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Simple Summary: Complex traits that require observations over multiple time points for the same
individual are called longitudinal traits. Understanding the genetic architecture of beef cattle growth
cannot be limited simply to a genome-wide association study (GWAS) for body weight at any specific
ages, but should be extended to a more general purpose by considering the longitudinal weight–age
using a growth curve approach. We compared three nonlinear models that described the body
weight data of Chinese Simmental beef cattle. The parameters of the suitable model were treated as
phenotypes of single-trait GWAS and multi-trait GWAS. We identified 87 significant single nucleotide
polymorphisms (SNPs) associated with body weight. Many candidate genes associated with body
weight were identified which may be useful for exploring the full genetic architecture underlying
growth and development traits in livestock.

Abstract: The objective of the present study was to perform a genome-wide association study (GWAS)
for growth curve parameters using nonlinear models that fit original weight–age records. In this
study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months
of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of
determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b),
and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In
total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS;
22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among
them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2,
IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development.
Further research for these candidate genes may be useful for exploring the full genetic architecture
underlying growth and development traits in livestock.

Keywords: longitudinal data; growth curve model; single-trait GWAS; multi-trait GWAS; Chinese
Simmental beef cattle

1. Introduction

With improved quality of life in China, the demand for meat, particularly beef, is
increasing [1]. The Simmental breed accounts for more than 70% of the total number of
beef cattle in China [2]. Therefore, it is necessary to analyze the genetic mechanism of the
growth traits in beef cattle production [3].

Genome-wide association study (GWAS) and genomic selection (GS) are powerful
statistical tools that can broadly identify candidate genes with significant single nucleotide
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polymorphisms (SNPs) involved in production traits [4,5], growth traits [6,7] and fertility
traits [8,9]. However, current research mainly focuses on single data records, such as birth
weight, weaning weight, and weight before slaughter [3,10,11]. Complex traits that require
observations over multiple time points for the same individual are called longitudinal
traits. Compared with single data records, longitudinal data can better describe the growth
and production of livestock and poultry [12,13]. The fitting growth curve model is one
of the most common strategies for such data [14]. Different models [15] provide a few
parameters for people to show the regularity of weight gain in livestock, such as mature
body weight (A), time-scale parameter (b), and maturity rate (K), which might reflect the
influence of genetic impacts on body weight. In the current study, parameters (such as
A and K) were considered as phenotypes of the mixed linear model, and quantitative
trait loci affecting the growth curve were identified by GWAS. In addition, Das et al. [16]
proposed a series of methods based on random regression models. Previous research has
demonstrated that these methods are more sophisticated and flexible [17], but they did not
provide biologically-interpretable parameters, such as A and K, which are usually required
in daily breeding management.

Generally, a quantitative trait locus (QTL), which affects complex traits, may affect
multiple traits [18]. Therefore, the genetic correlations between the parameter estimates
(mainly A and K) should be considered. These correlations may be attributed to SNPs
that have pleiotropic effects on multiple traits. Therefore, multiple trait GWAS (multi-trait
GWAS) is more reasonable in this study [18,19].

In this study, body weights of 808 Chinese Simmental beef cattle at four stages of
growth were used to fit the growth curve. The best fitting growth curve parameters were
treated as phenotypes for single-trait GWAS and multi-trait GWAS. The aim of our study
was to comprehensively analyze candidate genes and QTL regions associated with growth
traits by two GWAS methods. We also undertook post-GWAS analyses to identify and
prioritize annotated genes within detected genomic regions using the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Our findings
offer valuable insights for exploring the full genetic architecture underlying growth and
development traits in livestock.

2. Materials and Methods
2.1. Resource Population and Phenotypes Collection

All animals used in the study were treated following the guidelines established by
the Council of China Animal Welfare. Protocols of the experiments were approved by the
Science Research Department of the Institute of Animal Sciences, Chinese Academy of Agri-
cultural Sciences (CAAS), Beijing, China (approval number: RNL09/07). The training popu-
lation consisted of 808 Chinese Simmental beef cattle established in Ulgai, Xilingole League,
Inner Mongolia of China. Body weight at four growth stages (0, 6, 12, and 18 months af-
ter birth) were measured for each individual. Since fixed effects were related to body
weight and not to growth curve parameters, original body weight data at each age were
pre-adjusted for fixed effects (breed, year, and month of birth) by a generalized linear
model (GLM). The descriptive statistics of the pre-adjusted phenotypic data are presented
in Table 1.

Table 1. The descriptive statistics of body weight for Chinese Simmental beef cattle.

Age (Month) Max (kg) Min (kg) Mean (kg) Standard Deviation (SD)

0 55.20 25.00 38.79 6.21
6 326.00 107.00 208.68 39.48

12 561.00 242.00 398.70 56.21
18 739.00 346.00 520.10 73.18
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2.2. Genotyping and Quality Control

Genomic DNA was isolated from blood samples using the TIANamp Blood DNA
Kit (Tiangen Biotech Co.Ltd., Beijing, China) and DNA quality was acceptable when the
A260/A280 ratio was between 1.8 and 2.0. In total, 808 cattle were genotyped using Illu-
mina BovineHD Beadchip (Illumina Inc., San Diego, CA, USA). Before statistical analysis,
SNPs were pre-processed by PLINK v1.07 [20]. Duplicated SNPs were also removed.
Finally, 671,192 SNPs on 29 autosomal chromosomes with an average distance of 3 kb were
generated for the analysis. SNPs were deleted according to the following standards, includ-
ing minor allele frequency (<0.01), SNP call rate (<0.05), and Hardy–Weinberg equilibrium
values (p < 1 × 10−6).

2.3. Growth Curve Fitting

Three of the most widely used nonlinear models (Table 2) to describe animal growth
curves—Gompertz, Logistic, and Brody—were fitted for each animal using the iterative
nonlinear least-squares method via the Gauss–Newton [21] algorithm implemented in SAS
9.4. In the function, A is the mature body weight, which means the ultimate body weight
of an individual; b is the time-scale parameter, which means the time for an individual to
reach its maximum growth rate; K is the maturity rate, which means the rate at which an
individual approaches its mature body weight (A).

Table 2. Growth curve model. A is the mature body weight, b is the time-scale parameter, K is the
maturity rate, W is the observed body weight, t is the growth time, and e is the natural logarithm.

Model Function

Gompertz W = Aexp(−bexp−Kt)
Logistic W = A(1 + bexp−Kt)−1

Brody W = A(1 − bexp−Kt)

The coefficient of determination R2 [22] was used to evaluate the fitting effect of the
growth curve model. The expression is as follows:

R2 = 1 − ∑
(W − Ŵ)(
W −W

) (1)

where W represents the observation of body weight, Ŵ represents the estimated body
weight of the growth curve model, and W is the average value of body weight.

The genetic correlation of A, b, and K was also calculated, which used the following
formula:

rg =
σa12√
σ2

a1σ2
a2

(2)

where σ2
a1 is the additive genetic variance of trait 1, σ2

a2 is the additive genetic variance of
trait 2, and σa12 is the covariance of additive effects.

2.4. Single-Trait GWAS

After selecting the nonlinear model which best fit the body weight data, the parameters
A, b, and K were used in GWAS. Firstly, we used principal component analysis (PCA)
and obtained the kinship matrix using the package GAPIT [23] (Genomic Association and
Prediction Integrated Tool) (http://www.maizegenetics.net/gapit) in R software (R 3.6.1).
The following mixed linear model was considered:

y = Ws + Xβ + Zµ + e (3)

where y represents the vector of observations from the three phenotypes (A, b, K estimates)
for each individual; s is the SNP effects vector; W is a matrix of SNP genotype indicators,

http://www.maizegenetics.net/gapit
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which were coded as 0, 1, and 2 corresponding to the three genotypes AA, AB, and BB; µ is
a vector of these polygenic effects with an assumed N (0, Kσ2) distribution, where σ2 is the
polygenic variance and K is a marker inferred kinship matrix; X is an incidence matrix for
β, and β is a non-genetic vector of fixed effects only including principal component effects
(the top three eigenvectors of the Q matrix). The other fixed effects were not included
at this step, since they were already considered before fitting nonlinear functions (see
pre-adjustment for fixed effects in Section 2.1). Z is an incidence matrix for µ; while e is a
vector for random residual errors with a putative N (0, Iσ2

e ) distribution, where σ2
e is the

residual variance.
The false discovery rate (FDR) was used to determine the threshold values for single-

trait GWAS and multi-trait GWAS. The FDR was set as 0.05, and the threshold p-value was
calculated as follows:

p = FDR × n/m (4)

where n is the number of p < 0.05 in the results and m is the total number of SNPs [24].

2.5. Multi-Trait GWAS

The multi-trait GWAS was conducted to detect pleiotropic SNPs for the parameters A,
b, and K. The model was a Chi-squared distribution which was calculated for each SNP
using the following formula [25]:

ti =
|v̂i|√
V(v̂i)

(5)

x2
multi−trait = t′i V

−1ti (6)

where ti is a 3 × 1 vector of the t-values for ith SNP obtained from single-trait GWAS;
v̂i is the estimate of v; V(v̂i) is the corresponding variance which can be obtained by the
compressed mixed linear model (CMLM); t′i is the transpose of the vector ti; V−1 is the
inverse of the 3 × 3 correlation matrix between traits, which was calculated using the
qualified SNPs.

2.6. Gene Function Annotation

We explored the biological mechanism of significant SNPs based on the interpretability
of the gene functions related to the relevant SNPs. To select the candidate genes based
on the physical location of SNPs, the BioMart module of Ensembl was used to match the
significant SNPs with the UMD Bostaurus 3.1 (http://www.animalgenome.org). Then
we confirmed the biological function of related genes by the genome databanks National
Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/), and the
genes associated with growth and development traits were screened out. GO and KEGG
pathways were used to annotate the main biological functions, metabolic pathways, and
signal transduction pathways involved in differentially expressed genes.

3. Results
3.1. Growth Curve Fitting

Models are shown in Table 3, and the three growth curves are plotted in Figure 1.
The R2 values for the Gompertz, Logistic, and Brody models were 0.954, 0.951, and 0.951,
respectively; the Gompertz model showed the best goodness of fit. Figure 1 shows four
growth curves of the Gompertz model, Logistic model, Brody model, and the weight
average. The curves representing the Gompertz model and average body weight overlap
almost completely, while the other curves have some deviation. Therefore, the parameters
of the Gompertz model were selected as phenotypes of GWAS.

The correlation coefficients were 0.087 (A and b), –0.578 (A and K), and 0.369 (b and
K) respectively, which showed that A and K have a strong negative correlation.

http://www.animalgenome.org
https://www.ncbi.nlm.nih.gov/
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Table 3. Estimated values of the growth curve model.

Parameter
Models

Gompertz Logistic Brody

A 617.900 551.000 1458.500
b 2.740 9.304 0.976
K 0.153 0.273 0.024
R2 0.954 0.951 0.951
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3.2. Principal Components Analysis (PCA)

The population stratification of the Simmental beef cattle population based on the PCA
is shown in Figure 2. The population was divided into five separate clusters, demonstrating
an obvious stratification in the reference population. The majority of individuals are located
in the lower right corner, while a small number of individuals are distributed in other
regions. Therefore, the first two principal components are selected as covariables to
eliminate the influence of population stratification on correlation analysis.
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3.3. Summary of Results by Two GWAS Methods

The quantile-quantile (Q-Q) plots and Manhattan plots of single-trait GWAS are shown
in Figures 3 and 4. Most points were near the diagonal line in quantile-quantile (Q-Q) plots
because the population structure was considered in the GWAS function. The Q-Q plots
suggested that there was no inflation or systematic bias in this research. There were nine
significant SNPs for mature body weight (A) in the Manhattan plots of single-trait GWAS.
The nine SNPs were located on bos taurus autosomes (BTA) 4, 7, 10, 11, 15, and 22, and
the locus with the lowest p-value was located at 20,500,709 bp on BTA 7 (Figure 4A). The
49 significant SNPs were shown for time-scale parameter (b), and the SNP with the lowest
p-value was located at 98,989,710 bp on BTA 9. For the maturity rate (K), Manhattan plot
indicated seven significant loci which were located on BTA 22 and 25, and the SNP with
the lowest p-value was located at 18,694,612 bp on BTA 22. We observed several associated
genes involved in growth and development, including PLIN3, KCNS3, TMCO1, ANGPTL2,
IGF-1, ASPH, ALPL, GRM7, and SHISA9. All results are shown in Table 4.

The Q-Q plot and the Manhattan plot of multi-trait GWAS are shown in Figures 5 and 6.
The same conclusion as the single-trait GWAS was given in the Q-Q plot of multi-trait
GWAS. The 22 significant SNPs were identified. The SNP with the lowest p-value was
located at 25,336,507 bp on BTA 10. We also observed several associated genes involved in
growth and development which included STK3, CD58, and bta-mir-2285de. The results are
shown in Table 4.
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Table 4. The results of single-trait GWAS and multi-trait GWAS.

Trait SNP BTA Position Distance Gene p-Value

A ARS-BFGL-NGS-14531 7 20,500,709 6291 PLIN3 9.55 × 10−7

BovineHD2200014587 22 51,133,487 within (intronic) BSN 1.10 × 10−6

BovineHD1000029459 10 101,577,026 within (intronic) TTC8 1.12 × 10−6

BovineHD1500022754 15 78,218,321 within (intronic) C15H11ofF49 1.42 × 10−6

BovineHD0700005699 7 20461 012 within (intronic) UHRF1 2.08 × 10−6

BovineHD1100023174 11 80,858,593 14,458 KCNS3 2.13 × 10−6

BovineHD1100023180 11 80,883,741 39,606 KCNS3 2.61 × 10−6

BovineHD1100023175 11 80,860,546 16,411 KCNS3 3.46 × 10−6

Hapmap36353-
SCAFFOLD29708_3468 4 64,923,141 62,596 PDE1C 5.78 × 10−6

b BovineHD0900028514 9 98,989,710 within (exonic) PRKN 4.43 × 10−8

BovineHD1300017399 13 60,669,478 15,189 RSPO4 1.86 × 10−7

BTB-00981633 28 24,967,427 within (intronic) DNA2 1.90 × 10−7

BovineHD1500020257 15 70,169,617 1,074,228 LRRC4C 4.73 × 10−7

BovineHD1200006711 12 22,401,586 317,236 COG6 5.26 × 10−7

BovineHD2300007448 23 27,217,994 within (intronic) SKIV2L 5.33 × 10−7

BovineHD0900026419 9 93,361,299 12,446 NOX3 6.17 × 10−7

BovineHD1400018901 14 67,713,519 within (intronic) STK3 6.38 × 10−7

BovineHD2300007441 23 27,195,210 within (intronic) C4A 6.58 × 10−7

BovineHD0900028515 9 98,990,425 within PRKN 7.26 × 10−7

BovineHD0300000940 3 3,186,646 within (intronic) TMCO1 9.11 × 10−7

BovineHD0300000941 3 3,189,462 within (intronic) TMCO1 9.11 × 10−7

BovineHD1100028458 11 97,919,703 60,177 ANGPTL2 1.33 × 10−6

BovineHD1100028450 11 97,903,021 43,495 ANGPTL2 1.34 × 10−6

BovineHD0100024671 1 86,573,589 93,224 DNAJC19 2.37 × 10−6

BovineHD0900028520 9 99,001,573 within (exonic) PRKN 2.54 × 10−6

BovineHD1400000353 14 2,382,595 within (intronic) ZC3H3 2.76 × 10−6

BovineHD1400000354 14 2,384,748 within (intronic) ZC3H3 2.76 × 10−6

BovineHD2300007455 23 27,227,600 within (intronic) CFB 3.00 × 10−6

BovineHD2400010016 24 36,578,137 458,512 ADCYAP1 3.03 × 10−6

BovineHD0300025174 3 87,908,532 16,189 MYSM1 3.07 × 10−6

BovineHD0500018625 5 66,594,318 within (intronic) IGF-1 3.34 × 10−6

BovineHD0500018629 5 66,609,814 5314 IGF-1 3.34 × 10−6

BovineHD0500018633 5 66,624,481 19,981 IGF-1 3.34 × 10−6

BovineHD0100026284 1 92,441,255 1,184,964 NLGN1 3.72 × 10−6

BovineHD1200008652 12 29,267,967 within (exonic) RXFP2 3.85 × 10−6
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Table 4. Cont.

Trait SNP BTA Position Distance Gene p-Value

BovineHD0900028524 9 99,010,494 within (exonic) PRKN 3.89 × 10−6

BovineHD1400000321 14 2,241,832 6798 MAPK15 4.36 × 10−6

BovineHD1400000343 14 2,348,518 3233 GSDMD 4.68 × 10−6

BovineHD1900009534 19 32,360,589 within (intronic) HS3ST3A1 5.67 × 10−6

BovineHD0900028481 9 98,914,727 within (exonic) PRKN 5.95 × 10−6

BovineHD0900028509 9 98,984,305 within (exonic) PRKN 5.95 × 10−6

BovineHD0500018642 5 66,654,472 49,972 IGF-1 6.01 × 10−6

BovineHD0900028504 9 98,967,507 within (exonic) PRKN 6.05 × 10−6

BovineHD0300025183 3 87,959,712 within (intronic) MYSM1 6.27 × 10−6

BovineHD1200027060 12 64,329,068 1,659,351 SLITRK5 6.45 × 10−6

BovineHD1200026793 12 18,310,824 9625 RCBTB2 6.50 × 10−6

BovineHD2100014355 21 49,967,674 200,864 FBXO33 6.69 × 10−6

BovineHD0300008509 3 26,888,743 28,039 CD58 6.84 × 10−6

BovineHD0300008508 3 26,885,838 25,134 CD58 6.98 × 10−6

BovineHD0200038336 2 131,809,255 within (intronic) ALPL 8.81 × 10−6

BovineHD0200038337 2 131,810,815 within (exonic) ALPL 8.81 × 10−6

BovineHD0200038343 2 131,820,288 7428 ALPL 8.81 × 10−6

BovineHD0200031784 2 110,303,552 within (intronic) EPHA4 9.04 × 10−6

BovineHD0100014672 1 52,227,088 136,783 CCDC54 9.06 × 10−6

BovineHD1400008371 14 28,916,088 27,997 ASPH 9.15 × 10−6

BovineHD0200031783 2 110,302,531 within (intronic) EPHA4 9.19 × 10−6

BovineHD1400018902 14 67,716,121 within (intronic) STK3 9.42 × 10−6

BovineHD0200038341 2 131,817,068 4208 ALPL 9.84 × 10−6

K BovineHD2200005378 22 18,694,612 60,070 GRM7 3.24 × 10−6

BovineHD2500003405 25 12,148,764 444,406 SHISA9 3.82 × 10−6

BovineHD2200005379 22 18,697,043 57,639 GRM7 3.89 × 10−6

BovineHD2500003397 25 12,122,951 418,593 SHISA9 6.89 × 10−6

BovineHD2500003394 25 12,119,907 415,549 SHISA9 7.09 × 10−6

BovineHD2500003411 25 12,164,708 460,350 SHISA9 9.25 × 10−6

BovineHD2500003396 25 12,122,067 417,709 SHISA9 9.70 × 10−6

Multi

BovineHD1000008269 10 25,336,507 11,871 BT.86117 5.76 × 10−11

BovineHD2300014561 23 49,948,237 785 C6ORF146 5.11 × 10−7

BovineHD0100017897 1 63,214,855 within (intronic) bta-mir-2285de 8.19 × 10−7

BovineHD1100024571 11 85,545,380 311,744 TRIB2 9.06 × 10−7

BovineHD1900017810 19 61,961,078 within (intronic) ABVA10 1.78 × 10−6

BovineHD2200011596 22 40,545,626 185,054 BT.92027 2.22 × 10−6

BovineHD1300005737 13 19,728,845 183,012 NRP1 2.77 × 10−6

BovineHD1400005409 14 18,830,773 441,600 BT.88023 2.77 × 10−6

BovineHD1400018913 14 67,761,416 within (exonic) STK3 3.41 × 10−6

BovineHD2400015566 24 54,582,317 107,987 C18ORF26 3.89 × 10−6

Hapmap46842-BTA-57397 24 11,851,627 637,616 CDH7 4.32 × 10−6

BovineHD1400003514 14 12,051,695 146,289 GSDMC 4.44 × 10−6

BovineHD0200034312 2 118,915,870 within (intronic) PSMD1 5.65 × 10−6

BovineHD0900014829 9 53,862,308 48,559 GPR63 5.70 × 10−6

BovineHD2700010439 27 36,460,835 72,147 KAT6A 5.71 × 10−6

BovineHD1100023984 11 83,388,941 200,644 NBAS 6.15 × 10−6

BovineHD0900002818 9 11,192,144 488,896 RIMS1 6.15 × 10−6

BovineHD1300006393 13 21,900,826 within (intronic) PLXDC2 6.15 × 10−6

BovineHD0200019309 2 66,721,486 808,880 ACTR3 8.50 × 10−6

BovineHD1800012623 18 42,743,057 295,489 ZNF507 9.33 × 10−6

BovineHD0300008523 3 26,920,280 59,576 CD58 9.36 × 10−6

BovineHD2900005573 29 19,238,772 49,975 GDPD4 9.53 × 10−6
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3.4. GO and KEGG Pathway Analysis

We found 29 KEGG pathways and 135 GO terms, and 12 pathways and 99 GO
terms were significantly enriched (p < 0.05) (e.g., thiamine metabolism, circadian rhythm,
protein stabilization, nephric duct morphogenesis, glycosylphosphatidylinositol (GPI)-
linked ephrin receptor activity) (Table S1). Particularly, seven KEGG pathways and 14 GO
terms which were related to growth and development are shown separately in Table 5,
including Hippo signaling pathway—multiple species, longevity regulating pathway—
multiple species, nephric duct morphogenesis, and limb morphogenesis.

Table 5. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) involved in
differentially expressed genes.

Gene Name Term Database ID DEG

ALPL
Hippo signaling pathway—multiple species KEGG pathway bta00730 1

biomineral tissue development Gene Ontology GO:0031214 1
ANGPTL2 angiogenesis Gene Ontology GO:0001525 1

EPHA4
Axon guidance KEGG pathway bta04360 1

nephric duct morphogenesis Gene Ontology GO:0072178 1
cochlea development Gene Ontology GO:0090102 1

KAT6A Signaling pathways regulating pluripotency of stem cells KEGG pathway bta04550 1
PLIN3 lipid storage Gene Ontology GO:0019915 1

PRKAG3
Longevity regulating pathway—multiple species KEGG pathway bta04213 1

Apelin signaling pathway KEGG pathway bta04371 1
fatty acid biosynthetic process Gene Ontology GO:0006633 1

ASPH
limb morphogenesis Gene Ontology GO:0035108 1

roof of mouth development Gene Ontology GO:0060021 1
ASPH, STK3 negative regulation of cell population proliferation Gene Ontology GO:0008285 2

STK3

Hippo signaling pathway KEGG pathway bta04390 1
MAPK signaling pathway KEGG pathway bta04010 1

cell differentiation involved in embryonic placenta development Gene Ontology GO:0060706 1
hepatocyte apoptotic process Gene Ontology GO:0097284 1

negative regulation of organ growth Gene Ontology GO:0046621 1
positive regulation of fat cell differentiation Gene Ontology GO:0045600 1

central nervous system development Gene Ontology GO:0007417 1

Note: DEG represents the number of differentially expressed genes detected in this pathway; MAPK represents the mitogen-activated
protein kinase signaling pathway.

4. Discussion
4.1. Growth Curve Fitting

R2 of Gompertz model reached 0.954, which was the highest of the three models. The
parameter A of the Gompertz model showed that the mature body weight of Chinese
Simmental beef cattle reached 617.9 kg, which was within the normal mature weight range
(600–800 kg) for the population [26]. Though the R2 of Logistic model and Brody model
reached 0.951, the parameter A (551.0 and 1458.5) was inconsistent with the actual weight
of Chinese Simmental beef cattle. The results indicated that the two models may not be
suitable for the data in this study. Though the coefficient of determination (R2) for Logistic
model and Brody model for A are the same (0.951), the estimate of A for the two models
was quite different. The reason for this phenomenon may be that the function expressions
of the two models are different, and the estimation methods are also different, so the
models adapt to different breeds. Among the three models, the growth curve fitting by the
Gompertz model with the highest R2 had well-matched performance for the actual cattle
population. Therefore, the Gompertz model was chosen as the best model for Chinese
Simmental beef cattle, which was the same conclusion as Liang et al. [27].

The negative relationship between parameters A and K has been reported many
times [14,28,29], which suggests that individuals with smaller mature weight will gain its
mature body weight at a young age. Thus, we can predict that precocious animals will not
gain a high mature body weight, even if we put in the same cost (such as feed) as other
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individuals. The conclusion could help us reduce the cost of raising animals by learning to
manage individuals separately.

Although there are few studies about growth curves in Chinese Simmental beef cattle,
some authors have concluded that the Gompertz model provides the best fit for body
weight of beef cattle. Zainaguli et al. [30] used four common models (Logistic, Gompertz,
Brody, and Bertallanffy) to fit the weight growth curves of 344 Xinjiang Brown cattle. The
Gompertz model showed the best fit for the population. Liang et al. [27] compared four
growth curve models (Logistic, Gompertz, Brody, and Bertallanffy) fitted to body weight
of Simmental beef cattle and concluded that the Gompertz model was superior to the
other models.

4.2. GWAS, GO, and KEGG Pathway Analysis

We performed single-trait GWAS and multi-trait GWAS for the body weight trait
of Chinese Simmental beef cattle. A great number of genes involved in growth and
development were identified by each method. The reason for this phenomenon may be
the limited dataset. However, since most growth and development traits are controlled
by multiple genes [31], the genes associated with growth and development identified by
separate GWAS cannot be ignored. Single-trait GWAS and multi-trait GWAS have their
specific advantages in the identification of distinct loci. For example, compared to the meta-
analysis GWAS, the single-population GWAS was more powerful for the identification of
SNPs [32], whereas multi-trait GWAS has the advantage of increasing statistical power and
identifying pleiotropic loci [33–35]. Therefore, it should be noted that multi-trait GWAS
cannot replace single-trait GWAS, rather it was complementary to single-trait GWAS. Thus,
combining single-trait GWAS and multi-trait GWAS methods was expected to markedly
improve the analysis of the genetic mechanism of the body weight traits for Chinese
Simmental beef cattle.

Single-trait GWAS: For mature body weight (A), the significant locus ARS-BFGL-NGS-
14531 which has the lowest p-value was near PLIN3 (perilipin 3). PLIN3 is an important
regulator of adipogenesis and triglyceride storage [36], and PLIN3 functions are intertwined
with the lipogenic pathways implicated in sebaceous lipogeneses, such as desaturation and
triglyceride synthesis [37]; three significant SNPs were near KCNS3 (potassium voltage-gated
channel modifier subfamily S member 3) which was proven to be significantly associated
with the percent body fat (%BF) [38]. For time-scale parameter (b), two SNPs were within
TMCO1 (transmembrane and coiled-coil domains 1), which may affect muscle development
because of the significant relationship with PRKAG3 (protein kinase AMP-activated non-
catalytic subunit gamma 3); two significant SNPs were near ANGPTL2 (angiopoietin like 2).
A study showed that ANGPTL2 may be used as a new type of adipocyte factor [39]. One
SNP was located in CFB (complement factor B), which has been identified as related to the
total number of piglets born (TNB) and reproductive traits [40]; four significant SNPs
were near or within IGF-1 (insulin-like growth factor 1). IGF-1 and its signaling pathway
play a primary role in normal growth and aging [41,42]. The locus BovineHD1400008371
was near ASPH (aspartate beta-hydroxylase), which is involved in regulating the growth
and development of beef cattle carcass [43]; four significant SNPs were near or within
ALPL (alkaline phosphatase, biomineralization associated). A study showed that the expression
level of ALPL in white blood cells of obese people is significantly higher than that of lean
people, indicating that ALPL may be related to the production of fat [44]; two significant
loci were within EPHA4 (EPH receptor A4) which was one of the potential candidate genes
for growth trait of pigs [45]. Seven significant loci of maturity rate (K) were concentrated
on chromosomes 22 and 25; two associated genes GRM7 (glutamate metabotropic receptor 7)
and SHISA9 (shisa family member 9) were found and SHISA9 was highly correlated with
growth and development [46].

Multi-trait GWAS: CD58 (CD58 molecule) and STK3 (serine/threonine kinase 3) were
found by both methods. Two SNPs (BovineHD1400018901 and BovineHD1400018902) from
single-trait GWAS and one SNP (BovineHD1400018913) from multi-trait GWAS were near
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STK3, which is also named MST2 (macrophage stimulating 2). MST1 (macrophage stimulating 1)
and MST2 were central to the Hippo signaling pathway in mammals, which enabled the
dynamic regulation of tissue homeostasis in animal development [47]. One significant SNP
(BovineHD0100017897) was within bta-mir-2285de which might be an important regulator
of bovine mammary lipogenesis and metabolism [48]. The locus BovineHD2700010439
was near KAT6A (lysine acetyltransferase 6A), and it has been shown to be significantly
associated with growth retardation [49]. One significant SNP(BovineHD1100023984) was
near NBAS (NBAS subunit of NRZ tethering complex) which was significantly associated
with bone development [50].

GO and KEGG pathway: There are also some candidate genes which are closely related
to growth and development found by GO and KEGG pathway. For example, STK3 was
involved in more than one GO and KEGG pathway, including Hippo signaling pathway—
multiple species, Hippo signaling pathway, MAPK signaling pathway, cell differentiation
involved in embryonic placenta development [51], hepatocyte apoptotic process, negative
regulation of organ growth, negative regulation of cell population proliferation, positive
regulation of fat cell differentiation, and central nervous system development, which sug-
gests that STK3 may be closely related to cell proliferation and differentiation [51], organ
growth and development, and nervous system development [52]. ASPH was involved in
limb morphogenesis and roof of mouth development, which suggests that ASPH is signifi-
cantly associated with body development [43]. ANGPTL2 was involved in angiogenesis,
which suggests that ANGPTL2 is closely related to the development of individuals [39].

5. Conclusions

In conclusion, the three growth curve models were used to fit the body weight data
of Chinese Simmental beef cattle. The parameters of the Gompertz model with the best
fitting effect are the phenotypes of GWAS. A total of 65 significant SNPs from single-trait
GWAS and 22 SNPs from multi-trait GWAS were found. Seven KEGG pathways and 14
GO terms, which were related to growth and development, were also identified. Several
candidate genes that were significantly associated with growth and development traits
were observed, including PLIN3, KCNS3, TMCO1, ANGPTL2, CFB, IGF-1, ALPL EPHA4,
SHISA9, STK3, and bta-mir-2285de. The role of associated genes in growth and development
was also discussed. Further research for these candidate genes may be useful for exploring
the full genetic architecture underlying growth and development traits in livestock.
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