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Abstract
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Background: It is generally accepted that gene duplication followed by functional divergence is one of the main
sources of metabolic diversity. In this regard, there is an increasing interest in the development of methods that

allow the systematic identification of these evolutionary events in metabolism. Here, we used a method not based
on biomolecular sequence analysis to compare and identify common and variable routes in the metabolism of 40

Method: The metabolic maps deposited in the KEGG database were transformed into linear Enzymatic Step
Sequences (ESS) by using the breadth-first search algorithm. These ESS represent subsequent enzymes linked to
each other, where their catalytic activities are encoded in the Enzyme Commission numbers. The ESS were
compared in an all-against-all (pairwise comparisons) approach by using a dynamic programming algorithm,

Results and conclusion: From these comparisons, we identified a set of functionally conserved enzymatic steps in
different metabolic maps, in which cell wall components and fatty acid and lysine biosynthesis were included. In
addition, we found that pathways associated with biosynthesis share a higher proportion of similar ESS than degradation
pathways and secondary metabolism pathways. Also, maps associated with the metabolism of similar compounds
contain a high proportion of similar ESS, such as those maps from nucleotide metabolism pathways, in particular the
inosine monophosphate pathway. Furthermore, diverse ESS associated with the low part of the glycolysis pathway were
identified as functionally similar to multiple metabolic pathways. In summary, our comparisons may help to identify
similar reactions in different metabolic pathways and could reinforce the patchwork model in the evolution of metabolism

Keywords: Metabolism, Pathway alignment, Gammaproteobacteria, Enzyme commission number

Background

The study of the evolution of metabolism is central to
understanding the adaptive processes of cellular life, the
emergence of high levels of organization (multicellular-
ity), and the diversity and complexity of the living world
[1, 2]. At present, the large-scale information derived
from genomic and proteomic studies has allowed the
development of databases devoted to organizing the
metabolic processes, such as the KEGG [3] and MetaCyc
[4]. The information contained in these databases can be
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used to generate an integrative perspective of cellular
functioning.

Metabolism can be considered one of the most ancient
biological networks, where the nodes represent sub-
strates and/or enzymes and the edges represent the rela-
tionships among them. From this perspective, the study
of metabolic networks has focused on describing topo-
logical properties and has showed the existence of a
structured network architecture [5—7]. Another relevant
feature of metabolic networks is their modularity [8, 9],
where each module is a discrete entity of elementary
components (enzymes and substrates) that performs a
certain task, separable from the functions of other mod-
ules. The elements of each module are related to each
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other and may be subjected to the same evolutionary
process, such as amino acid biosynthesis, where a high
rate of duplication events has been identified [10]. In
this regard, metabolic pathways exhibit high retention of
duplicates within functional modules and a preferential
biochemical coupling of reactions. This retention of du-
plicates may result from the biochemical rules governing
substrate-enzyme-product relationships [11-13].

In this work, we ask whether there are groups of simi-
lar reactions in different or in the same metabolic path-
ways, which might suggest a transfer of enzymatic
activities, and whether these groups can be used to
define common and variable metabolic pathways in 40
organisms belonging to the Gammaproteobacteria
division. Gammaproteobacteria are excellent models to
consider because they contain a large diversity of species
[14], such as the bacterium Escherichia coliK-12, for
which a large number of molecular and functional
mechanisms have been elucidated. In addition, Gamma-
proteobacteria include organisms widely distributed
throughout diverse environments, such as the endocom-
mensal bacterium Ruthia magnifica [15], obligate
endosymbionts Baumannia sp. and Buchnera sp., photo-
autotrophs such as Halorhodospira halophile [16], and
mammal pathogens, such as Yersinia spp. and Vibrio
spp., among others [17, 18].

To this end, we implemented a general strategy that
considers the transformation of the metabolic maps de-
posited in the KEGG database into linear Enzymatic
Step Sequences (ESS) and their posterior comparison
with a dynamic programming sequence alignment algo-
rithm. From these comparisons, we show that maps as-
sociated with the metabolism of similar compounds also
contain a high proportion of similar ESS. In addition, we
evaluate the possible contribution of two ancient path-
ways, glycolysis and IMP, to the metabolic pathways
growth. Finally, we consider that our comparisons may
provide clues reinforcing the patchwork model in the
evolution of metabolism in Gammaproteobacteria.

Results

Construction and comparison of ESS

In order to evaluate the commonalities and differences
in the metabolism of organisms belonging to the Gam-
maproteobacteria division, a collection of ESS was gen-
erated from their corresponding metabolic maps. In this
regard, an ESS was defined as a linear collection of con-
secutive enzymatic reactions from a given substrate to a
given product, in a similar way as a previously proposed
definition of metabolic pathways [19, 20]. To do this, the
breadth-first search (BFS) algorithm was used, as we
describe in Material and Methods. This algorithm allows
the systematic fragmentation of metabolic pathways for
the alignment analysis, and it has been used to identify
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the shortest pathway between compounds in metabolic
networks [21]. Therefore, each ESS was reconstructed
following subsequent reactions in each metabolic map.
The enzymes related to each reaction were represented
by using the first three levels of the Enzyme Commission
(EC) number classification to describe their general type
of chemical reaction, as it was previously suggested [22].
In total, 2973 KEGG maps from 40 species were ana-
lyzed, of which 2284 generate at least one sequence. The
remaining 689 maps did not generate any sequence
because they contain few enzymes, contain ramification
pathways or describe transport mechanisms, or the en-
zymes do not have connections among them (Additional
file 1: Table S1). Therefore, the length distribution of the
total 36,621 constructed ESS ranged from 2 to 17 en-
zymatic steps, with a mean length of 5 and a mode equal
to 3 (Fig. la). In addition, we found a correlation
between the genome size (in open reading frames, or
ORFs) and the number of ESS, as large genomes gener-
ated more ESS (*=0.78, p=1.7x10"*) than small
genomes (Fig. 1b). In a similar way, the number of ESS
generated per metabolic map also depended on the
number of ORFs associated with each map (+* = 0.581,
p =~0) (Additional file 2: Figure S1). These results suggest
that the number of ESS reflects to some extent the
increased complexity in metabolism as a function of the
number of proteins contained in an organism.

A natural observation that emerged from these se-
quences concerns their redundancy, i.e., identical ESS
derived from different organisms. To reduce this redun-
dancy and to facilitate the subsequent analysis, identical
sequences were identified and excluded, leaving a repre-
sentative of them and defining the non redundant ESS
(nrESS) dataset. From this filtering, 7970 different nrESS
were considered for posterior analyses. The nrESS length
histogram was similar to that for the complete set of
ESS, with a mean length of 5.4 and a mode equal to 4
(Fig. 1a). In this report, we refer only to the nrESS.

In a second step, the nrESS were compared by using
the dynamic programming Needleman and Wunsh
(NW) algorithm in an all-against-all strategy. The align-
ment generated by this algorithm was evaluated by using
an entropy based normalized function that yields values
in the interval from 0 to 1. Hence, values close to 0
mean less entropy and more homogeneous columns in
the alignment, reflecting more similar nrESS. Con-
versely, values close to 1 reflect dissimilar nrESS.

From these comparisons, we found that the distribu-
tion of the scores resembled an extreme value Gumbel
distribution (Additional file 2: Figure S2), with the high-
est proportion of the scores close to 1, ie., the major
proportion of alignments occurs between dissimilar
nrESS. To evaluate the statistical significance of all com-
parisons, 10 random databases were generated by
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Fig. 1 Construction and alignment of Enzymatic Step Sequences (ESS). a Histogram of the distribution of ESS and nrESS according to their lengths.

b Number of total ESS constructed per organism. The x-axis represents the genome size according to the number of ORFs, and the y-axis corresponds
to the total number of ESS generated using the strategy presented in the text. Each point corresponds to one organism. ¢ Cumulative histogram of
the nrESS pairwise alignment scores. Blue bars represent the real nrESS scores; red points represent the mean distribution + SD from random ESS. The
SD were so small that they are not visible in the plot. The inset is an amplification of the lower portion of the plot and includes the scores from 0 to
0.5. d Deviation of the real nrESS score histogram relative to the mean + SD of the random datasets. The blue dots correspond to the real data
dispersion, and red dots correspond to single random database dispersions. Dotted green lines represent 3 SD from the mean of random histograms.
The asterisk denotes the dispersion at 0.3. This score was used as the similarity threshold

Alignment score

shuffling the real nrESS, maintaining the EC composition
and length sizes. The random databases were analyzed in
the same all-against-all fashion, and the resulting scores
were compared against real alignment scores. In Fig. 1c
we show the cumulative histogram of the alignment
scores of the real and random datasets. Based on this ana-
lysis, scores close to 0 are overrepresented in real data
compared to random nrESS. To evaluate this overrepre-
sentation, the deviation of the real dataset relative to the
mean =+ standard deviation of the 10 random datasets was
calculated (Fig. 1d). According to these data, the real and
random scores intersect at 0.65, suggesting that this value
is the limit to identify distant similarities; therefore, an
alignment with a score of ~ 0.65 may be considered clearly
random. Based on this information, a significant align-
ment threshold was established to analyze the most of the
nrESS, with not compromising the statistical relevance.
Therefore, a score of <0.3 was established as threshold.
This value represents the higher dispersion (>195 SD) of

the random data (Fig. 1d, asterisk) with the lowest loss of
nrESS, ie., more than 99 % of the real nrESS were in-
cluded (Additional file 2: Figure S3). This threshold also
corresponds to 0.26 % of all nrESS alignments (81,520 of
31,756,465) and includes 7907 out of 7970 nrESS. In con-
trast, from the alignments associated with the 10 random
databases (31,756,465 for each dataset), only 0.04 +
0.001 % (13,827 + 308) of the total alignments exhibited a
threshold of <0.3. These results show that our method can
be used to identify similar nrESS with significant scores,
excluding the possibility of finding such similar nrESS by
random chance. Here, we report information concerning
our comparisons of these nrESS related to metabolism in
diverse bacterial organisms.

Pairwise alignments of nrESS identify a core of common
metabolic pathways in Gammaproteobacteria

In order to evaluate the similarity of the metabolic maps
in Gammaproteobacteria and whether there is a group
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of functionally conserved pathways in these organisms, a
set of similar nrESS was defined. In this context, the
term functionally conserved refers to the identification of
similar nrESS that may be common to Gammaproteo-
bacteria. Two nrESS were considered as functionally
conserved if their alignment had a score below the
threshold (<0.3) and, in conjunction, they were present
in more than 75 % of the species analyzed. Based on this
definition, the set included 1484 sequences from 74 dif-
ferent metabolic maps, with 69 % of the total alignments
corresponding to alignments between the same meta-
bolic maps (1805 of 2633), whereas 31 % corresponded
to alignments between different metabolic maps
(Fig. 2a).

To assess the nrESS similarity of each metabolic map
as an indicator of functional conservation, we used the
alignments that occurred within them (green edges in
Fig. 2a), and we named this dataset the Metabolic Map
Functional Conserved Dataset (MMFCD). The propor-
tion of each metabolic type represented in this dataset is
shown in Fig. 2b, and corresponds primarily to nrESS of
the metabolism of nucleotides, followed by the metabol-
ism of carbohydrates, cofactors and vitamins, amino
acids, and lipids. In contrast, the pathways for xenobiotic
biodegradation and metabolism, biosynthesis and other
secondary metabolism, metabolism of other amino acids,
and metabolism of terpenoids and poliketides, among
others, represent less than 5 % of the total nrESS in-
cluded in the dataset. From these alignments, we
mapped the position of the highly similar nrESS in the
corresponding metabolic map to determine the propor-
tion of the functionally conserved EC numbers in
relation to the total EC numbers present in Gammapro-
teobacteria (Fig. 2c). Using this information, we classi-
fied the metabolic maps into four groups: 1) maps with
more than 70 % of the EC numbers identical, i.e. highly
functionally  conserved; 2) moderately functionally
conserved maps, with percentages between 30 % and
69 %; 3) barely functionally conserved, i.e., those maps
with percentages between 1 % and 29 %; finally, 4) vari-
able maps, i.e., with 0 % EC classified as functional con-
served. From these data, less than one-third of the
analyzed maps (24 of 86) were classified as highly or
moderately functionally conserved, while more than two-
thirds were considered as barely functionally conserved
or variable. All these data showed that more than half of
the metabolic maps analyzed did not exhibit common
nrESS in Gammaproteobacteria and, by consequence,
may be considered variable, suggesting a high variability
in the metabolism of this bacterial division.

In detail, maps classified as highly functionally con-
served are related to important processes, like the path-
ways for fatty acid biosynthesis (map00061), metabolism
of some amino acids (00290 for valine, leucine, and
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isoleucine biosynthesis; 00300 for lysine biosynthesis),
components of the cell wall (00540 for lipopolysacchar-
ide biosynthesis; 00550 for peptidoglycan biosynthesis),
metabolism of some cofactors (00770 for pantothenate
and CoA biosynthesis; 00780 for biotin metabolism;
00785 for lipoic acid metabolism), and novobiocin bio-
synthesis (00401). These functional similarity also correl-
ate with the fact that amino acid metabolism pathways
for valine, leucine, isoleucine, and lysine have been iden-
tified as pathways with diverse duplicated genes in the
three cellular domains of life [10, 23].

The second group includes those maps defined as
moderately functionally conserved. In this category were
included the pathways for metabolism of purines
(00230) and pyrimidines (00240), glycolysis/gluconeo-
genesis (00010), the citrate cycle (00020), metabolism of
glycerophospholipids  (00564), terpenoids backbone
(00900), and some cofactors, like riboflavin (00740),
nicotinamide (00760), folate (00790), and thiamine
(00730). It is interesting that the central part of glycoly-
sis (00010), the Embden-Meyerhof pathway, is partially
conserved among Gammaproteobacteria (Fig. 2d),
whereas the core pathway that comprises the tricarbon
compounds is widely functionally conserved among the
analyzed organisms, including the oxidation of pyruvate
to acetyl CoA. In the hexose section, the enzymatic steps
catalyzed by 6-phosphofructokinase (EC2.7.1.11) and
fructose biphosphate aldolase (EC4.1.2.13) are consid-
ered variable. A similar result was observed with the gly-
colysis input, where the mechanisms by which the
hexoses enter the pathway are variable. In addition, the
enzymatic steps to transform pyruvate to lactate and the
ethanolic fermentation from acetate are also variable. In
a similar way, gluconeogenesis from oxaloacetate is par-
tially functionally conserved in Gammaproteobacteria,
where the enzymes allowing the input from the oxaloac-
etate (phosphoenol pyruvate carboxykinase, EC4.1.1.49
and 4.1.1.32) and the enzyme that dephosphorylates
fructose 1,6-bisphosphate to fructose 6-phosphate (fruc-
tose biphosphatase, EC3.1.3.11) are considered variable.
These results are congruent with those from a previous
study, where it was concluded that glycolysis is a plastic
pathway and that the lower part of the glycolysis path-
way is the more conserved section among the three cel-
lular domains [24].

Another example is the case of purine (00230) and
pyrimidine (00240) metabolism. In general, both meta-
bolic maps show functionally conserved reactions that
converge the synthesis of mono-, di-, and triphosphate
ribonucleotides and deoxyribonucleotides. In the case of
purine metabolism (Fig. 3), the biosynthetic pathway for
the main precursor to the synthesis of purine nucleo-
tides [25], inosine monophosphate (IMP) is completely
conserved in Gammaproteobacteria (KEGG module
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Fig. 2 Functional conserved and variable nrESS in Gammaproteobacteria. a Graph representation of the relationships between the set of conserved ESS in
Gammaproteobacteria. The nodes represent the nreSS and the edges show the alignments among them. Green edges are alignments between the same
metabolic map, and the red ones represent alignments between different metabolic maps. The nodes are colored according to the metabolism type, as
indicated. The alignments between ESS from the same map were selected as the Metabolic Map Functional Conserved Dataset (MMFCD). b Proportion of
ESS from each metabolic type included in the MMFCD. ¢ Proportion of EC numbers conserved in the alignments of the MMFCD for each metabolic map.
The metabolic maps are represented by the KEGG map ID, and the colors indicate the metabolic type. The metabolic maps were classified according to

the proportion of functional conserved EC numbers, as follows: conserved (**%), more than 70 % of EC numbers conserved; moderately conserved (*%),
between 30 and 69 % of numbers conserved; barely conserved (¥), between 1 and 30 % of numbers conserved; non conserved (), 0 % of numbers
conserved. d Functional conservation of the glycolysis/gluconeogenesis metabolic map in Gammaproteobacteria. The map represents the functional
mapping of conserved nrESS (3 levels of EC classification) in the alignments of the MMFCD (cyan). In addition, the nrESS present in at least one of the
species analyzed but not in the conserved set are shown (pink). The white steps represent enzymes not present in any of the species analyzed. In boxes
and circles are represented the conserved and variable regions in the metabolic map. See text for details

MO00048). Congruently, the classical synthesis of ATP
(module M00049) and GTP (module M00050) from IMP
is also functionally conserved, although there are many
variable enzymatic steps that catalyze the production of
nucleosides and nitrogenous bases. Finally, the pathways
for degradation of purines via xanthine and allantoate
utilization are variable in Gammaproteobacteria. There-
fore, in purine metabolism we observed a general func-
tional conservation of synthetic pathways and a general
non-functional conservation of degradation pathways.
These results, in conjunction with recent data suggesting
that nucleotide metabolism is highly conserved across all

the organisms [26], reinforce the notion that purine
biosynthesis is one of the more ancient metabolic path-
ways [1, 27].

A similar conservation pattern is observed in other
metabolic maps classified as moderately functionally
conserved, such as the pathway for glycerophospholipid
metabolism (00564). We found that the biosynthetic
pathways to CDP-diacylglycerol and then to phosphati-
dyl glycerol, phosphatidyl serine, and phosphatidyl etha-
nolamine are conserved, while the biosynthetic pathway
to phosphatidyl choline and the degradation pathways
are variable. A similar result arises for the biosynthesis
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Fig. 3 Functional conservation of purine metabolism in Gammaproteobacteria. The map shows the mapping of functional conserved enzymatic
steps (three levels of EC classification) in the alignments of the metabolic map conserved dataset (cyan). The enzymatic steps present in at least
one of the species analyzed but not in the conserved set are shown (pink). The white steps represent enzymes do not present in Gammaproteobacteria. In
boxes are represented the conserved and variable regions in the metabolic map
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of cofactors like thiamine-diphosphate (map 00730),
riboflavin (map 00740), NAD"* and NADP" (map 00760),
and tetrahydrofolate (map 00790). In conjunction, it is
possible to deduce a functional conservation pattern for
Gammaproteobacteria, where some metabolic maps
contain a biosynthesis-related core of similar enzymatic
steps, and some variable steps that include the degrad-
ation of various compounds. These variable or dispens-
able steps may represent possible alternative pathways in
different organisms and/or in different ecological niches,
as has been previously suggested [10, 28].

The group of metabolic maps classified as barely func-
tionally conserved includes important processes, such as
amino acid metabolism, fatty acid degradation (beta-oxi-
dation), and glycerolipid metabolism. In this context, we
identified many variable reactions in the map that de-
scribes alanine, aspartate, and glutamate metabolism
(map 00250), suggesting the existence of alternative
pathways to produce these compounds. In this regard,
there are three possible enzymes that catalyze the con-
version of L-glutamate to L-glutamine: one of them by a
ligation reaction (glutamine synthetase, EC6.3.1.2) and
two by reversible hydrolysis (glutaminase, EC3.5.1.2, and
L-glutamine (L-asparagine) amidohydrolase, EC3.5.1.38).
In particular, the L-glutamine (L-asparagine) amidohy-
drolase also catalyzes the deamination of asparagine to
aspartate. This finding suggests more flexible networks
for the production of amino acids and reinforces the
notion of various alternative enzymes for the production
of amino acids [10]. A similar observation arises for cyst-
eine and methionine metabolism (map 00270), for which
alternative pathways were also identified. For example,
the pathway to produce methionine from aspartate
(module M00017) is not completely conserved in Gam-
maproteobacteria; nevertheless, there are some alterna-
tive enzymes that may work as alternative paths for the
synthesis of methionine. Interestingly, some of these
alternative enzymes were identified as functionally con-
served in this work, suggesting not only the absence of a
conserved canonical route but also important alternative
enzymatic steps.

Finally, the variable maps include a high diversity
of metabolisms types. Some of them contain few or
fragmented enzymatic steps present in at least one
Gammaproteobacteria species, suggesting the absence
of those metabolic maps in this clade. However, other
maps contain many enzymes present in Gammapro-
teobacteria; such as those for seleno compound
metabolism, galactose metabolism, pentose phosphate
and pentose metabolism, and glucuronate metabolism,
among others. In general, the maps classified in this
category represent pathways for degradation of un-
common compounds (xenobiotics) or for alternative
carbon sources (carbohydrate metabolism). Altogether,

Page 7 of 14

these observations in addition to supporting the pre-
viously proposed idea concerning the reduced conser-
vation of degradation related pathways; reinforce the
notion of differential enzyme recruitment across the
clade. Also, our results support the proposed prepon-
derance of central carbon and anabolic pathways in
the evolution of metabolism [2, 8, 27, 29].

In summary, all these data allow the identification of a
core of similar enzymatic steps in Gammaproteobacteria.
This core includes primarily reactions of the central car-
bon metabolism (low part of glycolysis and tricarboxylic
acid cycle), and the biosynthetic pathways for nucleo-
tides, cofactors and some amino acids. In addition this
core is complemented with a set of variable pathways
that primarily includes degradation pathways for carbo-
hydrates, amino acids and xenobiotics that may be
essential to the particular life style of each organism.

The complete set of functional conservation of meta-
bolic maps in Gammaproteobacteria is available as
KEGG weblinks in Additional file 3: File S2.

Metabolic maps that convert similar compounds also
share similar nrESS

In this section, we asked whether the similarities between
nrESS might help to identify those metabolic maps that
convert similar compounds and uncover explicitly the
functional relations between metabolic maps. In this
regard, we explored the general similarities between meta-
bolic maps identified by nrESS comparisons. To do so, the
total number of shared alignments between each pair of
metabolic maps was calculated, considering only those
alignments with scores of <0.3. The counts of the shared
alignments were normalized to the total number of align-
ments for each map and used as similarity vectors in a
hierarchical clustering analysis with the Spearman rank
correlation as similarity measure (Fig. 4). Considering a
cutoff of 0.46 of the total length of the clustering tree, we
defined a total of 24 different metabolic map clusters.
Similar results were obtained using Kendal rank correl-
ation and self-organizing maps. This analysis showed 5
clusters that included more than 3 metabolic maps, 5 clus-
ters that included 2 or 3 maps, and 14 maps that were
considered singletons. The first of the major clusters
included metabolic maps related to the degradation of
aromatic compounds, such as amino benzoate, bisphenol,
toluene, and naphthalene, among others. The second
major cluster included hydrophobic amino acid metabol-
ism (e.g., for tryptophan, phenylalanine, and tyrosine) and
aromatic compound degradation (e.g., of xylene and
dioxins). The third cluster contained carboxylic acid (fatty
acids and butanoate), long aliphatic chain lipids (e.g.,
limonene and geraniol), valine, leucine, and isoleucine
degradation, and pyruvate and the TCA cycle maps. This
result suggests a functional similarity between pyruvate
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and the TCA cycle and the synthesis of aliphatic chain
hydrophobic carboxylic acids. The fourth cluster includes
the metabolism of carbohydrates, carbon fixation, metabol-
ism of some cofactors (CoA and folate), terpenoids, glycer-
olipids, and sulfur (including methionine and cysteine) and
seleno compounds. Finally, the fifth cluster contains the
metabolism of nucleotides, peptidoglycans, nitrogen me-
tabolism, and other nitrogen-containing cofactors, like hia-
mine and nicotinamide. In summary, we identified a trend
where metabolic maps describing the transformations of

chemically similar molecules also contained similar nrESS,
probably as consequence of enzymatic recruitment.

Similar nrESS suggest that enzyme recruitment is a
frequent event in metabolism of Gammaproteobacteria
Based on the previous sections, we ask if functionally
conserved pathways can be used to identify the possible
recruitment patterns in the metabolism of Gammapro-
teobacteria. In this context, the corresponding nrESS of
the lower part of the glycolysis pathway and the IMP
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pathway for de novo synthesis of purines were used to
scan the complete nrESS dataset. Both pathways are
considered ancient [24, 30]. We used the NW algorithm
with a score threshold of 0.3. To determine the signifi-
cance of the alignments we also scanned the random
nrESS. From these comparisons, we found that the num-
bers of significant matches for the lower part of the gly-
colysis pathway (Fig. 5a) and the IMP pathway (Fig. 5b)
were greater than those expected by chance; however,
the difference relative to the random databases was
greater for IMP than for glycolysis. In addition, we
determined that although the raw number of hits was
greater for IMP (381) than for glycolysis (148), the num-
ber of alignments with other maps was greater for gly-
colysis than for IMP (37 versus 19 different metabolic
maps). The relatively small difference in the number of
significant matches obtained for glycolysis compared to
the random databases may be explained in part by the
number of occurrences of its constituent EC numbers in
the nrESS database and in the KEGG database (Fig. 5c).
The EC numbers 1.2.1 (oxidoreductases acting on the
aldehyde or oxo group of donors and with NAD" or
NADP" as acceptor), 2.7.1 (phosphotransferases with an
alcohol group as acceptor), and 4.2.1 (carbon-oxygen
hydrolyases) are within the top 10 in nrESS database
abundance. This result shows a broad similarity of the
lower part of the glycolysis pathway with many other
metabolic processes and suggests similar catalytic pro-
cesses are used to transform some compounds in differ-
ent metabolic maps. In turn, this observation suggests
an outstanding proportion of enzyme recruitment events
from glycolysis to other metabolic pathways and may
reflect the utilization of similar products generated for
similar reactions in different metabolic maps. On the
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other hand, the major number of hits for the IMP path-
way corresponds to alignments within the same map,
suggesting that this pathway has increased its size by
duplication and recruitment of its own enzymes.
Although both metabolic pathways may be considered
ancient and were classified as functional conserved in
this study, the patterns of functional similarities are dif-
ferent and may reflect the constraints of enzyme recruit-
ment and the ubiquity of some types of compounds.

Discussion and conclusions

In this work we used a simple workflow for the com-
parative study of metabolism through the alignment of
linear sequences of ESS. The metabolic maps stored in
KEGG were transformed into linear ESS by using an
exhaustive and well-defined graph search algorithm.
Then, the ESS were compared to identify the commonal-
ities and differences between them. This approach allows
the identification of similarities at the Enzymatic Step
Sequences (ESS) level in a set of metabolic pathways. In
this regard, the use of the functional information of the
enzyme activity rather than the (protein and DNA)
sequence information suggest that metabolism com-
prises a complex and dynamic network that may have
different proteins to achieve the same or similar
function.

Diverse methods for the alignment of biological net-
works have been suggested, such as protein-protein
interaction networks (for some examples see references
[31-33]) and metabolic networks (for some examples
see references [34—38]), mainly based on protein hom-
ology and/or network topology. However they consider a
small number of organisms or general metabolic maps
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Fig. 5 The similarities between nrESS suggest enzyme recruitment. Two nrESS representing the lower part of the glycolysis pathway (a) and the
Inosine Monophosphate (IMP) pathway (b) were compared against the nrESS database (bar) and 10 random databases (boxplot). The number of
significant hits (score of <0.3) was plotted. The color code indicates the proportion of hits corresponding to each metabolic map. ¢ The relation
between the number of EC numbers sharing the first 3 levels of classification in the KEGG database versus the number of occurrences of each EC
number in the nrESS database
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of KEGG database. Also, many of these methods are in
general difficult to compare with each other, as has been
recently shown by Clack et al. [39].

In this work we used the alignment of linear enzymatic
step sequences, similar to the previously described
approaches [20, 40], where a general strategy for the sys-
tematic analysis of the metabolism in a multigenome
scale was additionally implemented. The linear enzym-
atic alignment approach described here allows gaps
using the NW algorithm, uses a random data compari-
son, and allows the identification of distant similarities
like those observed between metabolic maps. To our
knowledge, this is first time that these methods are used
to compare systematically the metabolism of a well-
studied and metabolic diverse clade. Therefore, our
approach is able to capture directly the information
contained in the individual metabolic networks of each
organism.

Based on these comparisons, we detected a core of
metabolic pathways associated with central carbohy-
drate metabolism, lipid, cell wall, and cofactors, and
biosynthetic pathways. In contrast, variable maps are
those associated with degradation pathways, except the
glucose-related pathways and the TCA cycle. In addition,
amino acid metabolism is an example of a pathway with
multiple routes to yield similar compounds from different
routes, characterized for alternative pathways.

In addition, two scenarios can be suggested to exem-
plify the growth of the metabolism. The first one, associ-
ated to the glycolysis, where a significant proportion of
functional similarities from this pathway were observed
in other metabolic pathways; suggesting the utilization
of similar substrates/products processed by similar reac-
tions in different metabolic maps. The second scenario
is associated to the high number of hits for the IMP
pathway associated to alignments within the same map,
suggesting that this pathway possibly has increased its
size by duplication and recruitment of its own enzymes
and arising the possibility of major biochemical coupling
restrictions for the recruitment of the enzymes in the
IMP pathway. Therefore, the different patterns of ESS
similarities of two ancient pathways suggest that the
recruitment of catalytic activities in the metabolism is
restricted by the metabolic context, being not a random
phenomenon. Albeit our data suggest functional and,
probably, evolutionary conservation of diverse catalytic
steps, additional information must be considered to have
a better approximation of metabolism evolution, such as
gene transfer and gene loss, among other processes. For
this reason, we do not exclude the possibility of diverse
genetic phenomena, such as the continuum interchange
of genetic material that diminishing the border between
bacterial species, as it has been recently described in E.
coli bacterial strains, where a small proportion of
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universal protein families [41] and a large proportion of
specific families [42] have been found. In this regard, the
functional conservation of metabolic steps was evaluated
in a representative group of species selected with a gen-
ome similarity score of 0.7, as described by [43], captur-
ing the general diversity of the Gammaproteobacteria
metabolism.

Therefore, the method described here is able to identify
alternative enzymes involved in similar metabolic pro-
cesses, and although the conclusions can be restricted to
the metabolism covered by Gammaproteobacteria, the
method can be extended to any organism or clade for
which there is metabolic information. Finally, we under-
stand that the approach described here does not consider
the effect of promiscuous enzymes, defined as those
enzymes with more than two different E.C. numbers.
However, previous analysis have described that around
10 % of the total enzymatic repertoire in bacterial and
archaeal organisms corresponds to promiscuous enzymes
[28, 44], suggesting that our results and conclusions are
enough robust and can be little influenced by the multi-
functional enzymes.

Methods

Selection of proteobacterial species

In this study we included the small-molecule metabol-
ism of 40 different Gammaproteobacteria species.
These organisms were selected from the 275 Gamma-
proteobacteria genomes included in the KEGG database
as of June 2011 [3]. We chose non redundant genomes
using the criteria described in reference [43], with a
genome similarity score of 0.7, resulting in a set of 40
non redundant Gammaproteobacteria species. These
organisms are representative of the division as it is
shown in Additional file 2: Figure S4. Additional file 4:
Table S2 contains the list of the organisms included in
the analysis.

Construction of ESS

We downloaded the KGML files (version 0.71) that
describe the metabolic maps (pathways) of 40 Gamma-
proteobacteria in June 2011 from the KEGG database.
Based on these metabolic maps, the ESS were con-
structed by using the BEFS algorithm. In brief, a directed
graphical representation of each metabolic map was cre-
ated in which the nodes represented enzymes and the
edges represented a shared substrate/product between
two enzymes. This representation takes into account the
reversibility of the reactions. In a posterior step, a group
of BFS trees was generated for each metabolic map from a
set of initialization nodes, used as roots. An initialization
node was defined by two criteria: a node which substrate
is not catalyzed by another enzyme in the metabolic map,
and a node which substrate comes from another
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metabolic map and with two or fewer neighbors in the
graph. These criteria represent the metabolic input for
each pathway; the first criterion considers the substrates
not created in the same pathway, and the second one con-
siders the connections with other pathways. Each
initialization node was used as a root for the construction
of a BES tree. Finally, each tree was used as a guide for the
construction of the ESS. Thus, a BES tree creates as many
ESS as the number of branches it has. The graph repre-
sentation of the metabolic maps and the BFS trees were
generated using the Networkx Python module [45]
(Fig. 6).

In a posterior stage, ESS were organized in a relational
database. In this database, each EC number contained in
a sequence was related to its corresponding protein(s),
species, metabolic map. This database has a high degree
of redundancy, because an ESS may be the same in dif-
ferent species. Thus, a nrESS dataset was constructed by
filtering identical ESS and leaving only one representative.
Each ESS in the nrESS dataset is linked to the original
ESS. All analyses were conducted using the nrESS dataset
and referring to the original data when necessary. The
ESS and nrESS data are provided as supplementary mater-
ial (Additional file 5: File S1).

Comparison of nrESS by pairwise alignments

In order to identify the similarity of the nrESS, we im-
plemented a pairwise alignment algorithm based on the
Dynamic Programing Needleman and Wunsch (NW)
algorithm as described in reference [46]. This algorithm
works in a similar way as the classic tools to align nu-
cleotide or amino acid sequences (Additional file 6:
Text S1). We used an EC number weight matrix
derived from an entropy-based evaluation function that
evaluated the similarities between EC numbers. The
weight matrix describes the similarity between the 136
different three levels EC numbers. The number 9.9.9
was used to describe an enzyme with no EC assigned
and that was similar only to itself. The similarity
between two EC numbers ranged from 0 to 1. Values
close to 0 indicate similar EC numbers, and values close
to 1 indicate different EC numbers. This matrix takes
into account the hierarchy of the EC numbers, giving a
value of 1 to all the EC pairs that are different in the
first level of classification regardless of whether the sec-
ond or third numbers are identical. Therefore, the NW
algorithm uses the matrix to construct an alignment
that minimizes the global score. Finally, the alignment
is evaluated by using the normalized entropy-based
function. The score obtained with such an evaluation
function also ranges from O to 1, where O indicates
similar nrESS and 1 dissimilar nrESS. To analyze in
more detail the similarities of the low part of the gly-
colysis and the IMP pathways, their ESS were
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compared against the nrESS. Examples of nrESS align-
ments are shown in Additional file 2: Figure S5.

Statistically significant ESS alignments

To determine the statistical significance of the nrESS
alignments, we compared the alignment scores of the
real database against the scores from10 different random
databases. These random sequences were constructed by
shuffling the EC number content of the entire database,
maintaining the nrESS length and EC composition of
the original sequences. Each random database was sub-
mitted to the same all-versus-all alignment approach
used for the real data, and the distribution of alignment
scores considered the mean + SD. The threshold consid-
ered statistically significant corresponded to a score of
<0.3, i.e., that point with higher dispersion of the real
data relative to the mean random databases scores and
where the loss of nrESS due to extreme dissimilarity was
less than 1 %, i.e. this threshold includes the 99 % of the
nrESS.

Functional conservation of enzymatic steps in metabolic
maps

We used the information provided by the nrESS pairwise
alignments to identify the functionally conserved enzym-
atic steps in Gammaproteobacteria for each metabolic
map. Two nrESS were considered conserved if their
alignment scores were below or equal to 0.3 and if, in
conjunction, they were present in more than 75 % of the
organisms. This criterion was employed because we
assumed that a pair of conserved ESS would be shared
by at least all of the species with genomes greater than
2000 ORFs, ie., 30 of the 40 Gammaproteobacteria
organisms. From the ESS that fulfilled this criterion, we
selected those that corresponded to the same metabolic
map. This subset of sequences was named the Metabolic
Map Functional Conserved Dataset (MMFCD). To iden-
tify the conserved ESS, the aligned identical EC numbers
from each alignment were mapped in the corresponding
position in KEGG metabolic maps.

Clustering of similar metabolic maps

In order to identify the functional similarities among
metabolic maps, we selected a subset of nrESS pairwise
alignments with score values of <0.3. These alignments
were used to construct a similarity matrix where each
cell corresponded to the count of the alignments shared
by each pair of metabolic maps. The rows representing
the metabolic maps were normalized by the total align-
ments in each row. The matrix was used as input to a
hierarchical clustering analysis with the program MeV4
(http://www.tm4.org/mev.html). The similarity between
maps was calculated with the Spearman’s rank correl-
ation, and elements were clustered with the average
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method. A cutoff of 0.46 of the total length of the dendo-
gram was used to classify the metabolic maps into groups
and is displayed with the E. T .E. 2 Python toolkit [47].

Additional files

Additional file 1: Table S1. Statistics of construction of ESS per
metabolic map. Number of reactions, genes, and ESS produced for each
metabolic map per organism. (TAB 230 kb)

Additional file 2: Figure S1. Number of ESS generated by metabolic
map. In X-axis, denotes the number of enzymes per metabolic map;
Y-axis corresponds to the number of ESS. Each point represents one
metabolic map. The data were adjusted to a linear model. Figure S2.
Alignment scores of the nrESS database comparisons. The distribution
resembles an extreme value Gumbel distribution skewed to the right.
Scores are close to 1 and represent alignments of dissimilar sequences.

In counterpart, scores close to 0 correspond to alignments between
similar sequences. Figure S3. Proportion of nrkSS included in at least
one pairwise alignment as function of the alignment score. X-axis
represents the threshold at different values, whereas the Y-axis shows the
proportion of nrESS included. The number of excluded nrESS decreases
as the alignment score increases. The proportion of included nrESS of the
real data is compared with the same proportion of 10 random databases.
In the last case, the proportion of included ESS decreases abruptly at
scores close to 0. Figure S4. Gammaproteobacteria coverage of the
organisms used in this study. The organisms used in this study are
marked as circles. The organisms listed in the upper right corner are not
represented in the phylogenetic tree. The tree was taken and modified
from [14]. Figure S5. Pairwise ESS alignments. A NW algorithm was used
in these examples. The aligned pairs of ESS and their corresponding
scores are indicated. Gaps in the alignment are indicated by dashes (---).
Significant scores are those with scores <0.3. (PDF 4362 kb)

Additional file 3: File S2. KEGG weblinks with the functional
conservation of metabolic maps in Gammaproteobacteria. (TXT 56 kb)

Additional file 4: Table S2. Organisms considered in this study.
Genomic and metabolic information associated to each organism
analyzed in this work. (DOCX 31 kb)

Additional file 5: File S1. Enzymatic Step Sequence database.
(ZIP 1300 kb)

Additional file 6: Text S1. Description of the NW ESS alignment
functions. (DOC 72 kb)
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