balance contains the most
variance, the second balance the second most variance, and so on. Note that PBA only approximates the
principal balances.

In ABA, we hierarchically cluster a new dissimilarity measure defined as the difference of the log ratio
variance matrix from the maximum log ratio variance score: max�T� � Tjj*. In RBA, we generate random
SBPs using a custom algorithm that can make random binary trees (see balance::sbp.fromRandom for the
source code). In DBA, we generate an SBP that maximizes the discriminative potential of the distal
branches. This is done by hierarchically clustering the differential proportionality matrix, �, describing
the relative contribution of the within-group log ratio variances (Tjj*

1 and Tjj*
2 ) to the total log ratio

variance (see references 16 and 48):

�jj* �
N1 Tjj*

1
� N2 Tjj*

2

(N1 � N2)Tjj*
(5)

for groups sized N1 and N2. This matrix ranges from [0, 1], where 0 indicates that the two features have
a maximally large difference in log ratio means between the two groups. Unlike the other SBP methods,
the DBA method is supervised.

Note that the SBP is always constructed using the training set only. The balance “rule” is then applied
to the validation set prior to model deployment. All SBP procedures are implemented in the balance
package with the functions sbp.fromPBA, sbp.fromABA, sbp.fromRandom, and sbp.fromPropd (49).
Differential proportionality analysis is implemented in the propr package (50) with the function propd.
The code snippet below provides a minimally reproducible example for computing distal discriminant
balances.

# how to get distal discriminant balances
install.packages(“balance”)
library(balance)
data(iris)
x �- iris[,1:4]
y �- iris[5,]
sbp �- sbp.fromADBA(x, y) # get discriminant balances
sbp �- sbp.subset(sbp) # get distal balances only
z �- balance.fromSBP(

x � x, # the data to recast
y � sbp # the SBP to use

)
Classification pipeline. In order to get a robust measure of performance, we repeat model training

on 50 training sets randomly sampled from the data (with 33% set aside as a validation set). For each
training set, we (i) transform features as described above, (ii) train a model on the transformed features,
(iii) deploy the model on the withheld validation set, and (iv) calculate the area under the receiver
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operating curve (AUC). AUC is used because it is commonly reported in biological studies. Model
splitting, transformation, training, and prediction are all handled by the high-throughput classification
software exprso (51). By repeating this procedure 50 times, we can calculate the median performance
and its range.

When using selbal, a generalized linear model is trained on a single balance (as described in reference
37). For all other transformations, a least absolute shrinkage and selection operator (LASSO) model is
used to select features and fit the data simultaneously (via the glmnet package [52]). When using LASSO,
� is chosen procedurally by measuring 5-fold training set cross-validation accuracy over the series
exp(seq(log(0.001), log(5), length.out � 100)) (i.e., from 0.001 to 5 in 100 exponential steps), with the best
� selected automatically by cv.glmnet.

We use regularized logistic regression because it is highly interpretable: the model weights can be
interpreted directly as a kind of importance score.

Availability of data and material. All methods are available through open-source software main-
tained by us.
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6. Janečková H, Hron K, Wojtowicz P, Hlídková E, Barešová A, Friedecký D,
Zídková L, Hornik P, Behúlová D, Procházková D, Vinohradská H, Pešková
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