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Abstract: Hydrogen sulfide (H2S) is one of the important biological mediators involved in
physiological and pathological processes in mammals. Recently developed H2S donors show
promising effects against several pathological processes in preclinical and early clinical studies. For
example, H2S donors have been found to be effective in the prevention of gastrointestinal ulcers during
anti-inflammatory treatment. Notably, there are well-established medicines used for the treatment of
a variety of diseases, whose chemical structure contains sulfur moieties and may release H2S. Hence,
the therapeutic effect of these drugs may be partly the result of the release of H2S occurring during
drug metabolism and/or the effect of these drugs on the production of endogenous hydrogen sulfide.
In this work, we review data regarding sulfur drugs commonly used in clinical practice that can
support the hypothesis about H2S-dependent pharmacotherapeutic effects of these drugs.
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1. Hydrogen Sulfide in Physiology and Pharmacology

Hydrogen sulfide (H2S) is produced by a variety of organisms, e.g., bacteria, fungi, plants and
animals. First reports linking H2S with the smell of rotten eggs can be traced back in the 18th
century (reviewed in [1]). Similarly, the toxic effects of H2S on mammals have been known over the
centuries. The 1996 report from Abe and Kimura, suggesting the role of endogenously produced H2S
in neuromodulation, started a new era in H2S research, and its role in biology and medicine [2]. Later,
a number of important biological actions of H2S were described, including vasorelaxation [3], changes
in brain neurotransmission [4–6], and the effect on neuronal K+ channel activity [7]. These effects are
believed to be mediated by physiological concentrations of H2S. Therefore, H2S is now regarded as a
third gaseous signaling molecule, next to nitric oxide (NO) and carbon monoxide (CO). In order to
develop H2S-releasing donors, researchers started to modify chemical structures of well-described
sulfide releasing agents, obtaining several H2S donors including Lawesson’s reagent and analogues [8],
DTT (1,2-dithiole-3-thiones) derivatives like ADT-OH, ACS 5, ACS 48 and ACS 50 [9–11], diallyl
disulfide (DADS) derivatives like ACS 81 [12], arylthioamides (TBZ) [13], aryl isothiocyanates [14] and
thiourea derivatives [15] (Figure 1).
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Figure 1. Examples of hydrogen sulfide (H2S)-releasing groups that can be coupled to existing 
pharmacologically active compounds. 

Interestingly, there are numerous well-established medicines which contain sulfur moieties. It 
can be assumed that drugs containing sulfur in their structure may release H2S or affect its 
endogenous production. The possibility of releasing H2S from drugs can enhance their biological 
activity and provide additional therapeutic benefits, but also generate some adverse effects. This 
paper reviews experimental and clinical data that may suggest that the pharmacological effects of 
several commonly used drugs may in part depend on the presence of sulfur groups and/or on the 
release of H2S from the active molecule. 

1.1. H2S Production 

The H2S gas is colorless and flammable. Free sulfide is a weak acid that dissociates in the body 
fluids with pH 7.4, the pKa1 = 6.8 and pKa2 > 12 at 37 °C to yield ~20% of H2S and ~80% of HS– and 
negligible amounts of S2- [16]. In cellular compartments the pH affects the relative proportion to total 
sulfide, from 90% of HS– in the mitochondrial matrix (pH = 8) to over 90% of H2S in lysosomes (pH = 
5). The lipophilic property enables a rapid diffusion of H2S through the lipid bilayer of cell 
membranes [17]. On the other hand, HS– is not permeable and requires transporters in order to enter 
the cell [18,19]. 

H2S is produced in mammalian organisms by non-enzymatic and enzymatic pathways. Sulfate-
reducing bacteria (SRB) colonize the gut and in the presence of an electron donor reduce sulfate to 
produce H2S [20]. In addition, erythrocytes are able to convert elemental sulfur to HS- by non-
enzymatic reduction [21]. H2S is generated in the tissues by cysteine metabolizing enzymes, 
cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate 
sulfurtransferase (3-MST) in conjunction with cysteine aminotransferase (CAT). CBS and CSE are a 
part of the reverse transsulfuration pathway. The β-replacement reaction of homocysteine with serine 
is catalyzed by the CBS and generates cystathionine. CSE catalyzes the α,γ-elimination of 
cystathionine to cysteine, α-ketobutyrate and NH3. H2S is generated subsequently by the β-
elimination reaction of cysteine catalyzed by either CBS or CSE. Alternatively, CSE catalyzes the 
conversion of cystine to thiocysteine, pyruvate and NH3, subsequently liberating H2S [22]. CAT 
catalyzes the conversion of cysteine to α-ketoglutarate, producing 3-mercaptopyruvate. 3-MST 
subsequently forms a persulfide on the enzyme, liberating H2S under reducing conditions [23]. CBS 
represents the main H2S-generating enzyme in the brain, whereas CSE dominates in the 
cardiovascular system [24,25]. The activity of 3-MST seems to be highest in the adrenal cortex [26]. 
The expression of the enzyme was also reported in erythrocytes [27]. All enzymes can be found in 
the lungs, liver, kidneys and gastrointestinal tract [28–31]. Regarding the sub-cellular distribution, 
CBS and CSE are cytosolic enzymes [32], whereas 3-MST is present mostly in the mitochondria [33]. 
However, translocation of these enzymes between compartments is possible under specific 
conditions [33,34]. In addition to cysteine metabolism, several other pathways of H2S biosynthesis 
were proposed, including the reduction of thioredoxin by catalase or thiosulfate by thiosulfate 
reductase [35,36]. Finally, gut bacteria express specific H2S-producing enzymes, namely cysteine 
desulfhydrase [37,38] and sulfite reductase [39]. 

1.2. H2S Excretion 

Figure 1. Examples of hydrogen sulfide (H2S)-releasing groups that can be coupled to existing
pharmacologically active compounds.

Interestingly, there are numerous well-established medicines which contain sulfur moieties. It can
be assumed that drugs containing sulfur in their structure may release H2S or affect its endogenous
production. The possibility of releasing H2S from drugs can enhance their biological activity and
provide additional therapeutic benefits, but also generate some adverse effects. This paper reviews
experimental and clinical data that may suggest that the pharmacological effects of several commonly
used drugs may in part depend on the presence of sulfur groups and/or on the release of H2S from the
active molecule.

1.1. H2S Production

The H2S gas is colorless and flammable. Free sulfide is a weak acid that dissociates in the body
fluids with pH 7.4, the pKa1 = 6.8 and pKa2 > 12 at 37 ◦C to yield ~20% of H2S and ~80% of HS–

and negligible amounts of S2- [16]. In cellular compartments the pH affects the relative proportion to
total sulfide, from 90% of HS– in the mitochondrial matrix (pH = 8) to over 90% of H2S in lysosomes
(pH = 5). The lipophilic property enables a rapid diffusion of H2S through the lipid bilayer of cell
membranes [17]. On the other hand, HS– is not permeable and requires transporters in order to enter
the cell [18,19].

H2S is produced in mammalian organisms by non-enzymatic and enzymatic pathways.
Sulfate-reducing bacteria (SRB) colonize the gut and in the presence of an electron donor reduce
sulfate to produce H2S [20]. In addition, erythrocytes are able to convert elemental sulfur to HS- by
non-enzymatic reduction [21]. H2S is generated in the tissues by cysteine metabolizing enzymes,
cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase
(3-MST) in conjunction with cysteine aminotransferase (CAT). CBS and CSE are a part of the reverse
transsulfuration pathway. The β-replacement reaction of homocysteine with serine is catalyzed by
the CBS and generates cystathionine. CSE catalyzes the α,γ-elimination of cystathionine to cysteine,
α-ketobutyrate and NH3. H2S is generated subsequently by the β-elimination reaction of cysteine
catalyzed by either CBS or CSE. Alternatively, CSE catalyzes the conversion of cystine to thiocysteine,
pyruvate and NH3, subsequently liberating H2S [22]. CAT catalyzes the conversion of cysteine to
α-ketoglutarate, producing 3-mercaptopyruvate. 3-MST subsequently forms a persulfide on the
enzyme, liberating H2S under reducing conditions [23]. CBS represents the main H2S-generating
enzyme in the brain, whereas CSE dominates in the cardiovascular system [24,25]. The activity of
3-MST seems to be highest in the adrenal cortex [26]. The expression of the enzyme was also reported
in erythrocytes [27]. All enzymes can be found in the lungs, liver, kidneys and gastrointestinal
tract [28–31]. Regarding the sub-cellular distribution, CBS and CSE are cytosolic enzymes [32], whereas
3-MST is present mostly in the mitochondria [33]. However, translocation of these enzymes between
compartments is possible under specific conditions [33,34]. In addition to cysteine metabolism, several
other pathways of H2S biosynthesis were proposed, including the reduction of thioredoxin by catalase
or thiosulfate by thiosulfate reductase [35,36]. Finally, gut bacteria express specific H2S-producing
enzymes, namely cysteine desulfhydrase [37,38] and sulfite reductase [39].
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1.2. H2S Excretion

The main route of elimination is the oxidation of H2S in the mitochondria. H2S is converted to
thiosulfate and further oxidized to sulfate and excreted by the kidneys. The main enzymes involved in
the elimination pathway are sulfide quinone oxidoreductase (SQR), persulfide dioxygenase (ETHE1),
thiosulfate sulfurtransferase (TST) and sulfite oxidase (SO). Firstly, a SQR cysteine persulfide is formed.
The sulfane can be further transferred to glutathione to form glutathione persulfide or to sulfite and
form thiosulfate. The glutathione persulfide may be oxidized by ETHE1 and thiosulfate by TST to
regenerate sulfite, which is oxidized by SO to sulfate [36,40,41]. Additionally, a part of H2S is exhaled
or scavenged in the blood by methemoglobin to form sulfhemoglobin [42–44].

1.3. H2S Concentrations in Plasma and Tissues

The concentration of free H2S in plasma and tissues is in nanomolar range [45]. In contrast, very
high concentrations of H2S are found in the large intestine [46–48]. This is because of enzymatic
production by the intestinal tissue, and non-enzymatic and enzymatic production by gut microbiota.
It has been found that colonic epithelial cells convert sulfide into thiosulfate more efficiently than
other tissues [49,50]. Shen et al. reported that germ-free mice have lower systemic levels of H2S in
plasma and various tissues, suggesting that gut microbiota regulates the systemic bioavailability and
metabolism of H2S [51].

Free H2S may exist in bound form as sulfane sulfur or acid labile sulfur. Inorganic (H2Sn) or
organic (RSnH or RSnR) persulfides (n = 2) and polysulfides (n = 3–8) represent the sulfane sulfur
store [52]. These species are formed either by direct interaction between H2S and oxidants (GSSG, NO)
or by enzymatic oxidation. For instance, the persulfidation of 3-MST (3-MST-SSH) or SQR (SQR-SSH)
can represent a source of organic persulfides [32,35]. In addition, 3-MST, super oxide dismutase
(SOD) and catalase may oxidize H2S and form inorganic and organic per-/poly-sulfides [36,53–56].
Interestingly, catalase acts as sulfide-sulfur oxido-reductase, catalyzing both the H2S oxidation or the
thiols reduction and H2S production [34]. Endogenous reductants subsequently liberate H2S from
sulfane sulfur stores or the sulfane may be transported and transferred to other molecules to mediate
sulfur signaling [52,56]. The acid labile sulfur is formed by the interaction between H2S and iron
centers of proteins. However, the H2S release from the acid labile store requires low pH < 5.4 [57].

1.4. H2S Signaling

A number of cellular and molecular mechanisms of H2S actions have been proposed, including
the interaction of H2S with several ion channels, enzymes regulating redox balance, the persulfidation
or a direct interaction with heme proteins.

Increasing evidence suggests that physiological effects of H2S are linked with the persulfidation
of the target protein residues [58,59]. The persulfidation is a crucial post-translational modification
that regulates the function of the proteins. In order to form a cysteine persulfide, the oxidation
of H2S to per-/poly-sulfide or the oxidation of the target cysteine to sulfenic acid or disulfide is
needed [60]. Recently, the endogenous source of persulfides was identified in the mitochondria,
namely the cysteinyl–tRNA synthetases, which incorporate cysteine persulfides into the proteins
during translation. It was hypothesized that the cysteine persulfides may be released to cytosol in
order to mediate further post-translational persulfidation of target proteins [61].

In addition, the interaction of H2S with metal centers of target proteins, particularly the interaction
with heme proteins, was investigated thoroughly [62]. H2S may induce a covalent modification of
heme, resulting in sulfheme formation [63]. Secondly, the oxidative detoxification of H2S by heme
proteins results in the formation of polysulfides and thiosulfate [27]. For instance, the toxic effect of
H2S is based on the inhibition of mitochondrial electron transport at cytochrome C oxidase [64–66].
H2S reversibly binds to the heme center of cytochrome C oxidase, thereby inhibiting the binding of
oxygen, resulting in the shutdown of ATP generation [66,67]. On the other hand, low concentrations of
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H2S (≤1 µM) stimulate cellular energetic. The persulfidation of SQR is coupled with the transfer of
electrons to coenzyme Q, thereby enhancing mitochondrial electron transport, resulting in higher ATP
production [68,69].

H2S may also modulate the production and activity of other gasotransmitters. The persulfidation of
endothelial NO-synthase (eNOS) Cys433 residue promotes the production of NO [70]. The persulfidation
of Keap 1 Cys151 leads to the dissociation of the protein from Nrf2, subsequent translocation of Nrf2
into the nucleus, thereby promoting the heme oxygenase 1 (HO-1) induced CO production [71]. Similar
to persulfidation, NO may modulate protein function via S-nitrosation. However, Wolhuter et al.
reported that S-nitrosation is not a stable regulatory modification in the cells. They proposed that
S-nitrosothiols are transient intermediates that react with thiols to form stable persulfides [72]. The
direct interaction between H2S and NO results in the formation of biologically active nitrosopersulfide
and polysulfides [73–76]. In addition, H2S may interact with other reactive species, e.g., oxygen,
nitrogen, sulfur and selenium species. These species are produced by various cellular enzymes
(NADPH oxidase, xanthine oxidase, uncoupled NOS) and their mutual interaction leads to the
formation of numerous products, contributing mostly to the redox biology of the cell [77–81].

1.5. H2S in the Cardiovascular System

Vasodilation and blood pressure lowering induced by exogenous H2S salts and H2S donors
have been reported by several groups [82–92]. The endogenous production of H2S by CSE was
decreased in various types of hypertension, e.g., in spontaneously hypertensive rats, in rats with
pulmonary hypertension and in women with pre-eclampsia, compared to healthy controls [24,93–95].
Moreover, the deletion of CSE in mice resulted in the development of hypertension and impaired
endothelium-dependent vasorelaxation [24]. We have recently shown that, besides tissue enzymes,
the gut microbiota-derived H2S may be involved in the development of hypertension [83,89,96].
In addition, H2S donors were found to relax corpus cavernosum and were tested for the treatment of
erectile dysfunction [97–100].

The opening of ATP-sensitive potassium channels (KATP) is believed to mediate the vasodilation
induced by H2S donors [83,86,101]. Namely, the activation of the channel by persulfidation of
the sulfonylurea receptor 1 (SUR1) Cys6 and Cys26 subunit [101,102]. Several studies confirm
that the H2S-related vasodilation is associated with the promotion of NO synthesis (Cys433 eNOS
persulfidation) and/or NO signalling (reviewed in [103]). For instance, the H2S/NO interaction product
nitrosopersulfide mediates vasodilation and increases levels of cyclic guanosine monophosphate
(cGMP) [73]. In addition, Stubbert et al. proposed a NO-independent mechanism of direct activation of
protein kinase G (PKG) 1α by Cys42 persulfidation. They showed that transgenic knock-in mice, where
Cys42 within PKG1α is replaced with redox-dead Ser, do not respond to H2S salt by blood pressure
lowering [104].

The administration of H2S donors stimulates vascularization (reviewed in [105]) and silencing
of 3-MST reduces cell growth, migration and network formation [106]. The activation of vascular
endothelial growth factor (VEGF) or the inhibition of phosphatase and tensin homolog (PTEN)
were proposed to mediate the pro-angiogenic actions of H2S. In detail, the direct reduction of
Cys1024-Cys1045 within VEGF2 by H2S was reported [107]. In addition, the persulfidation of Cys68
and Cys755 specificity protein 1 (Sp 1) promoted the transcription of VEGF2 [108]. Greiner et al.
observed the formation of PTEN Cys124 and Cys71 disulfide bond as a response to H2S salts [60].

1.6. H2S and the Immune System

Two major pathways regulate the inflammatory signaling in cells, namely the nuclear factor-κB
(NF-κB) pathway and nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. Accumulating
evidence suggests that H2S signaling promotes the Nrf2 signaling, thereby activating the antioxidant
defense of the cell [71,109–115]. Nrf2 is sequestered by Kelch-like ECH-associated protein (Keap) 1
in the cytosol. The persulfidation of Keap 1 Cys151 leads to the dissociation of the protein from Nrf2
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and subsequent translocation of Nrf2 to the nucleus, thus promoting the transcription of antioxidant
response elements [71]. In addition, the persulfidation of Cys38 p65 subunit of NF-κB augments the
binding to the ribosomal protein S3 (RPS3), thereby promoting the transcription of anti-apoptotic
genes [116].

1.7. H2S in the Nervous System

Memory loss was reported in individuals exposed to toxic concentration of H2S [117]. In contrast,
the breakthrough report from Abe and Kimura showed that micromolar H2S concentrations facilitate
the induction of hippocampal long-term potentiation (LTP) [2]. The activation of N-methyl-D-aspartate
(NMDA) receptor and the induction of Ca2+ influx by transient receptor potential ankyrin1 (TRPA1)
channel opening were proposed to mediate the LTP induction by H2S donors [118]. In detail, the
administration of sulfide salts and inorganic polysulfides led to the persulfidation of TRPA1 N-terminal
cysteine residues and Ca2+ influx in astrocytes [118]. In addition, Kimura proposed that these sulfide
species activate the NMDA receptor indirectly via the downstream TRPA1 signaling [119,120].

Decreased levels of H2S were reported in neurodegenerative disorders including Alzheimer
disease and Parkinson disease in comparison to healthy controls [121–124]. Besides, lower expression
of CSE was found in patients with Huntington disease [123]. On the other hand, a mutation of ETHE1
gene was found in ethylmalonyl encephalopathy patients resulting in the accumulation of H2S in
the brain [125]. Several studies support the neuroprotective effects of H2S (reviewed in [118]). H2S
may promote the glutathione (GSH) production via the activation of cystine/glutamate antiporter,
cysteine transporter or glutamate cysteine lyase, and thus promote the antioxidative defense [126,127].
In addition, the opening of KATP and cystic fibrosis transmembrane conductance regulator Cl- channels
by H2S results in stabilizing of the neuronal plasma membrane [127]. The inactivation of neuroprotective
ubiquitin E3 ligase of parkin plays a crucial role in the development of Parkinson disease. Vandiver et
al. showed that persulfidation of parkin promotes the ubiquitin E3 ligase activity and thus mediates
cytoprotection. Furthermore, they found that Parkinson’s patients have depleted persulfidated parkin
in the brain [128].

1.8. Other Effects of H2S

A bell-shaped model characterizes the cellular effects of H2S. At lower concentrations, H2S
promotes cell survival, whereas higher H2S concentrations can lead to cell death. The cytoprotective
and anti-inflammatory properties of H2S are associated with faster dermal wound healing, mucosal
defense and ulcer healing in the gastrointestinal system (reviewed in [129,130]). An improved clinical
severity index of psoriasis was shown after the topical administration of H2S donor [131]. Furthermore,
H2S-releasing derivatives of nonsteroidal anti-inflammatory drugs (HS-NSAIDs) reduced the gastric
damage induced by the corresponding parent drugs (reviewed in [132]). H2S donors were also shown
to relieve visceral pain [133–135] and an HS-trimebutine is now in Phase II clinical trials as an abdominal
analgesic (NCT01926444). The role of H2S has also been investigated in the etiology of cancer and
diabetes, however, the studies show contradictory results [136–147]

2. Sulfur-Drugs and Their Therapeutic Potential

Sulfur is essential to the life and growth of all organisms and plays a crucial role in the regulation of
various biological processes in the human body. Sulfur can obtain oxidation states anywhere between
−2 to +6 and represents one of the most chemically versatile elements. Generally, organo-sulfur
compounds are organic compounds containing a carbon–sulfur bond. Many organo-sulfur compounds
are sulfur equivalents of oxygen-containing organic compounds, for example, thioethers, thiols or
thioesters. Therefore, sulfur-containing products can form a variety of molecular arrangements and
exhibit diverse biological activities. The organo-sulfur compounds were already used as ointments
with mild antiseptic effects in ancient times. The colloidal sulfur was regularly administered to
patients suffering from rheumatoid arthritis. At present, the diversity of elements among approved
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pharmaceuticals reveal that sulfur is the fifth most used element after carbon, hydrogen, oxygen and
nitrogen [148]. Sulfur-derived functional groups possess a variety of pharmacological properties
and represent a useful tool for the development of new therapeutic agents. Sulfur moieties can be
found in pharmaceuticals with various therapeutic applications, particularly in antihypertensive drugs,
analgesics, antibacterial, anti-inflammatories, anticancer agents and many others.

2.1. Natural Products Containing Hydrogen Sulfide-Releasing Moieties

Natural products capable of releasing H2S have drawn a lot of attention [149]. Commonly
isolated compounds from sulfur natural products are allyl-substituted polysulfides (mainly in form
di-, trisulfides and/or tetrasulfides) [79,150–153]. The garlic-derived sulfur compounds like the diallyl
disulfide (DADS) require the presence of reduced glutathione to release H2S. H2S generation relies
on nucleophilic substitution of GSH at the a-carbon of the allyl substituent to form an allyl perthiol,
which further undergoes a thiol/disulfide exchange to release H2S. Similarly, red blood cells released
H2S rapidly from DADS under anoxic conditions and in the presence of glutathione [154]. The health
benefits of garlic have been postulated for thousands of years and several studies demonstrated the
positive impact of garlic on the cardio-vascular system. This includes lowering of arterial blood
pressure, the reduction of blood cholesterol and platelet aggregation, and the reduction of oxidative
stress. It was suggested that S-allyl-l-cysteine (SAC) is a potential source of H2S and is responsible
for the cardioprotective effects of garlic. Other garlic-derived compounds are S-propyl-L-cysteine
(SPC) and S-propargyl-l-cysteine (SPRC) [155–157]. In addition to garlic, there are many other natural
products containing functional groups that can be considered as potential H2S donors, for example
Sulphoraphane and Erucin (Figure 2) [158,159].
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Figure 2. Naturally occurring H2S-donating compounds.

Sulforaphane is sulfur-organic molecule from the group of isothiocyanates. Sulphoraphane occurs
in cruciferous vegetables and its highest concentrations are found in broccoli sprouts. Sulphoraphane
has been postulated to exert anticancer property, to suppress the proliferation of prostate cancer cells
and to enhance the expression of CBS and CSE [160]. It has also been postulated that the consumption
of Broccoli sprouts, containing Sulforaphane, reduces nephropathy and vascular complications [158].

2.2. Sulfur Amino Acids

Several studies confirm that dietary sulfur amino acids, cysteine and taurine (Figure 3), have
beneficial effects on human health [161].
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Sulfur amino acids participate in the synthesis of essential bio-molecules like antioxidants, vitamins
and co-factors (thiamine, lipoic acid, biotin, coenzyme A). Giannis et al. showed that thiol amino acids
are potential H2S donors [162]. They observed the release of H2S from thioglycine and thiovaline
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(Figure 4) in the presence of bicarbonate. In addition, both sulfur amino acids promoted the cGMP
formation and relaxation of mouse aortic rings [163].
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2.2.1. Cysteine

The chemical structure of cysteine contains a nucleophilic thiol (-SH) (Figure 3) that may be readily
oxidized, thus mediating biological activity of the cells. The thiol group enables direct scavenging of
free radicals or the regeneration of oxidized molecules to their reduced states. Furthermore, cysteine
serves as a substrate for the production of glutathione and H2S. Cysteine residues incorporated within
proteins play a key role in the regulation of structural and functional properties of proteins. Particularly,
the formation of cysteine disulfides and persulfidation of cysteine residues (described in section
Signaling) are crucial post-translational modifications. Cysteine is endogenously produced from an
essential amino acid methionine. In detail, the demethylation of methionine results in the formation of
S-Adenosyl-l-homocysteine (SAH), which is subsequently hydrolyzed to homocysteine. Homocysteine
enters the transulfuration pathway to produce cysteine by CBS and CSE. Accumulating evidence
suggests that cysteine plays a key role in the maintenance of mammalian homeostasis [164–168].
However, due to its unstable nature cysteine is not suitable for clinical use. N-acetylcysteine (NAC)
has been used instead as a nutritional supplement over the years. Several reports confirm that
administration of NAC prevented the development of hypertension in rodents and humans. In addition,
NAC attenuated the hypertensive-related complications, namely increased nitric oxide bioavailability,
improved renal function and attenuated the development of insulin resistance. In addition, the
antioxidant properties of NAC are used to prevent the development of neurodegenerative disorders,
inflammatory bowel disease or to treat paracetamol-induced poisoning [169,170].

2.2.2. Taurine

Taurine (2-aminoethanesulfonic acid) is one of the few naturally occurring sulfonic acids -SO3H
(Figure 3). It is endogenously produced via cysteine sulfinic acid pathway or acquired by diet [171,172].
In detail, the thiol moiety of cysteine is oxidized by cysteine dioxygenase to sulfinic acid. Further
decarboxylation by sulfinoalanine decarboxylase forms hypotaurine, which is subsequently oxidized
to taurine by hypotaurine dehydrogenase. Taurine is abundant in the brain, retina, skeletal muscle and
liver of mammals. The transport of taurine through plasma membranes is mediated via transporters:
SLC6A6 (TauT) and SLC36A1 (PAT1) [173]. Taurine is an important substrate for microbial production
of H2S. Taurine is used by known intestinal microbe Bilophila wadsworthia as an electron acceptor for
anaerobic respiration. This pathway results in sulfite production, which is subsequently converted to
H2S [174]. Similar to cysteine, blood pressure lowering and antioxidative effects were reported after
taurine supplementation [175–180]. Moreover, the development of hypertension was accelerated in
taurine-deficient rats [181]. Taurine does not incorporate into proteins and the biochemical nature
of its actions is not clear. Interestingly, the antihypertensive effect of taurine was associated with
increased levels of H2S in the plasma of prehypertensive patients. Taurine upregulates the expression of
H2S-synthesizing enzymes CBS and CSE, and thereby contributes to increasing the level of endogenous
H2S [182].

2.3. Antihypertensive Drugs

Hypertension is a leading cause of morbidity and mortality worldwide. Numerous
antihypertensive drug classes were developed, e.g., renin–angiotensin–aldosterone system (RAAS)
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inhibitors, calcium channel blockers, beta-blockers and diuretics. The RAAS is a key regulator of
blood volume and systemic vascular resistance. The decrease of systemic blood pressure leads to the
release of renin by the kidneys, thus stimulating the formation of angiotensin, which in turn promotes
the release of aldosterone from the adrenal cortex, resulting in sodium and water retention in the
kidney [183,184]. To date, over 20 compounds targeting the RAAS have been introduced, and some of
them possess a sulfur moiety.

The group of angiotensin-converting enzyme inhibitors (ACE-I) is a cornerstone of
antihypertensive treatment [185,186]. The first ACE-I, i.e., Captopril, was patented and approved
for clinical use in the 1980 [187]. The chemical structure of Captopril contains a thiol. In the plasma
Captopril forms its disulfide or reacts with cysteine and glutathione to form mixed disulfides, thus
representing a sulfane sulfur source (Figure 5).
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However, the possible involvement of sulfide signaling in the Captopril-dependent effects remains
unclear. Besides Captopril, Lisinopril is also administered as an active drug. Other ACE-I inhibitors
are pro-drugs, undergoing hydrolysis in the liver to active forms containing a hydroxyl group [188].
Zofenopril, an ACE-I inhibitor approved for medical use in 2000, undergoes hydrolysis and forms
an active metabolite Zofenoprilat containing a thiol group (Figure 6). Several studies confirmed
that Zofenopril administration increases the levels of H2S-metabolites in the plasma of mice and
pigs [188]. Pro-angiogenic, anti-inflammatory and anti-apoptotic actions of Zofenopril were reported
in association with H2S release [189–193].
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In addition, Bucci et al. reported that Zofenopril improved vascular function in a model of
spontaneous hypertension, which was associated with H2S release and was dependent on the inhibition
of ACE. Namely, S-Zofenoprilat, the active diasteroisomer, as well as the inactive R-Zofenoprilat,
restored vascular response of hypertensive rats (Figure 6). On the other hand, Enalapril, a non-thiol
ACE inhibitor, failed to improve the vascular function (Figure 7) [192].
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Spirapril and Temocapril are hydroxyl-based ACE inhibitors, administered in the pro-drug
esterified form. The chemical structure of these drugs contains cyclic sulfur moieties (Figure 5).
Spirapril contains a sulfur atom in a dithioketal ring. Temocapril contains two sulfur atoms, one in
the thiophene ring and the other in thiazepine ring [193]. In 2003, an experimental ACE inhibitor
Omapatrilat was introduced. Omapatrilat contains a hydroxyl group as well as a thiol group and
another sulfur atom in a thiazepine ring (Figure 5). It can simultaneously inhibit ACE and neutral
endopeptidase (NEP). Interestingly, the ACE inhibition by Omapatrilat is longer in comparison to
Enalapril [194]. Another sulfur-based drug is Remikiren, a direct renin inhibitor containing a sulfonyl
moiety in its structure (Figure 8) [195].
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Notably, a clinical study showed a greater potency of Remikiren to lower blood pressure in
comparison to a non-sulfur renin inhibitor Enalkiren [196]. Several other antihypertensive drugs
possess a sulfonic group in their structure. For instance, endothelin receptor antagonists Macitentan
and Bosentan contain sulfones in their structure (Figure 9) [197,198].
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Moreover, the phosphodiesterase inhibitors, Vardenafil [199–202] and Sildenafil [199,203,204],
used for the treatment of erectile dysfunction, are sulfonic acids (Figure 10).
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In addition, the calcium-channel blocker Diltiazem contains a thiazepine ring (Figure 11) [205].
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2.4. Central Nervous System Agents

Numerous studies show that H2S exerts a number of biological actions in the Central Nervous
System (CNS), including anti-inflammatory, anti-oxidant, anti-apoptotic, and neuroprotective
effects [206].

Despite the potentially beneficial effect of H2S on cellular functions, an excessive amount of H2S
and polysulfides may impair brain functions in what is referred to as the so-called “sulfide stress” [207].
Sulfide stress is characterized by an increase in H2S/polysulfide production as a result of elevated levels
of 3-MST enzyme. This may result from an inflammatory/oxidative insult to the brain. There is some
evidence that the H2S/polysulfide production system is upregulated in schizophrenia. A more detailed
explanation of the role of sulfide stress in the development of schizophrenia may give a new direction
to develop a more effective treatment for this disorder [208]. However, it is worth stressing that several
sulfur-based drugs are used in the treatment of schizophrenia, including Sulpiride and Sultopride.
These medicines contain a sulfonamide group that is S-linked to a benzene ring (Figure 12) [209–211].
Whether the use of sulfuric drugs may affect the course of schizophrenia by modulating the endogenous
H2S levels is unknown.
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Parkinson’s disease is a neurodegenerative disorder caused by progressive loss of dopaminergic
neurons in the substantia nigra. The most widely used therapy is Levodopa (L-DOPA), but it does
not stop disease progression [212]. Numerous studies indicate that the endogenous H2S levels are
markedly reduced in various Parkinson’s disease models. Xue et al. showed that NaHS treatment
reduces the loss of substantia nigra neurons and slows the development of motor dysfunction in
animal models [213]. Other groups also found that intraperitoneal injection of NaHS (as H2S donor)
and the inhalation of H2S exerted protective effects in animal models of Parkinson’s disease [214].
Based on these reports, it was stated that the combination of L-DOPA and H2S may have a potential
therapeutic value. Lee at al. have developed four L-DOPA hybrids based on coupling L-DOPA to
different hydrogen sulfide-donating compounds: ACS 48, ACS 50, ACS 5 and ACS 8 (Figure 13). H2S
donor structures present in L-DOPA hybrids release hydrogen sulfide by hydrolysis.

After intravenous administration of H2S-releasing L-DOPA derivatives (Figure 13) a large increase
in dopamine and glutathione has been observed in intracerebral fluid [215].
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2.5. Dithiolethiones and Their NSAID Hybrids

NSAIDs have high efficacy in reducing pain and inflammation. The NSAIDs act by the inhibition
of cyclooxygenases (COXs). Traditional NSAIDs are non-specific inhibitors of both COX-1 and COX-2.
Adverse effects of NSAIDs on the gastrointestinal tract are associated with the reduction of prostaglandin
synthesis due to the inhibition of COX-1. Numerous studies showed that H2S may reduce adverse
effects of NSAIDs in the gastrointestinal tract [216,217]. 1,2-Dithiole-3-thiones (DTTs), anethole trithione
(ADT) and the phenol derivative of ADT (ADT-OH) belong to the family of hydrolysis-triggered H2S
donors (Figure 14). A rapid generation of H2S from DTT derivates was observed in the presence of
mitochondria [218]. They are commonly used in the design of HS-NSAIDs (hydrogen sulfide-releasing
non-steroidal anti-inflammatory drugs) [217,218]. Sparatore et al. synthesized a S-aspirin (ACS 14)
and compared the gastric damages caused by ACS 14 and aspirin in rats (Figure 14) [219]. ACS 14
protected the gastric mucosa through increased H2S/glutathione production, HO-1 activation and
isoprostane suppression. S-diclofenac (ACS 15) has also been studied. This drug showed increased
anti-inflammatory activity compared to diclofenac in several models [220,221]. Another hybrid
drug, S-mesalamine (ATB-429), has been well characterized in animal models of Crohn’s disease and
ulcerative colitis and has turned out to be more effective than mesalamine [222]. Similarly, S-naproxen
(ATB-346) has been found to cause less gastric damage than its parent drug [223]. Chattopadhyay et al.
evaluated the effects of four different HS-NSAIDs on the growth of different human cancer cell lines.
All tested HS-NSAIDs effectively inhibited the growth of cancer cells [224].
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2.6. The Coxibs, Selective Inhibitors of Cyclooxygenase-2 (COX-2)

The Coxibs belong to the group of anti-inflammatory drugs that are selective inhibitors of
COX-2 [225,226]. Celecoxib, Rofecoxib [227], Etoricoxib [228] and Valdecoxib [229] contain a
sulfonamide group that is S-linked to a benzene ring (Figure 15).

Treatment with selective COX-2 inhibitors such as Celecoxib seems to produce fewer side effects
in comparison with non-selective NSAIDs [230,231]. Szabó et al. synthesized a series of Celecoxib
derivatives with various substituents on the benzenesulfonamide moiety. The gastrointestinal adverse
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reaction profile was more favorable compared to the parent drug [232]. Celecoxib is often used
to counteract the multiple side effects of Cyclosporin A (CsA), an immunosuppressant drug used
in the treatment of inflammatory diseases of autoimmune origin [233–235]. H2S was shown to
prevent the CsA-induced vasomotor alteration and nephrotoxicity [236,237]. In addition, Helmy et al.
confirmed that upregulation of CSE/H2S pathway underlies the capacity of Celecoxib to compromise
the hypertensive and renal insult caused by CsA in rats [238].
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2.7. Thiourea Derivatives As Antithyroid and Anesthetics Drugs

The antithyroid activity of thiourea and its derivatives has been confirmed in numerous studies.
Thyreostatics containing thiourea in a cyclic form are Propylthiouracil, Thiamazole and Carbimazole
(Figure 16).
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Propylthiouracil inhibits the synthesis of thyroxine and inhibits conversion of thyroxine to
triiodothyronine. Thiamazole (other name Methimazole) may directly inhibit thyroid peroxidase
or directly inhibit thyroglobulin, hence reducing the production of the thyroid hormones T3
and T4 (thyroxine) [239,240]. Carbimazole is a pro-drug which is converted to the active form,
methimazole [241]. In our work from 2018, we proved that compounds based on thiourea can act
as controlled hydrolysis-based H2S donors [15]. In turn, numerous studies indicate an association
between thyroid hormone (TH) level and H2S level [242,243].

Another group of drugs containing thiourea moiety in the structure are barbiturates. Barbiturates
act as CNS depressants. They are also used as anxiolytics, hypnotics, and anticonvulsants. The
examples of sulfur-containing barbiturates are Thiamylal, Thiopental and Thiobarbital (Figure 17).
Both Thiamylal, and Thiopental are used for short-term anesthesia and short surgical procedures
associated with minimal painful stimuli [244,245]. Thiobarbital has sedative effects [246].
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2.8. Other Drugs

Disulfiram in chemical terms is tetraethylthiuram disulfide. Thiuram disulfides are a class of
organo-sulfur compounds with the formula (R2NCSS)2 (Figure 18).
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Figure 18. The structures of Cimetidine and Disulfiram.

There are two dithiocarbamate subunits which are linked by an S−S bond in the chemical structure
of Disulfiram. This drug is used for the treatment of alcohol dependence [247]. It belongs to a group of
aldehyde dehydrogenase inhibitors that increase the blood level of acetaldehyde after the ingestion of
ethanol. The disulfiram–ethanol reaction (DER) is the cause of highly unpleasant symptoms referred to
as “acetaldehyde syndrome,” including flushing, systemic vasodilation, respiratory difficulties, nausea
and hypotension. The latter is one of the most common and potentially life-threatening side effects of
the drug. The observed blood pressure-lowering effect has been attributed to the vasodilatory action
of acetaldehyde [248].

Cimetidine, a histamine receptor blocker, contains a sulfur moiety in the form of thioether
(Figure 18). Thioethers are sulfuric ether analogues with the general formula R−S−R. The effects of
Cimetidine include reduction of gastric acid secretion and reduction in gastric volume and acidity.
Interestingly, a common side-effect of Cimetidine is hypotension. It has been reported, that intravenous
administration of Cimetidine induces a short-lasting (5–15 min) hypotension in anaesthetized rats
due to arterial vasodilatation. Notably, the pretreatment with diphenhydramine, an antihistamine
agent, did not reduce the hypotensive effect. This suggests no involvement of histamine receptors in
the hypotensive action of cimetidine. It may be speculated that the release of H2S from the thioether
moiety may be responsible for the cimetidine-induced hypotension [249].

Several studies suggest that H2S may regulate cancer cell growth and tumor progression and that
the expression of CSE and CBS is reduced in antiandrogen-resistant prostate cancer cells. Additionally,
in antiandrogen-resistant prostate cancer cells, lower levels of endogenous H2S were found [250,251].
Interestingly, Enzalutamide [252,253] and Apalutamide [254], the androgen receptor antagonists that
are used in the prostate cancer treatment, are N, N-disubstituted thiourea derivatives (Figure 19).
The thiourea moiety presence in the structure of Enzalutamide and Apalutamide may release H2S
and strengthen their androgen receptor antagonist properties. Hydrolysis is the mechanism of H2S
generation from thiourea derivatives. [15].
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3. Perspectives and Limitations 
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There are numerous well-established medicines containing sulfur moieties that release H2S ex 
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3. Perspectives and Limitations

Accumulating evidence suggests that H2S contributes to the regulation of essential biological
processes in mammals. In spite of the significant progress in the field of developing H2S donors,
there is still a lack of compounds that would meet all requirements for the ideal H2S donor in clinical
studies. Notably, there are a number of commonly used drugs containing sulfur moieties, which have
been found to release H2S ex vivo, and some of them in vivo. This may significantly contribute to
pharmacokinetics and pharmacodynamics of those drugs. Nevertheless, there are significant gaps in
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our knowledge that hinder clinical use of H2S donors. A list of questions to be answered includes, but is
not limited to, the following: (i) What are therapeutic vs. toxic concentrations of H2S and its products?
(ii) What are the mechanisms of H2S release from the drug? (iii) How to deliver H2S chronically in vivo
at a constant rate? (iv) How to monitor plasma concentration of H2S and its products? (v) What are the
mechanisms of H2S action?

4. Conclusions

There are numerous well-established medicines containing sulfur moieties that release H2S ex
vivo and may release H2S in vivo. Thus, the sulfur moieties present in the drug structure may function
as an H2S donor and/or affect endogenous H2S metabolism. Further research is needed to clarify
whether the released H2S may contribute to the therapeutic effect of these drugs, and, if so, which of
the mechanisms is dominant. If it is true, the addition of sulfur moieties may significantly affect the
pharmacotherapeutic profile of parent drugs.
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